Nano-Based DDS for Anterior Segment Diseases: Comparison
Please note this is a comparison between Version 4 by Rita Xu and Version 3 by Catherine Yang.

The eye is a delicate and complex organ protected by anatomical barriers that limit the bioavailability and residence time of topically administered drugs. Polymeric nano-based drug delivery systems (DDS) have been developed to address this challenge and improve therapeutic outcomes. Biodegradable polymers are often used in these DDS to minimize adverse effects and control the release of different loaded drugs.

This review provides a comprehensive overview of the therapeutic potential of polymeric nano-based DDS for ocular diseases. We summarize key findings from preclinical and clinical studies conducted between 2017 and 2022 and discuss recent advances in polymer science that have contributed to the evolution of ocular DDS. Specifically, we focus on the potential of these systems to manage anterior segment diseases and glaucoma. Additionally, we compare and contrast polymeric and non-polymeric nano-based DDS for ocular diseases.

Overall, this article offers insights into the current state of the art and future directions for research in this area.

The eye is a delicate and complex organ protected by anatomical barriers that limit the bioavailability and residence time of topically administered drugs. Polymeric nano-based drug delivery systems (DDS) have been developed to address this challenge and improve therapeutic outcomes. Biodegradable polymers are often used in these DDS to minimize adverse effects and control the release of different loaded drugs.

  • polymeric nanocarriers
  • biodegradable polymers
  • polymeric biomaterials
  • anteriorsegment diseases
  • glaucoma
  • ocular diseases
  • ocular drug-delivery

Biodegradable Nano-Based DDS for Anterior Segment Diseases

1. DDS for Ocular Surface Disease

DDS for Ocular Surface Disease

Ocular surface disease refers to damage of the surface layers of the eye, namely the cornea and conjunctiva. Dry eye disease (DED), or keratoconjunctivitis sicca, is the most common type of ocular surface disease. It is a complex condition characterized by insufficient or poor-quality tears, leading to discomfort, visual disturbances, and ocular surface damage. Various factors contribute to its development, including aging, medical conditions, medications, environmental factors, lifestyle habits, and hormonal changes. The severity of DED determines the pharmacologic therapy needed, ranging from mild cases, such as artificial tears, to severe cases requiring topical corticosteroids, immunosuppressants, or autologous tear therapies. However, these treatments have their limitations and side effects. For instance, artificial tears need frequent application and compliance, topical steroids can cause adverse effects, and autologous tear therapy is expensive and time-consuming. Moreover, DED affects ocular drug delivery, reducing topical medication efficacy and increasing systemic absorption risk. Thus, other therapeutic strategies have been developed to manage DED and enhance drug delivery.

Nanoemulsions encapsulating cyclosporine A such as CyclokatTM and RestasisTM have been approved for treating dry eye disease due to their highly solubilized state and improved stability. However, the high molecular weight of cyclosporine A and its higher affinity with the oil phase of the nanoemulsion have hampered drug delivery to ocular tissue. CequaTM, a nanomicelle solution containing cyclosporine A, has been shown to improve ocular surface integrity and increase tear production after 84 days of treatment. KPI-121, a mucin-penetrating particle (MPP) for the delivery of loteprednol etabonate, has also been approved by the FDA for the treatment of dry eye disease. The nanosuspension, developed by a milling procedure containing loteprednol etabonate and Pluronic F127 polymer, has a low molecular weight, evades entrapment by mucin, and has a reduced clearance rate compared to conventional eye drops. In clinical trials, KPI-121 has shown minimal toxicity and has successfully reduced signs and symptoms of dry eye disease. The F127 polymers used in KPI-121 form nanomicelle structures that can form hexagonal morphologies at higher temperatures, improving the stability of the system.

Recent clinical trials have investigated several novel biodegradable nano-sized DDS that aim to improve drug delivery for dry eye disease by reducing the need for frequent administration and increasing bioavailability. Mun et al. (2019) synthesized cholesterol-hyaluronate nanomicelles crosslinked with ethylene glycol dimethacrylate and hydroxyethyl methacrylate, resulting in contact lenses that demonstrated a prolonged therapeutic effect in a dry eye disease rabbit model. Other formulations of cyclosporine A based on mPEG-PLA copolymers have also been developed, demonstrating increased stability and prolonged shelf life through lyophilization.

Rebamipide is a promising drug for treating tear deficiency and corneal epithelial damage. It has been shown to increase mucin and lipid layers in the tear film while reducing ocular surface dryness. To improve drug delivery and increase compliance, researchers are developing novel drug delivery systems that can evade nasolacrimal clearance. Copolymeric nanoparticles made from 2-hydroxypropyl-β-cyclodextrin and methylcellulose have demonstrated sustained release and improved delivery to the goblet cells and meibomian glands. Additionally, hydrogenated soybean phospholipids and high-purity cholesterol multilamellar nanoliposomes have shown equivalent therapeutic effects to the commercially available formulation, while reducing the frequency of administration and adverse effects by improving drug retention and concentration at the cornea and aqueous humor.

Wang et al. recently synthesized rapamycin nanospheres based on 3-hydroxybutyrate-co-3-hydroxyvalerate copolymers that can effectively penetrate the tear film barrier. These nanospheres have shown potential advantages for Sjögren-associated dry eye disease, such as increasing tear meniscal height, decreasing tear break-up time, and improving Schirmer’s test scores. However, further research is needed to determine their long-term safety and efficacy [153][1].

Luo et al. have developed a thermo-responsive in situ gel for the treatment of dry eye disease. This gel is synthesized by functionalizing poly(N-isopropylacrylamide) with mucoadhesive gelatin and helix pomatia. In a rabbit model, a single application of the gel increased the bioavailability of the drug epigallocatechin gallate beyond the therapeutic level for 14 days [154][2].

Mucolytic agents are drugs that reduce mucus viscosity and inhibit inflammation. These agents typically have a thiol group, which breaks disulfide bonds in mucoprotein complexes, or are enzymes like papain or bromelain that cleave cross-links of mucus glycoproteins. Modification of nanocarriers with mucolytic agents can enable controlled drug release, enhanced permeation, and improved mucoadhesion. However, while mucolytic enzyme-loaded nanoparticles have been developed for penetrating intestinal mucous layers, research on ocular delivery is currently limited [155][3].

N-acetylcysteine (NAC) is a mucolytic agent that has been used to treat various anterior segment diseases, including cataracts, DED, and filamentous keratitis. However, intracorneal injection of NAC is associated with rapid mucolytic activity and adverse side effects, such as edema, sloughing, and corneal haze. To address this issue, thiolated polymers can be used to achieve a controlled, sustained release of NAC. Chitosan is an attractive option for forming highly mucoadhesive copolymers for ocular drug delivery systems. By optimizing the concentration of NAC on the surface of chitosan, the thiol groups of NAC can form covalent bonds with mucosal glycoproteins. Nepp et al. found sustained improvement in patients with dry eye disease with chitosan-NAC eye drops (LacrimeraTM). Thiolated polymers have the advantage of significantly improving adhesion to the ocular mucus layer, and therefore improving contact time with the drug, by binding with positively charged glucosamine as well as negatively charged carboxylic acids in mucosal proteins. This approach was used by Sheng et al. to synthesize nanomicelles for the delivery of flurbiprofen to reduce inflammation in DED. The nanomicelles successfully increased the bioavailability of flurbiprofen in an in vivo rabbit eye model. However, a practical barrier with mucoadhesive nanocarriers is that in vivo studies in rabbit models may not bring clinically translatable results given that rabbit eyes have superior bioadhesion and higher mucus production compared to human eyes [159][4].

Several novel drug-delivery systems have been developed to treat dry eye disease. The most widely used topical medications in North America are nanoemulsions encapsulating cyclosporine A (RestasisTM) and its nanomicelle form (CequaTM). These DDS offer promising results by increasing drug bioavailability, reducing the need for frequent administration, and translating clinically into improved symptom management, greater compliance, and fewer side effects.

In addition to DED, Meibomian gland dysfunction (MGD) is another common ocular surface disease that impairs meibomian gland function, leading to decreased meibum secretion and blockages. This can cause changes in the tear film composition, specifically the lipid layer, resulting in increased tear evaporation, hyperosmolarity, inflammation, and ocular surface damage. Treatment for MGD currently involves heat therapy, massage, and lid margin hygiene, but artificial tears and topical steroids may have limited effectiveness due to low patient compliance.

Chronic inflammation and oxidative stress are critical factors in the development and progression of MGD [160][5]. While preservative-free fluorometholone eyedrops can be used for drug administration, multiple installations are required, and they can cause adverse effects if used without DDS [161][6]. To address this issue, Choi et al. developed polyhydroxyethyl methacrylate-based contact lenses embedded with cerium oxide nanoparticles for scavenging reactive oxygen species. These contact lenses improved the viability of human conjunctival and meibomian gland epithelial cells, even in media with high H2O2 concentrations, and showed protective effects in a mouse model when 3% H2O2 eyedrops were administered [162][7].

