Trust Management Model for Secure Internet of Vehicles: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Contributor: , , , ,

车联网(IoV)使车辆能够共享数据,帮助车辆感知周围环境。但是,车辆可以将虚假信息传播到其他车联网节点;这种不正确的信息会误导车辆并导致交通混乱,因此需要车辆信任模型来检查消息的可信度。

  • Internet of Vehicles
  • blockchain
  • trust management

随着5G和6G的普及[1]以及可编程V2X环境和基于区块链的V2X(车辆到一切)技术[2]的应用,车联网已经迎来了快速发展。在车联网中,车辆可以与其他节点共享感知信息,包括交通安全信息、天气信息、道路信息等,并从其他节点获取服务[3],从而提高交通安全和效率。

然而,车辆可能不可靠,我们需要解决如何在使用车联网之前,根据车辆的历史行为来评估车辆发送的消息的可靠性,并根据车辆的历史行为量化评估措施[4](即信任值)的问题。例如,在车联网中,攻击者可能出于自私的原因控制车辆传播虚假信息,从而导致错误的环境感知和驾驶决策,从而危及驾驶员的安全并造成严重的交通事故[5]。
在车联网中,信任模型背后的基本原则是通过识别和取消恶意车辆及其产生的虚假消息来确保数据的可靠传输[6]。信任管理机制可以帮助车辆计算接收到的消息的可信度[7],以提高车辆决策的准确性。综上所述,现有的信任管理机制一般可分为集中式信任管理和分布式信任管理[8]。集中式信任管理存在单点故障等问题,分布式信任管理存在信任值更新延迟等问题。
区块链作为比特币的核心技术,是一个分布式账本[9]。由于其分散和不可变的特性,区块链可以记录和更新车辆的信任值。有了区块链,即使少数RSU出现存储错误或被攻击者控制,整个网络的共识结果仍然可以得到保护。因此,一些研究者将区块链与信任管理机制相结合,解决上述集中式和分布式信任管理的问题。
然而,基于区块链或单层区块链的信任管理机制研究仍存在一些问题。首先,车辆每次验证交易时都需要存储一个完整的区块链账本或向相邻的全节点发送请求进行验证,这无疑会增加车辆的负担,浪费车辆的资源。其次,由于区块链节点数量非常大,覆盖面活跃广,也很难根据地理位置、通信流量、节点密度等客观因素进行分级管理。最后,由于车辆数据的重要性并不相同,如果系统不区分消息的重要性,车辆和RSU之间的数据存储和数据共享效率低下。因此,如何使系统能够存储和共享不同重要性级别的数据是一个问题。
考虑一个场景,车辆 A 需要了解街道 A 的交通和业务情况,车辆 A 向附近的 RSU 发送请求(我们假设每辆车都配备了一个车载单元 (OBU),该单元使用专用短程通信 (DSRC) 或蜂窝 V2X (C-V2X) 通信技术与 RSU 进行微波通信)。收到请求后,RSU 会查询车辆 A 的信任值,并允许车辆 A 在其信任值高于特定阈值时使用该服务。RSU查询RSU区块链中的相关数据,并通过安全传输通道将其返回给车辆A。然后,车辆A可以根据RSU返回的数据和自身车辆区块链中的数据,充分了解前方区域的情况。
但是,车辆和RSU都可能成为恶意节点并恶意行为,从而影响系统中的其他节点。例如,恶意 RSU 可能会篡改车辆信任值,恶意车辆可能会发送虚假消息。针对恶意节点问题,我们提出一种基于双层区块链的信任管理机制。该机制分为三个部分。其中,第一部分是双层区块链,第二部分是系统架构,最后一部分是共识机制。我们通过这三个部分介绍了所提出的双层区块链信任管理机制。
本文提出一种基于双层区块链的信任管理机制DLBTM,以解决车联网中针对车辆与RSU通信的恶意攻击。利用双层区块链,可以减轻车联网负担,实现车联网节点分级管理,保护车辆隐私,实现分级数据存储和共享,实现车联网节点的有效信任评估和管理。值得注意的是,与同类算法相比,我们的类型算法和消息评估器选择算法具有更低的时间复杂度,仿真实验表明,我们的信任管理机制能够有效地识别恶意节点。因此,我们的DLBTM在复杂的车联网环境中是有效和可行的。对于未来的研究,我们将在我们的模型中引入激励机制来促进合作行为。

论文亮点:

  1. 提出双层区块链结构,允许根据消息重要性选择性存储数据,降低存储压力。
  2. 使用逻辑回归算法计算车辆节点信任值,准确判断好节点和坏节点。
  3. 采用先进的共识机制,如Ouroboros,使系统安全可靠。
  4. 通过仿真测试,在各种条件下都能有效识别90%以上的恶意节点。
  5. 与现有算法相比,该方法具有较低的时间和空间复杂度。

This entry is adapted from the peer-reviewed paper 10.3390/s23104699

References

  1. Vaezi, M.; Azari, A.; Khosravirad, S.R.; Shirvanimoghaddam, M.; Azari, M.M.; Chasaki, D.; Popovski, P. Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G. IEEE Commun. Surv. Tutor. 2022, 24, 1117–1174.
  2. Noor-A-Rahim, M.; Liu, Z.; Lee, H.; Khyam, M.O.; He, J.; Pesch, D.; Moessner, K.; Saad, W.; Poor, H.V. 6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities. Proc. IEEE 2022, 110, 712–734.
  3. Mohanty, S.K.; Tripathy, S. SIoVChain: Time-Lock Contract Based Privacy-Preserving Data Sharing in SIoV. IEEE Trans. Intell. Transp. Syst. 2022, 23, 24071–24082.
  4. Ahmad, F.; Kurugollu, F.; Kerrache, C.A.; Sezer, S.; Liu, L. Notrino: A novel hybrid trust management scheme for internet-of-vehicles. IEEE Trans. Veh. Technol. 2021, 70, 9244–9257.
  5. Tian, Z.; Gao, X.; Su, S.; Qiu, J. Vcash: A novel reputation framework for identifying denial of traffic service in internet of connected vehicles. IEEE Internet Things J. 2019, 7, 3901–3909.
  6. Mahmood, A.; Sheng, Q.Z.; Siddiqui, S.A.; Sagar, S.; Zhang, W.E.; Suzuki, H.; Ni, W. When trust meets the internet of vehicles: Opportunities, challenges, and future prospects. In Proceedings of the 2021 IEEE 7th International Conference on Collaboration and Internet Computing (CIC), Atlanta, GA, USA, 13–15 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 60–67.
  7. Yang, Z.; Wang, R.; Wu, D.; Yang, B.; Zhang, P. Blockchain-enabled trust management model for the Internet of Vehicles. IEEE Internet Things J. 2021. Early Access.
  8. Singh, P.K.; Singh, R.; Nandi, S.K.; Ghafoor, K.Z.; Rawat, D.B.; Nandi, S. Blockchain-based adaptive trust management in internet of vehicles using smart contract. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3616–3630.
  9. Misra, N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020, 9, 6305–6324.
More
This entry is offline, you can click here to edit this entry!
ScholarVision Creations