In Phase 3 clinical trials, nanoemulsions encapsulating cyclosporine A (nano-cyclosporine; Cyporin NTM, Taejoon, Korea) have shown promise as a treatment for MGD. These nanoemulsions are considered more stable and transparent than normal emulsions. Results of the trial indicate that the group receiving cyclosporine nanoemulsions experienced significant improvement in dry eye disease secondary to MGD compared to the control group. After one month of treatment, the cyclosporine nanoemulsion group had better corneal staining and increased lipid layer thickness compared to those receiving the conventional cyclosporine formulation [163][8].

 

2. DDS for Conjunctivitis

DDS for Conjunctivitis

Conjunctivitis is inflammation of the conjunctiva, the clear outer membrane covering the sclera and inner surface of the eyelids. It can result from viral or bacterial infections, allergens, irritants, or a combination thereof. Treatment depends on the cause and severity and may include artificial tears, topical antibiotics, corticosteroids, and immunosuppressants.

 

3. Nano-based DDS in clinical Studies

Nano-based DDS in clinical Studies

In phase III clinical trials, cyclosporine A nanoemulsions are being investigated as a potential treatment option. These cationic emulsions interact with negatively charged ocular surfaces, leading to increased residence time. The formulation has shown promise in improving signs and symptoms of severe vernal keratoconjunctivitis and good biocompatibility, with the exception of instillation site pain [164][9].

 

4. Nano-based DDS in preclinical Studies

Nano-based DDS in preclinical Studies

A biodegradable DDS based on solid lipid nanoparticles has been developed to improve the stability of tacrolimus, a topical immunosuppressant used to treat ocular inflammation, including vernal keratoconjunctivitis. Solid lipid nanoparticles, made of natural fats or oils, can encapsulate lipophilic molecules, improving drug solubility. The nano-based DDS demonstrated thermo-responsive gelation at 32 degrees and showed promising therapeutic effects in vivo compared to conventional eye drops for conjunctivitis treatment [165][10].

Several novel DDS are being investigated for the treatment of bacterial conjunctivitis to prolong the release of topical antibiotics. Chitosan and PVA nanofibers have been designed to encapsulate ofloxacin, and the linking of the nanofibers by glutaraldehyde vapor has been found to reduce burst release and increase bioavailability. Co-delivery of multiple guest compounds is another important strategy, with hydrogels made from chitosan and poloxamer 407 being invented for the co-delivery of neomycin and betamethasone. These hydrogels have been found to increase the bioavailability of drug guest molecules and reduce the frequency of dosing required for conjunctivitis eye drops [11][12]. [166, 167]

 

5. DDS for Keratoconus

DDS for Keratoconus

Keratoconus is a progressive eye condition that causes the cornea to become thin and cone-shaped, leading to vision distortion, nearsightedness, and irregular astigmatism. Early treatment options, such as rigid contact lenses or corneal crosslinking (CXL), can help slow the disease's progression. CXL involves creating new chemical bonds within the cornea's collagen fibers by performing epithelial debridement with a blade, applying riboflavin drops, and exposing the cornea to ultraviolet light. However, traditional CXL has a limitation in that the cornea must be of a certain thickness to avoid postoperative corneal ectasia. Advanced drug-delivery systems have the potential to eliminate the need for mechanical epithelial debridement, reducing the risk of complications and making the procedure safer, especially in patients with thin corneal thickness. Nano-sized DDS can penetrate the cornea and directly target the photosensitizing agent to the cornea's deeper layers.

To improve the effectiveness of riboflavin delivery in corneal crosslinking for keratoconus treatment, nanocarriers have been studied for their ability to penetrate the tear film and corneal epithelium and reach the corneal stroma. Among these, nanostructured lipid carriers (NLCs) have shown improved stability and loading capacity compared to solid lipid nanoparticles. NLCs loaded with riboflavin have demonstrated sustained release and enhanced penetration compared to conventional eye drops and solid lipid nanoparticle formulations. Additionally, a thermoresponsive gel consisting of poloxamer 407 and hydroxypropyl methylcellulose has been developed for co-delivery of dexamethasone and riboflavin, exhibiting therapeutic potential in increasing corneal thickness and fibroblast cells associated with keratoconus [168, 169][13][14].

To enhance the therapeutic efficacy of peptides for keratoconus treatment, appropriate drug delivery systems (DDS) are required. The rate of diffusion and residence time of peptides in the cornea are major barriers to their effectiveness. One solution is the use of copolymeric nanoparticles synthesized from chitosan-tripolyphosphate and chitosan-Sulfobutyletherβ-cyclodextrin for the delivery of lactoferrin, a peptide that can promote corneal healing. These nanoparticles display superior mucoadhesive properties, enabling them to achieve an ocular retention time of more than 240 minutes [170][15].

 

6. DDS for Keratitis

DDS for Keratitis

Keratitis is a condition that causes inflammation of the cornea, and it can be caused by a range of factors, from infections to autoimmune diseases. In severe cases, keratitis can lead to corneal melting, perforation, or scarring, which can result in severe vision loss. Therefore, prompt and proper treatment is essential. Treatment options for keratitis depend on the underlying cause and can include topical corticosteroids, antibiotics, and immunomodulatory agents.

To treat keratitis, topical delivery of drugs is commonly used. A gel formulation synthesized from sodium hydroxide, mannitol, and benzalkonium chloride has been approved as a polymeric drug delivery system for ganciclovir. This gel formulation solubilizes ganciclovir better than hydrophobic emulsions and increases the drug’s contact time within the eye. However, it needs to be applied five times a day. To improve the ocular retention and bioavailability of ganciclovir and reduce the need for frequent administration, non-mucoadhesive nanocarriers have been studied.

 

7. Nano-based DDS in preclinical Studies

Nano-based DDS in preclinical Studies

Jain et al. developed an in situ gel from hydroxypropyl methylcellulose and sodium alginate to increase the precorneal residence time of levofloxacin, a broad-spectrum antibiotic used to treat infectious keratitis. The hydrogels spontaneously self-assemble at corneal pH and displayed higher permeation compared to QuixinTM eye drops, with minimal in vivo toxicity [174][16].

Recently developed microneedles made from poly(vinylpyrrolidone) and polyvinyl alcohol offer an improved solution for the ocular delivery of amphotericin B, a polyene antibiotic. The microneedles do not contain deoxycholate, which eliminates the painful side effects associated with current options. In comparison to liposomal amphotericin B formulations, microneedles were more effective in targeting Candida species. Another important DDS has been synthesized using hydroxypropyl methylcellulose with PEG and Poly(vinylpyrrolidone) for the delivery of moxifloxacin. The in situ gel formation prolonged the adhesion of the drug to the cornea and enabled better drug permeation compared to current commercial forms. Additionally, carboxymethyl-alphacyclodextrin conjugated with chitosan has been shown to increase the biocompatibility and aqueous stability of econazole, an antifungal medication, resulting in a 29-fold increase in relative ocular bioavailability compared to conventional eye drop controls [175-177][17][18][19].

 

8. DDS for Cataracts

DDS for Cataracts

Cataract surgery involves the replacement of the diseased lens with a synthetic intraocular lens, and while it is commonly performed with a high success rate, it can carry risks and complications, including corneal edema, cystoid macular edema, endophthalmitis, and retinal detachment. The FDA has approved topical NSAIDs for the prevention of postoperative cystoid macular edema. Although the use of pharmacological compounds as an alternative to cataract surgery is still under development, various strategies aim to combat lens opacification by enhancing the bioavailability of antioxidants in the lens. This is because oxidative stress caused by reactive oxygen species and free radicals is a significant factor in the onset of cataracts.

Silver moieties have been used to synthesize nanoparticles, which can enhance the topical delivery of drugs, including antioxidants, for the treatment of cataracts [180,181][20][21]. Although silver nanoparticles have a high surface-area-to-volume ratio and are easy to manufacture, they have been linked to increased reactive oxygen species in the target tissue [182][22]. Mesoporous silica nanoparticles loaded with CeCl3 have also been developed to potentially reduce reactive oxygen species around the lens, but the formulations were designed for systemic injections, and the non-biodegradable nature of silica would result in the persistence of toxic metabolites in the blood [183,184][23][24]. As a result, biodegradable polymers are emerging as DDS applications for the treatment of cataracts, as they have a predictable release profile and increased biocompatibility.

Liu et al. recently developed a PLGA-based nanoformulation by combining curcumin and cerium oxide nanoparticles. This formulation exhibited effective antioxidant and anti-glycation potential to protect lens epithelial cells. Notably, it showed lower in vivo toxicity and increased cerium nanoparticle bioavailability in the rat eye compared to subcutaneous injections. Similarly, low molecular weight chitosan-coated mPEG-PLGA nanoparticles were used to deliver baicalin, another antioxidant. The nanoparticles had a small size and resulted in increased cellular uptake compared to the solution group. Additionally, in vivo tests demonstrated the nanoparticles' ability to improve precorneal residence time and significantly enhance the activities of catalase, superoxide dismutase, and glutathione peroxidase, which neutralize reactive oxygen species [185-186][25][26][27].

Chitosan-NAC nanoparticles have been developed as a biodegradable nanocarrier for drug delivery to the anterior segment, using hydroxypropyl β-CD to encapsulate and deliver quercetin for cataract treatment. This approach, developed by Lan et al., has shown enhanced permeability of quercetin and deeper delivery into the corneal epithelium.

Biodegradable gels offer an attractive DDS for cataracts due to their prolonged contact with the target membrane, resulting in higher permeation of the drug at the site of administration while maintaining its bioactive form. Bodoki et al. used biodegradable nanoparticles composed of zein and PLGA to deliver the antioxidant Lutein for preventing cataract progression. In vivo experiments demonstrated a significant reduction in cataract severity in rats treated topically with lutein-loaded NPs compared to the positive control [188].

 

[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][91][92][93][94][95][96][97][98][99][100][101][102][103][104][105][106][107][108][109][110][111][112][113][114][115][116][117][118][119][120][121][122][123][124][125][126][127][128][129][130][131][132][133][134][135][136][137][138][139][140][141][142][143][144][145][146][147][148][149][150][151][152][153][154][155][156][157][158][159][160][161][162][163][164][165][166][167][168][169][170][171][172][173][174][175][176][177][178][179][180][181][182][183][184][185][186][187][188][189][190][191][192][193][194][195][196].

References

  1. Ridolfo, R.; Tavakoli, S.; Junnuthula, V.; Williams, D.S.; Urtti, A.; van Hest, J.C.M. Exploring the Impact of Morphology on the Properties of Biodegradable Nanoparticles and Their Diffusion in Complex Biological Medium. Biomacromolecules 2021, 22, 126–133. [Google Scholar] [CrossRef] [PubMed]Wang, S.; Wang, M.; Liu, Y.; Hu, D.; Gu, L.; Fei, X.; Zhang, J. Effect of Rapamycin Microspheres in Sjögren Syndrome Dry Eye: Preparation and Outcomes. Ocul. Immunol. Inflamm. 2019, 27, 1357–1364.
  2. Allyn, M.M.; Luo, R.H.; Hellwarth, E.B.; Swindle-Reilly, K.E. Considerations for Polymers Used in Ocular Drug Delivery. Front. Med. 2021, 8, 787644. [Google Scholar] [CrossRef] [PubMed]Luo, L.-J.; Nguyen, D.D.; Lai, J.-Y. Long-Acting Mucoadhesive Thermogels for Improving Topical Treatments of Dry Eye Disease. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 115, 111095.
  3. Tsai, C.-H.; Wang, P.-Y.; Lin, I.-C.; Huang, H.; Liu, G.-S.; Tseng, C.-L. Ocular Drug Delivery: Role of Degradable Polymeric Nanocarriers for Ophthalmic Application. Int. J. Mol. Sci. 2018, 19, 2830. [Google Scholar] [CrossRef][Green Version]Dünnhaupt, S.; Kammona, O.; Waldner, C.; Kiparissides, C.; Bernkop-Schnürch, A. Nano-Carrier Systems: Strategies to Overcome the Mucus Gel Barrier. Eur. J. Pharm. Biopharm. 2015, 96, 447–453.
  4. Zhang, X.; Wei, D.; Xu, Y.; Zhu, Q. Hyaluronic Acid in Ocular Drug Delivery. Carbohydr. Polym. 2021, 264, 118006. [Google Scholar] [CrossRef] [PubMed]Bachu, R.D.; Chowdhury, P.; Al-Saedi, Z.H.F.; Karla, P.K.; Boddu, S.H.S. Ocular Drug Delivery Barriers—Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases. Pharmaceutics 2018, 10, 28.
  5. Orasugh, J.T.; Dutta, S.; Das, D.; Nath, J.; Pal, C.; Chattopadhyay, D. Utilization of Cellulose Nanocrystals (CNC) Biopolymer Nanocomposites in Ophthalmic Drug Delivery System (ODDS). J. Nanotechnol. Res. 2019, 1, 75–87. [Google Scholar]Bu, J.; Wu, Y.; Cai, X.; Jiang, N.; Jeyalatha, M.V.; Yu, J.; He, X.; He, H.; Guo, Y.; Zhang, M.; et al. Hyperlipidemia Induces Meibomian Gland Dysfunction. Ocul. Surf. 2019, 17, 777–786.
  6. Gupta, B.; Mishra, V.; Gharat, S.; Momin, M.; Omri, A. Cellulosic Polymers for Enhancing Drug Bioavailability in Ocular Drug Delivery Systems. Pharmaceuticals 2021, 14, 1201. [Google Scholar] [CrossRef]Seen, S.; Tong, L. Dry Eye Disease and Oxidative Stress. Acta Ophthalmol. 2018, 96, e412–e420.
  7. Tavakolian, M.; Jafari, S.M.; van de Ven, T.G.M. A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials. Nano-Micro Lett. 2020, 12, 73. [Google Scholar] [CrossRef][Green Version]Choi, S.W.; Cha, B.G.; Kim, J. Therapeutic Contact Lens for Scavenging Excessive Reactive Oxygen Species on the Ocular Surface. ACS Nano 2020, 14, 2483–2496.
  8. Junnuthula, V.; Sadeghi Boroujeni, A.; Cao, S.; Tavakoli, S.; Ridolfo, R.; Toropainen, E.; Ruponen, M.; van Hest, J.C.M.; Urtti, A. Intravitreal Polymeric Nanocarriers with Long Ocular Retention and Targeted Delivery to the Retina and Optic Nerve Head Region. Pharmaceutics 2021, 13, 445. [Google Scholar] [CrossRef]Jo, Y.J.; Lee, J.E.; Lee, J.S. Clinical Efficacy of 0.05% Cyclosporine Nano-Emulsion in the Treatment of Dry Eye Syndrome Associated with Meibomian Gland Dysfunction. Int. J. Ophthalmol. 2022, 15, 1924–1931.
  9. Tundisi, L.L.; Mostaço, G.B.; Carricondo, P.C.; Petri, D.F.S. Hydroxypropyl Methylcellulose: Physicochemical Properties and Ocular Drug Delivery Formulations. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2021, 159, 105736. [Google Scholar] [CrossRef]Leonardi, A.; Doan, S.; Amrane, M.; Ismail, D.; Montero, J.; Németh, J.; Aragona, P.; Bremond-Gignac, D.; VEKTIS Study Group. A Randomized, Controlled Trial of Cyclosporine A Cationic Emulsion in Pediatric Vernal Keratoconjunctivitis: The VEKTIS Study. Ophthalmology 2019, 126, 671–681.
  10. Kumara, B.N.; Shambhu, R.; Prasad, K.S. Why Chitosan Could Be Apt Candidate for Glaucoma Drug Delivery—An Overview. Int. J. Biol. Macromol. 2021, 176, 47–65. [Google Scholar] [CrossRef]Sun, K.; Hu, K. Preparation and Characterization of Tacrolimus-Loaded SLNs in Situ Gel for Ocular Drug Delivery for the Treatment of Immune Conjunctivitis. Drug Des. Devel. Ther. 2021, 15, 141–150.
  11. Zamboulis, A.; Nanaki, S.; Michailidou, G.; Koumentakou, I.; Lazaridou, M.; Ainali, N.M.; Xanthopoulou, E.; Bikiaris, D.N. Chitosan and Its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers 2020, 12, 1519. [Google Scholar] [CrossRef]Mirzaeei, S.; Taghe, S.; Asare-Addo, K.; Nokhodchi, A. Polyvinyl Alcohol/Chitosan Single-Layered and Polyvinyl Alcohol/Chitosan/Eudragit RL100 Multi-Layered Electrospun Nanofibers as an Ocular Matrix for the Controlled Release of Ofloxacin: An In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2021, 22, 170.
  12. Fabiano, A.; Beconcini, D.; Migone, C.; Piras, A.M.; Zambito, Y. Quaternary Ammonium Chitosans: The Importance of the Positive Fixed Charge of the Drug Delivery Systems. Int. J. Mol. Sci. 2020, 21, 6617. [Google Scholar] [CrossRef]Deepthi, S.; Jose, J. Novel Hydrogel-Based Ocular Drug Delivery System for the Treatment of Conjunctivitis. Int. Ophthalmol. 2019, 39, 1355–1366.
  13. Kianersi, S.; Solouk, A.; Saber-Samandari, S.; Keshel, S.H.; Pasbakhsh, P. Alginate Nanoparticles as Ocular Drug Delivery Carriers. J. Drug Deliv. Sci. Technol. 2021, 66, 102889. [Google Scholar] [CrossRef]Aytekin, E.; Öztürk, N.; Vural, İ.; Polat, H.K.; Çakmak, H.B.; Çalış, S.; Pehlivan, S.B. Design of Ocular Drug Delivery Platforms and in Vitro–in Vivo Evaluation of Riboflavin to the Cornea by Non-Interventional (Epi-on) Technique for Keratoconus Treatment. J. Control Release 2020, 324, 238–249.
  14. Wong, F.S.Y.; Tsang, K.K.; Chu, A.M.W.; Chan, B.P.; Yao, K.M.; Lo, A.C.Y. Injectable Cell-Encapsulating Composite Alginate-Collagen Platform with Inducible Termination Switch for Safer Ocular Drug Delivery. Biomaterials 2019, 201, 53–67. [Google Scholar] [CrossRef]Wo, N.; Zhai, J. Combinatorial Therapeutic Drug Delivery of Riboflavin and Dexamethasone for the Treatment of Keratoconus Affected Corneas of Mice: Ex Vivo Permeation and Hemolytic Toxicity. Micro Nano Lett. 2021, 16, 492–499.
  15. Jiang, G.; Jia, H.; Qiu, J.; Mo, Z.; Wen, Y.; Zhang, Y.; Wen, Y.; Xie, Q.; Ban, J.; Lu, Z.; et al. PLGA Nanoparticle Platform for Trans-Ocular Barrier to Enhance Drug Delivery: A Comparative Study Based on the Application of Oligosaccharides in the Outer Membrane of Carriers. Int. J. Nanomed. 2020, 15, 9373–9387. [Google Scholar] [CrossRef] [PubMed]Varela-Fernández, R.; García-Otero, X.; Díaz-Tomé, V.; Regueiro, U.; López-López, M.; González-Barcia, M.; Lema, M.I.; Otero-Espinar, F.J. Design, Optimization, and Characterization of Lactoferrin-Loaded Chitosan/TPP and Chitosan/Sulfobutylether-β-Cyclodextrin Nanoparticles as a Pharmacological Alternative for Keratoconus Treatment. ACS Appl. Mater. Interfaces 2021, 13, 3559–3575.
  16. Swetledge, S.; Carter, R.; Stout, R.; Astete, C.E.; Jung, J.P.; Sabliov, C.M. Stability and Ocular Biodistribution of Topically Administered PLGA Nanoparticles. Sci. Rep. 2021, 11, 12270. [Google Scholar] [CrossRef]Jain, P.; Jaiswal, C.P.; Mirza, M.A.; Anwer, M.K.; Iqbal, Z. Preparation of Levofloxacin Loaded in Situ Gel for Sustained Ocular Delivery: In Vitro and Ex Vivo Evaluations. Drug Dev. Ind. Pharm. 2020, 46, 50–56.
  17. Zhang, Y.; Song, W.; Lu, Y.; Xu, Y.; Wang, C.; Yu, D.-G.; Kim, I. Recent Advances in Poly(α-L-Glutamic Acid)-Based Nanomaterials for Drug Delivery. Biomolecules 2022, 12, 636. [Google Scholar] [CrossRef] [PubMed]Roy, G.; Galigama, R.D.; Thorat, V.S.; Mallela, L.S.; Roy, S.; Garg, P.; Venuganti, V.V.K. Amphotericin B Containing Microneedle Ocular Patch for Effective Treatment of Fungal Keratitis. Int. J. Pharm. 2019, 572, 118808.
  18. Wang, Q.; Zhang, A.; Zhu, L.; Yang, X.; Fang, G.; Tang, B. Cyclodextrin-Based Ocular Drug Delivery Systems: A Comprehensive Review. Coord. Chem. Rev. 2023, 476, 214919. [Google Scholar] [CrossRef]Sebastián-Morelló, M.; Calatayud-Pascual, M.A.; Rodilla, V.; Balaguer-Fernández, C.; López-Castellano, A. Ex Vivo Rabbit Cornea Diffusion Studies with a Soluble Insert of Moxifloxacin. Drug Deliv. Transl. Res. 2018, 8, 132–139.
  19. Weng, Y.-H.; Ma, X.-W.; Che, J.; Li, C.; Liu, J.; Chen, S.-Z.; Wang, Y.-Q.; Gan, Y.-L.; Chen, H.; Hu, Z.-B.; et al. Nanomicelle-Assisted Targeted Ocular Delivery with Enhanced Antiinflammatory Efficacy In Vivo. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2018, 5, 1700455. [Google Scholar] [CrossRef]Li, J.; Li, Z.; Liang, Z.; Han, L.; Feng, H.; He, S.; Zhang, J. Fabrication of a Drug Delivery System That Enhances Antifungal Drug Corneal Penetration. Drug Deliv. 2018, 25, 938–949.
  20. Dai, L.; Li, X.; Yao, M.; Niu, P.; Yuan, X.; Li, K.; Chen, M.; Fu, Z.; Duan, X.; Liu, H.; et al. Programmable Prodrug Micelle with Size-Shrinkage and Charge-Reversal for Chemotherapy-Improved IDO Immunotherapy. Biomaterials 2020, 241, 119901. [Google Scholar] [CrossRef]Anbukkarasi, M.; Thomas, P.A.; Sheu, J.-R.; Geraldine, P. In Vitro Antioxidant and Anticataractogenic Potential of Silver Nanoparticles Biosynthesized Using an Ethanolic Extract of Tabernaemontana Divaricata Leaves. Biomed. Pharmacother. Biomed. Pharmacother. 2017, 91, 467–475.
  21. Hwang, D.; Ramsey, J.D.; Kabanov, A.V. Polymeric Micelles for the Delivery of Poorly Soluble Drugs: From Nanoformulation to Clinical Approval. Adv. Drug Deliv. Rev. 2020, 156, 80–118. [Google Scholar] [CrossRef] [PubMed]Chen, H.; Yang, J.; Sun, L.; Zhang, H.; Guo, Y.; Qu, J.; Jiang, W.; Chen, W.; Ji, J.; Yang, Y.-W.; et al. Synergistic Chemotherapy and Photodynamic Therapy of Endophthalmitis Mediated by Zeolitic Imidazolate Framework-Based Drug Delivery Systems. Small 2019, 15, e1903880.
  22. Kuang, G.; Zhang, Q.; He, S.; Wu, Y.; Huang, Y. Reduction-Responsive Disulfide Linkage Core-Cross-Linked Polymeric Micelles for Site-Specific Drug Delivery. Polym. Chem. 2020, 11, 7078–7086. [Google Scholar] [CrossRef]Lee, B.; Lee, M.J.; Yun, S.J.; Kim, K.; Choi, I.-H.; Park, S. Silver Nanoparticles Induce Reactive Oxygen Species-Mediated Cell Cycle Delay and Synergistic Cytotoxicity with 3-Bromopyruvate in Candida Albicans, but Not in Saccharomyces Cerevisiae. Int. J. Nanomed. 2019, 14, 4801–4816.
  23. Yu, Y.; Chen, D.; Li, Y.; Yang, W.; Tu, J.; Shen, Y. Improving the Topical Ocular Pharmacokinetics of Lyophilized Cyclosporine A-Loaded Micelles: Formulation, in Vitro and in Vivo Studies. Drug Deliv. 2018, 25, 888–899. [Google Scholar] [CrossRef] [PubMed][Green Version]Hanafy, B.I. Formulation of Cerium Oxide Nanoparticles towards the Prevention and Treatment of Cataract. Ph.D. Thesis, Nottingham Trent University, Nottingham, UK, 2020.
  24. Xu, X.; Sun, L.; Zhou, L.; Cheng, Y.; Cao, F. Functional Chitosan Oligosaccharide Nanomicelles for Topical Ocular Drug Delivery of Dexamethasone. Carbohydr. Polym. 2020, 227, 115356. [Google Scholar] [CrossRef] [PubMed]Zhu, S.; Gong, L.; Li, Y.; Xu, H.; Gu, Z.; Zhao, Y. Safety Assessment of Nanomaterials to Eyes: An Important but Neglected Issue. Adv. Sci. 2019, 6, 1802289.
  25. Lai, S.; Wei, Y.; Wu, Q.; Zhou, K.; Liu, T.; Zhang, Y.; Jiang, N.; Xiao, W.; Chen, J.; Liu, Q.; et al. Liposomes for Effective Drug Delivery to the Ocular Posterior Chamber. J. Nanobiotechnol. 2019, 17, 64. [Google Scholar] [CrossRef][Green Version]Liu, Y.; Dong, Y.; Pu, X.; Yin, X. Fabrication of Anti-Oxidant Curcumin Loaded Ceria Nanoclusters for the Novel Delivery System to Prevention of Selenite-Induced Cataract Therapy in Alleviating Diabetic Cataract. Process Biochem. 2022, 120, 239–249.
  26. dos Santos, G.A.; Ferreira-Nunes, R.; Dalmolin, L.F.; dos Santos Ré, A.C.; Anjos, J.L.V.; Mendanha, S.A.; Aires, C.P.; Lopez, R.F.V.; Cunha-Filho, M.; Gelfuso, G.M.; et al. Besifloxacin Liposomes with Positively Charged Additives for an Improved Topical Ocular Delivery. Sci. Rep. 2020, 10, 19285. [Google Scholar] [CrossRef]Li, N.; Zhao, Z.; Ma, H.; Liu, Y.; Nwafor, E.-O.; Zhu, S.; Jia, L.; Pang, X.; Han, Z.; Tian, B.; et al. Optimization and Characterization of Low-Molecular-Weight Chitosan-Coated Baicalin MPEG-PLGA Nanoparticles for the Treatment of Cataract. Mol. Pharm. 2022, 19, 3831–3845.
  27. Shafaa, M.W.; Elshazly, A.H.; Dakrory, A.Z.; Elsyed, M.R. Interaction of Coenzyme Q10 with Liposomes and Its Impact on Suppression of Selenite—Induced Experimental Cataract. Adv. Pharm. Bull. 2018, 8, 1–9. [Google Scholar] [CrossRef][Green Version]Lan, Q.; Di, D.; Wang, S.; Zhao, Q.; Gao, Y.; Chang, D.; Jiang, T. Chitosan-N-Acetylcysteine Modified HP-β-CD Inclusion Complex as a Potential Ocular Delivery System for Anti-Cataract Drug: Quercetin. J. Drug Deliv. Sci. Technol. 2020, 55, 101407.
  28. Jin, X.; Zhu, L.; Xue, B.; Zhu, X.; Yan, D. Supramolecular Nanoscale Drug-Delivery System with Ordered Structure. Natl. Sci. Rev. 2019, 6, 1128–1137. [Google Scholar] [CrossRef]Bodoki, E.; Vostinaru, O.; Samoila, O.; Dinte, E.; Bodoki, A.E.; Swetledge, S.; Astete, C.E.; Sabliov, C.M. Topical Nanodelivery System of Lutein for the Prevention of Selenite-Induced Cataract. Nanomed. Nanotechnol. Biol. Med. 2019, 15, 188–197.
  29. Dave, R.S.; Goostrey, T.C.; Ziolkowska, M.; Czerny-Holownia, S.; Hoare, T.; Sheardown, H. Ocular Drug Delivery to the Anterior Segment Using Nanocarriers: A Mucoadhesive/Mucopenetrative Perspective. J. Control Release Off. J. Control Release Soc. 2021, 336, 71–88. [Google Scholar] [CrossRef]
  30. Yang, C.; Yang, J.; Lu, A.; Gong, J.; Yang, Y.; Lin, X.; Li, M.; Xu, H. Nanoparticles in Ocular Applications and Their Potential Toxicity. Front. Mol. Biosci. 2022, 9, 931759. [Google Scholar] [CrossRef]
  31. Tavares Luiz, M.; Delello Di Filippo, L.; Carolina Alves, R.; Sousa Araújo, V.H.; Lobato Duarte, J.; Maldonado Marchetti, J.; Chorilli, M. The Use of TPGS in Drug Delivery Systems to Overcome Biological Barriers. Eur. Polym. J. 2021, 142, 110129. [Google Scholar] [CrossRef]
  32. Ji, T.; Kohane, D.S. Nanoscale Systems for Local Drug Delivery. Nano Today 2019, 28, 100765. [Google Scholar] [CrossRef]
  33. Di, J.; Gao, X.; Du, Y.; Zhang, H.; Gao, J.; Zheng, A. Size, Shape, Charge and “Stealthy” Surface: Carrier Properties Affect the Drug Circulation Time in Vivo. Asian J. Pharm. Sci. 2021, 16, 444–458. [Google Scholar] [CrossRef]
  34. Rebibo, L.; Tam, C.; Sun, Y.; Shoshani, E.; Badihi, A.; Nassar, T.; Benita, S. Topical Tacrolimus Nanocapsules Eye Drops for Therapeutic Effect Enhancement in Both Anterior and Posterior Ocular Inflammation Models. J. Control Release Off. J. Control Release Soc. 2021, 333, 283–297. [Google Scholar] [CrossRef]
  35. Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Siva Kumar, N.; Vekariya, R.L. A Brief Review on Solid Lipid Nanoparticles: Part and Parcel of Contemporary Drug Delivery Systems. RSC Adv. 2020, 10, 26777–26791. [Google Scholar] [CrossRef] [PubMed]
  36. Lancina, M.G.; Yang, H. Dendrimers for Ocular Drug Delivery. Can. J. Chem. 2017, 95, 897–902. [Google Scholar] [CrossRef] [PubMed]
  37. Wang, J.; Li, B.; Qiu, L.; Qiao, X.; Yang, H. Dendrimer-Based Drug Delivery Systems: History, Challenges, and Latest Developments. J. Biol. Eng. 2022, 16, 18. [Google Scholar] [CrossRef]
  38. Lin, D.; Lei, L.; Shi, S.; Li, X. Stimulus-Responsive Hydrogel for Ophthalmic Drug Delivery. Macromol. Biosci. 2019, 19, e1900001. [Google Scholar] [CrossRef]
  39. Lynch, C.R.; Kondiah, P.P.D.; Choonara, Y.E.; du Toit, L.C.; Ally, N.; Pillay, V. Hydrogel Biomaterials for Application in Ocular Drug Delivery. Front. Bioeng. Biotechnol. 2020, 8, 228. [Google Scholar] [CrossRef] [PubMed][Green Version]
  40. DHAHIR, R.K.; AL-NIMA, A.M.; AL-BAZZAZ, F. Nanoemulsions as Ophthalmic Drug Delivery Systems. Turk. J. Pharm. Sci. 2021, 18, 652–664. [Google Scholar] [CrossRef] [PubMed]
  41. Jacob, S.; Nair, A.B.; Shah, J. Emerging Role of Nanosuspensions in Drug Delivery Systems. Biomater. Res. 2020, 24, 3. [Google Scholar] [CrossRef][Green Version]
  42. Xie, J.; Luo, Y.; Liu, Y.; Ma, Y.; Yue, P.; Yang, M. Novel Redispersible Nanosuspensions Stabilized by Co-Processed Nanocrystalline Cellulose-Sodium Carboxymethyl Starch for Enhancing Dissolution and Oral Bioavailability of Baicalin. Int. J. Nanomed. 2019, 14, 353–369. [Google Scholar] [CrossRef] [PubMed][Green Version]
  43. Gade, S.S.; Pentlavalli, S.; Mishra, D.; Vora, L.K.; Waite, D.; Alvarez-Lorenzo, C.I.; Herrero Vanrell, M.R.; Laverty, G.; Larraneta, E.; Donnelly, R.F.; et al. Injectable Depot Forming Thermoresponsive Hydrogel for Sustained Intrascleral Delivery of Sunitinib Using Hollow Microneedles. J. Ocul. Pharmacol. Ther. Off. J. Assoc. Ocul. Pharmacol. Ther. 2022, 38, 433–448. [Google Scholar] [CrossRef]
  44. Nettey, H.; Darko, Y.; Bamiro, O.A.; Addo, R.T. Ocular Barriers. In Ocular Drug Delivery: Advances, Challenges and Applications; Addo, R.T., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 27–36. ISBN 978-3-319-47689-6. [Google Scholar]
  45. Kwon, S.; Kim, S.H.; Khang, D.; Lee, J.Y. Potential Therapeutic Usage of Nanomedicine for Glaucoma Treatment. Int. J. Nanomed. 2020, 15, 5745–5765. [Google Scholar] [CrossRef]
  46. Song, J.; Zhang, Z. Brinzolamide Loaded Core-Shell Nanoparticles for Enhanced Coronial Penetration in the Treatment of Glaucoma. J. Appl. Biomater. Funct. Mater. 2020, 18, 228080002094271. [Google Scholar] [CrossRef] [PubMed]
  47. Ikuta, Y.; Aoyagi, S.; Tanaka, Y.; Sato, K.; Inada, S.; Koseki, Y.; Onodera, T.; Oikawa, H.; Kasai, H. Creation of Nano Eye-Drops and Effective Drug Delivery to the Interior of the Eye. Sci. Rep. 2017, 7, 44229. [Google Scholar] [CrossRef][Green Version]
  48. Stankowska, D.L.; Millar, J.C.; Kodati, B.; Behera, S.; Chaphalkar, R.M.; Nguyen, T.; Nguyen, K.T.; Krishnamoorthy, R.R.; Ellis, D.Z.; Acharya, S. Nanoencapsulated Hybrid Compound SA-2 with Long-Lasting Intraocular Pressure-Lowering Activity in Rodent Eyes. Mol. Vis. 2021, 27, 37–49. [Google Scholar]
  49. Lorenzo-Soler, L.; Olafsdottir, O.B.; Garhöfer, G.; Jansook, P.; Kristinsdottir, I.M.; Tan, A.; Loftsson, T.; Stefansson, E. Angiotensin Receptor Blockers in Cyclodextrin Nanoparticle Eye Drops: Ocular Pharmacokinetics and Pharmacologic Effect on Intraocular Pressure. Acta Ophthalmol. 2021, 99, 376–382. [Google Scholar] [CrossRef]
  50. Barwal, I.; Kumar, R.; Dada, T.; Yadav, S.C. Effect of Ultra-Small Chitosan Nanoparticles Doped with Brimonidine on the Ultra-Structure of the Trabecular Meshwork of Glaucoma Patients. Microsc. Microanal. 2019, 25, 1352–1366. [Google Scholar] [CrossRef] [PubMed]
  51. Mittal, N.; Kaur, G. Leucaena Leucocephala (Lam.) Galactomannan Nanoparticles: Optimization and Characterization for Ocular Delivery in Glaucoma Treatment. Int. J. Biol. Macromol. 2019, 139, 1252–1262. [Google Scholar] [CrossRef]
  52. Tan, C.; Jia, F.; Zhang, P.; Sun, X.; Qiao, Y.; Chen, X.; Wang, Y.; Chen, J.; Lei, Y. A MiRNA Stabilizing Polydopamine Nano-Platform for Intraocular Delivery of MiR-21-5p in Glaucoma Therapy. J. Mater. Chem. B 2021, 9, 3335–3345. [Google Scholar] [CrossRef] [PubMed]
  53. Hu, C.; Sun, J.; Zhang, Y.; Chen, J.; Lei, Y.; Sun, X.; Deng, Y. Local Delivery and Sustained-Release of Nitric Oxide Donor Loaded in Mesoporous Silica Particles for Efficient Treatment of Primary Open-Angle Glaucoma. Adv. Healthc. Mater. 2018, 7, 1801047. [Google Scholar] [CrossRef] [PubMed]
  54. Hu, C.; Zhang, Y.; Song, M.; Deng, Y.; Sun, X.; Lei, Y. Prolonged Use of Nitric Oxide Donor Sodium Nitroprusside Induces Ocular Hypertension in Mice. Exp. Eye Res. 2021, 202, 108280. [Google Scholar] [CrossRef]
  55. Song, W.; Zhang, Y.; Yu, D.-G.; Tran, C.H.; Wang, M.; Varyambath, A.; Kim, J.; Kim, I. Efficient Synthesis of Folate-Conjugated Hollow Polymeric Capsules for Accurate Drug Delivery to Cancer Cells. Biomacromolecules 2021, 22, 732–742. [Google Scholar] [CrossRef] [PubMed]
  56. Zafar, A.; Alruwaili, N.K.; Imam, S.S.; Alsaidan, O.A.; Alharbi, K.S.; Yasir, M.; Elmowafy, M.; Ansari, M.J.; Salahuddin, M.; Alshehri, S. Formulation of Carteolol Chitosomes for Ocular Delivery: Formulation Optimization, Ex-Vivo Permeation, and Ocular Toxicity Examination. Cutan. Ocul. Toxicol. 2021, 40, 338–349. [Google Scholar] [CrossRef]
  57. Jain, N.; Verma, A.; Jain, N. Formulation and Investigation of Pilocarpine Hydrochloride Niosomal Gels for the Treatment of Glaucoma: Intraocular Pressure Measurement in White Albino Rabbits. Drug Deliv. 2020, 27, 888–899. [Google Scholar] [CrossRef]
  58. Fathalla, D.; Fouad, E.A.; Soliman, G.M. Latanoprost Niosomes as a Sustained Release Ocular Delivery System for the Management of Glaucoma. Drug Dev. Ind. Pharm. 2020, 46, 806–813. [Google Scholar] [CrossRef]
  59. Emad Eldeeb, A.; Salah, S.; Ghorab, M. Proniosomal Gel-Derived Niosomes: An Approach to Sustain and Improve the Ocular Delivery of Brimonidine Tartrate; Formulation, in-Vitro Characterization, and in-Vivo Pharmacodynamic Study. Drug Deliv. 2019, 26, 509–521. [Google Scholar] [CrossRef][Green Version]
  60. Fouda, N.H.; Abdelrehim, R.T.; Hegazy, D.A.; Habib, B.A. Sustained Ocular Delivery of Dorzolamide-HCl via Proniosomal Gel Formulation: In-Vitro Characterization, Statistical Optimization, and in-Vivo Pharmacodynamic Evaluation in Rabbits. Drug Deliv. 2018, 25, 1340–1349. [Google Scholar] [CrossRef][Green Version]
  61. Teba, H.E.; Khalil, I.A.; El Sorogy, H.M. Novel Cubosome Based System for Ocular Delivery of Acetazolamide. Drug Deliv. 2021, 28, 2177–2186. [Google Scholar] [CrossRef]
  62. Huang, J.; Peng, T.; Li, Y.; Zhan, Z.; Zeng, Y.; Huang, Y.; Pan, X.; Wu, C.-Y.; Wu, C. Ocular Cubosome Drug Delivery System for Timolol Maleate: Preparation, Characterization, Cytotoxicity, Ex Vivo, and In Vivo Evaluation. AAPS PharmSciTech 2017, 18, 2919–2926. [Google Scholar] [CrossRef]
  63. Ismail, A.; Nasr, M.; Sammour, O. Nanoemulsion as a Feasible and Biocompatible Carrier for Ocular Delivery of Travoprost: Improved Pharmacokinetic/Pharmacodynamic Properties. Int. J. Pharm. 2020, 583, 119402. [Google Scholar] [CrossRef]
  64. Mahboobian, M.M.; Seyfoddin, A.; Aboofazeli, R.; Foroutan, S.M.; Rupenthal, I.D. Brinzolamide–Loaded Nanoemulsions: Ex Vivo Transcorneal Permeation, Cell Viability and Ocular Irritation Tests. Pharm. Dev. Technol. 2019, 24, 600–606. [Google Scholar] [CrossRef] [PubMed]
  65. Cesar, A.L.A.; Navarro, L.C.; Castilho, R.O.; Goulart, G.A.C.; Foureaux, G.; Ferreira, A.J.; Cronemberger, S.; Gomes Faraco, A.A. New Antiglaucomatous Agent for the Treatment of Open Angle Glaucoma: Polymeric Inserts for Drug Release and in Vitro and in Vivo Study. J. Biomed. Mater. Res. A 2021, 109, 336–345. [Google Scholar] [CrossRef]
  66. Franca, J.R.; Foureaux, G.; Fuscaldi, L.L.; Ribeiro, T.G.; Castilho, R.O.; Yoshida, M.I.; Cardoso, V.N.; Fernandes, S.O.A.; Cronemberger, S.; Nogueira, J.C.; et al. Chitosan/Hydroxyethyl Cellulose Inserts for Sustained-Release of Dorzolamide for Glaucoma Treatment: In Vitro and in Vivo Evaluation. Int. J. Pharm. 2019, 570, 118662. [Google Scholar] [CrossRef] [PubMed]
  67. Li, B.; Wang, J.; Gui, Q.; Yang, H. Drug-Loaded Chitosan Film Prepared via Facile Solution Casting and Air-Drying of Plain Water-Based Chitosan Solution for Ocular Drug Delivery. Bioact. Mater. 2020, 5, 577–583. [Google Scholar] [CrossRef] [PubMed]
  68. Nair, R.V.; Shefrin, S.; Suresh, A.; Anoop, K.R.; Nair, S.C. Sustained Release Timolol Maleate Loaded Ocusert Based on Biopolymer Composite. Int. J. Biol. Macromol. 2018, 110, 308–317. [Google Scholar] [CrossRef]
  69. Machado, M.; Silva, G.A.; Bitoque, D.B.; Ferreira, J.; Pinto, L.A.; Morgado, J.; Ferreira, Q. Self-Assembled Multilayer Films for Time-Controlled Ocular Drug Delivery. ACS Appl. Bio Mater. 2019, 2, 4173–4180. [Google Scholar] [CrossRef] [PubMed]
  70. Xu, J.; Ge, Y.; Bu, R.; Zhang, A.; Feng, S.; Wang, J.; Gou, J.; Yin, T.; He, H.; Zhang, Y.; et al. Co-Delivery of Latanoprost and Timolol from Micelles-Laden Contact Lenses for the Treatment of Glaucoma. J. Control Release 2019, 305, 18–28. [Google Scholar] [CrossRef]
  71. Samy, K.E.; Cao, Y.; Kim, J.; Konichi da Silva, N.R.; Phone, A.; Bloomer, M.M.; Bhisitkul, R.B.; Desai, T.A. Co-Delivery of Timolol and Brimonidine with a Polymer Thin-Film Intraocular Device. J. Ocul. Pharmacol. Ther. 2019, 35, 124–131. [Google Scholar] [CrossRef]
  72. Kim, J.; Kudisch, M.; da Silva, N.R.K.; Asada, H.; Aya-Shibuya, E.; Bloomer, M.M.; Mudumba, S.; Bhisitkul, R.B.; Desai, T.A. Long-Term Intraocular Pressure Reduction with Intracameral Polycaprolactone Glaucoma Devices That Deliver a Novel Anti-Glaucoma Agent. J. Control Release 2018, 269, 45–51. [Google Scholar] [CrossRef] [PubMed]
  73. Zeng, Y.; Chen, J.; Li, Y.; Huang, J.; Huang, Z.; Huang, Y.; Pan, X.; Wu, C. Thermo-Sensitive Gel in Glaucoma Therapy for Enhanced Bioavailability: In Vitro Characterization, in Vivo Pharmacokinetics and Pharmacodynamics Study. Life Sci. 2018, 212, 80–86. [Google Scholar] [CrossRef] [PubMed]
  74. Sharma, P.K.; Chauhan, M.K. Optimization and Characterization of Brimonidine Tartrate Nanoparticles-Loaded In Situ Gel for the Treatment of Glaucoma. Curr. Eye Res. 2021, 46, 1703–1716. [Google Scholar] [CrossRef] [PubMed]
  75. Ilka, R.; Mohseni, M.; Kianirad, M.; Naseripour, M.; Ashtari, K.; Mehravi, B. Nanogel-Based Natural Polymers as Smart Carriers for the Controlled Delivery of Timolol Maleate through the Cornea for Glaucoma. Int. J. Biol. Macromol. 2018, 109, 955–962. [Google Scholar] [CrossRef] [PubMed]
  76. El-Feky, G.S.; Zayed, G.M.; Elshaier, Y.A.M.M.; Alsharif, F.M. Chitosan-Gelatin Hydrogel Crosslinked With Oxidized Sucrose for the Ocular Delivery of Timolol Maleate. J. Pharm. Sci. 2018, 107, 3098–3104. [Google Scholar] [CrossRef]
  77. Yadav, M.; Guzman-Aranguez, A.; Perez de Lara, M.J.; Singh, M.; Singh, J.; Kaur, I.P. Bimatoprost Loaded Nanovesicular Long-Acting Sub-Conjunctival in-Situ Gelling Implant: In Vitro and in Vivo Evaluation. Mater. Sci. Eng. C 2019, 103, 109730. [Google Scholar] [CrossRef]
  78. Cheng, Y.-H.; Ko, Y.-C.; Chang, Y.-F.; Huang, S.-H.; Liu, C.J. Thermosensitive Chitosan-Gelatin-Based Hydrogel Containing Curcumin-Loaded Nanoparticles and Latanoprost as a Dual-Drug Delivery System for Glaucoma Treatment. Exp. Eye Res. 2019, 179, 179–187. [Google Scholar] [CrossRef]
  79. Chou, S.-F.; Luo, L.-J.; Lai, J.-Y. In Vivo Pharmacological Evaluations of Pilocarpine-Loaded Antioxidant-Functionalized Biodegradable Thermogels in Glaucomatous Rabbits. Sci. Rep. 2017, 7, 42344. [Google Scholar] [CrossRef][Green Version]
  80. Luo, L.-J.; Lai, J.-Y. Amination Degree of Gelatin Is Critical for Establishing Structure-Property-Function Relationships of Biodegradable Thermogels as Intracameral Drug Delivery Systems. Mater. Sci. Eng. C 2019, 98, 897–909. [Google Scholar] [CrossRef]
  81. Luo, L.-J.; Huang, C.-C.; Chen, H.-C.; Lai, J.-Y.; Matsusaki, M. Effect of Deacetylation Degree on Controlled Pilocarpine Release from Injectable Chitosan-g-Poly(N-Isopropylacrylamide) Carriers. Carbohydr. Polym. 2018, 197, 375–384. [Google Scholar] [CrossRef]
  82. Jin, Q.; Li, H.; Jin, Z.; Huang, L.; Wang, F.; Zhou, Y.; Liu, Y.; Jiang, C.; Oswald, J.; Wu, J.; et al. TPGS Modified Nanoliposomes as an Effective Ocular Delivery System to Treat Glaucoma. Int. J. Pharm. 2018, 553, 21–28. [Google Scholar] [CrossRef]
  83. Fahmy, H.M.; Saad, E.A.E.-M.S.; Sabra, N.M.; El-Gohary, A.A.; Mohamed, F.F.; Gaber, M.H. Treatment Merits of Latanoprost/Thymoquinone—Encapsulated Liposome for Glaucomatus Rabbits. Int. J. Pharm. 2018, 548, 597–608. [Google Scholar] [CrossRef]
  84. Hathout, R.M.; Gad, H.A.; Abdel-Hafez, S.M.; Nasser, N.; Khalil, N.; Ateyya, T.; Amr, A.; Yasser, N.; Nasr, S.; Metwally, A.A. Gelatinized Core Liposomes: A New Trojan Horse for the Development of a Novel Timolol Maleate Glaucoma Medication. Int. J. Pharm. 2019, 556, 192–199. [Google Scholar] [CrossRef]
  85. Lancina, M.G.; Wang, J.; Williamson, G.S.; Yang, H. DenTimol as A Dendrimeric Timolol Analogue for Glaucoma Therapy: Synthesis and Preliminary Efficacy and Safety Assessment. Mol. Pharm. 2018, 15, 2883–2889. [Google Scholar] [CrossRef]
  86. Lancina, M.G.; Singh, S.; Kompella, U.B.; Husain, S.; Yang, H. Fast Dissolving Dendrimer Nanofiber Mats as Alternative to Eye Drops for More Efficient Antiglaucoma Drug Delivery. ACS Biomater. Sci. Eng. 2017, 3, 1861–1868. [Google Scholar] [CrossRef]
  87. Afify, E.A.M.R.; Elsayed, I.; Gad, M.K.; Mohamed, M.I.; Afify, A.E.-M.M.R. Enhancement of Pharmacokinetic and Pharmacological Behavior of Ocular Dorzolamide after Factorial Optimization of Self-Assembled Nanostructures. PLoS ONE 2018, 13, e0191415. [Google Scholar] [CrossRef] [PubMed][Green Version]
  88. Gautam, N.; Kesavan, K. Phase Transition Microemulsion of Brimonidine Tartrate for Glaucoma Therapy: Preparation, Characterization and Pharmacodynamic Study. Curr. Eye Res. 2021, 46, 1844–1852. [Google Scholar] [CrossRef] [PubMed]
  89. Vincent, M.P.; Stack, T.; Vahabikashi, A.; Li, G.; Perkumas, K.M.; Ren, R.; Gong, H.; Stamer, W.D.; Johnson, M.; Scott, E.A. Surface Engineering of FLT4-Targeted Nanocarriers Enhances Cell-Softening Glaucoma Therapy. ACS Appl. Mater. Interfaces 2021, 13, 32823–32836. [Google Scholar] [CrossRef] [PubMed]
  90. Donia, M.; Osman, R.; Awad, G.A.S.; Mortada, N. Polypeptide and Glycosaminoglycan Polysaccharide as Stabilizing Polymers in Nanocrystals for a Safe Ocular Hypotensive Effect. Int. J. Biol. Macromol. 2020, 162, 1699–1710. [Google Scholar] [CrossRef]
  91. Chae, J.J.; Jung, J.H.; Zhu, W.; Gerberich, B.G.; Bahrani Fard, M.R.; Grossniklaus, H.E.; Ethier, C.R.; Prausnitz, M.R. Drug-Free, Nonsurgical Reduction of Intraocular Pressure for Four Months after Suprachoroidal Injection of Hyaluronic Acid Hydrogel. Adv. Sci. 2021, 8, 2001908. [Google Scholar] [CrossRef]
  92. Liu, H.; Han, X.; Li, H.; Tao, Q.; Hu, J.; Liu, S.; Liu, H.; Zhou, J.; Li, W.; Yang, F.; et al. Wettability and Contact Angle Affect Precorneal Retention and Pharmacodynamic Behavior of Microspheres. Drug Deliv. 2021, 28, 2011–2023. [Google Scholar] [CrossRef]
  93. Tian, S.; Li, J.; Tao, Q.; Zhao, Y.; Lv, Z.; Yang, F.; Duan, H.; Chen, Y.; Zhou, Q.; Hou, D. Controlled Drug Delivery for Glaucoma Therapy Using Montmorillonite/Eudragit Microspheres as an Ion-Exchange Carrier. Int. J. Nanomed. 2018, 13, 415–428. [Google Scholar] [CrossRef][Green Version]
  94. Liu, S.; Han, X.; Liu, H.; Zhao, Y.; Li, H.; Rupenthal, I.D.; Lv, Z.; Chen, Y.; Yang, F.; Ping, Q.; et al. Incorporation of Ion Exchange Functionalized-Montmorillonite into Solid Lipid Nanoparticles with Low Irritation Enhances Drug Bioavailability for Glaucoma Treatment. Drug Deliv. 2020, 27, 652–661. [Google Scholar] [CrossRef] [PubMed]
  95. Li, J.; Tian, S.; Tao, Q.; Zhao, Y.; Gui, R.; Yang, F.; Zang, L.; Chen, Y.; Ping, Q.; Hou, D. Montmorillonite/Chitosan Nanoparticles as a Novel Controlled-Release Topical Ophthalmic Delivery System for the Treatment of Glaucoma. Int. J. Nanomed. 2018, 13, 3975–3987. [Google Scholar] [CrossRef] [PubMed][Green Version]
  96. Andreadis, I.I.; Karavasili, C.; Thomas, A.; Komnenou, A.; Tzimtzimis, M.; Tzetzis, D.; Andreadis, D.; Bouropoulos, N.; Fatouros, D.G. In Situ Gelling Electrospun Ocular Films Sustain the Intraocular Pressure-Lowering Effect of Timolol Maleate: In Vitro, Ex Vivo, and Pharmacodynamic Assessment. Mol. Pharm. 2022, 19, 274–286. [Google Scholar] [CrossRef]
  97. Morais, M.; Coimbra, P.; Pina, M.E. Comparative Analysis of Morphological and Release Profiles in Ocular Implants of Acetazolamide Prepared by Electrospinning. Pharmaceutics 2021, 13, 260. [Google Scholar] [CrossRef] [PubMed]
  98. Rubião, F.; Araújo, A.C.F.; Sancio, J.B.; Nogueira, B.S.; Franca, J.R.; Nogueira, J.C.; Ferreira, A.J.; Faraco, A.A.G.; Foureaux, G.; Cronemberger, S. Topical Bimatoprost Insert for Primary Open-Angle Glaucoma and Ocular Hypertension Treatment—A Phase II Controlled Study. Curr. Drug Deliv. 2021, 18, 1022–1026. [Google Scholar] [CrossRef]
  99. Weinreb, R.N.; Bacharach, J.; Brubaker, J.W.; Medeiros, F.A.; Bejanian, M.; Bernstein, P.; Robinson, M.R. Bimatoprost Implant Biodegradation in the Phase 3, Randomized, 20-Month ARTEMIS Studies. J. Ocul. Pharmacol. Ther. 2023, 39, 55–62. [Google Scholar] [CrossRef]
  100. Shirley, M. Bimatoprost Implant: First Approval. Drugs Aging 2020, 37, 457–462. [Google Scholar] [CrossRef]
  101. Medeiros, F.A.; Walters, T.R.; Kolko, M.; Coote, M.; Bejanian, M.; Goodkin, M.L.; Guo, Q.; Zhang, J.; Robinson, M.R.; Weinreb, R.N.; et al. Phase 3, Randomized, 20-Month Study of Bimatoprost Implant in Open-Angle Glaucoma and Ocular Hypertension (ARTEMIS 1). Ophthalmology 2020, 127, 1627–1641. [Google Scholar] [CrossRef]
  102. Craven, E.R.; Walters, T.; Christie, W.C.; Day, D.G.; Lewis, R.A.; Goodkin, M.L.; Chen, M.; Wangsadipura, V.; Robinson, M.R.; Bejanian, M.; et al. 24-Month Phase I/II Clinical Trial of Bimatoprost Sustained-Release Implant (Bimatoprost SR) in Glaucoma Patients. Drugs 2020, 80, 167–179. [Google Scholar] [CrossRef][Green Version]
  103. Lewis, R.A.; Christie, W.C.; Day, D.G.; Craven, E.R.; Walters, T.; Bejanian, M.; Lee, S.S.; Goodkin, M.L.; Zhang, J.; Whitcup, S.M.; et al. Bimatoprost Sustained-Release Implants for Glaucoma Therapy: 6-Month Results From a Phase I/II Clinical Trial. Am. J. Ophthalmol. 2017, 175, 137–147. [Google Scholar] [CrossRef] [PubMed][Green Version]
  104. Brandt, J.D.; DuBiner, H.B.; Benza, R.; Sall, K.N.; Walker, G.A.; Semba, C.P.; Budenz, D.; Day, D.; Flowers, B.; Lee, S.; et al. Long-Term Safety and Efficacy of a Sustained-Release Bimatoprost Ocular Ring. Ophthalmology 2017, 124, 1565–1566. [Google Scholar] [CrossRef] [PubMed][Green Version]
  105. Kouchak, M.; Malekahmadi, M.; Bavarsad, N.; Saki Malehi, A.; Andishmand, L. Dorzolamide Nanoliposome as a Long Action Ophthalmic Delivery System in Open Angle Glaucoma and Ocular Hypertension Patients. Drug Dev. Ind. Pharm. 2018, 44, 1239–1242. [Google Scholar] [CrossRef]
  106. Salama, H.A.; Ghorab, M.; Mahmoud, A.A.; Abdel Hady, M. PLGA Nanoparticles as Subconjunctival Injection for Management of Glaucoma. AAPS PharmSciTech 2017, 18, 2517–2528. [Google Scholar] [CrossRef]
  107. Fan, W.; Song, M.; Li, L.; Niu, L.; Chen, Y.; Han, B.; Sun, X.; Yang, Z.; Lei, Y.; Chen, X. Endogenous Dual Stimuli-Activated NO Generation in the Conventional Outflow Pathway for Precision Glaucoma Therapy. Biomaterials 2021, 277, 121074. [Google Scholar] [CrossRef] [PubMed]
  108. Desai, A.R.; Maulvi, F.A.; Desai, D.M.; Shukla, M.R.; Ranch, K.M.; Vyas, B.A.; Shah, S.A.; Sandeman, S.; Shah, D.O. Multiple Drug Delivery from the Drug-Implants-Laden Silicone Contact Lens: Addressing the Issue of Burst Drug Release. Mater. Sci. Eng. C 2020, 112, 110885. [Google Scholar] [CrossRef]
  109. Desai, A.R.; Maulvi, F.A.; Pandya, M.M.; Ranch, K.M.; Vyas, B.A.; Shah, S.A.; Shah, D.O. Co-Delivery of Timolol and Hyaluronic Acid from Semi-Circular Ring-Implanted Contact Lenses for the Treatment of Glaucoma: In Vitro and in Vivo Evaluation. Biomater. Sci. 2018, 6, 1580–1591. [Google Scholar] [CrossRef]
  110. Seal, J.R.; Robinson, M.R.; Burke, J.; Bejanian, M.; Coote, M.; Attar, M. Intracameral Sustained-Release Bimatoprost Implant Delivers Bimatoprost to Target Tissues with Reduced Drug Exposure to Off-Target Tissues. J. Ocul. Pharmacol. Ther. 2019, 35, 50–57. [Google Scholar] [CrossRef][Green Version]
  111. Park, C.G.; Choi, G.; Kim, M.H.; Kim, S.-N.; Lee, H.; Lee, N.K.; Choy, Y.B.; Choy, J.-H. Brimonidine–Montmorillonite Hybrid Formulation for Topical Drug Delivery to the Eye. J. Mater. Chem. B 2020, 8, 7914–7920. [Google Scholar] [CrossRef]
  112. Yellanki, S.K.; Anna, B.; Kishan, M.R. Preparation and in Vivo Evaluation of Sodium Alginate—Poly (Vinyl Alcohol) Electrospun Nanofibers of Forskolin for Glaucoma Treatment. Pak. J. Pharm. Sci. 2019, 32, 669–674. [Google Scholar]
  113. Naik, S.; Pandey, A.; Lewis, S.A.; Rao, B.S.S.; Mutalik, S. Neuroprotection: A Versatile Approach to Combat Glaucoma. Eur. J. Pharmacol. 2020, 881, 173208. [Google Scholar] [CrossRef] [PubMed]
  114. Lou, X.; Hu, Y.; Zhang, H.; Liu, J.; Zhao, Y. Polydopamine Nanoparticles Attenuate Retina Ganglion Cell Degeneration and Restore Visual Function after Optic Nerve Injury. J. Nanobiotechnol. 2021, 19, 436. [Google Scholar] [CrossRef]
  115. Yang, J.-Y.; Lu, B.; Feng, Q.; Alfaro, J.S.; Chen, P.-H.; Loscalzo, J.; Wei, W.-B.; Zhang, Y.-Y.; Lu, S.-J.; Wang, S. Retinal Protection by Sustained Nanoparticle Delivery of Oncostatin M and Ciliary Neurotrophic Factor Into Rodent Models of Retinal Degeneration. Transl. Vis. Sci. Technol. 2021, 10, 6. [Google Scholar] [CrossRef]
  116. Rodrigo, M.J.; Cardiel, M.J.; Fraile, J.M.; Mendez-Martinez, S.; Martinez-Rincon, T.; Subias, M.; Polo, V.; Ruberte, J.; Ramirez, T.; Vispe, E.; et al. Brimonidine-LAPONITE® Intravitreal Formulation Has an Ocular Hypotensive and Neuroprotective Effect throughout 6 Months of Follow-up in a Glaucoma Animal Model. Biomater. Sci. 2020, 8, 6246–6260. [Google Scholar] [CrossRef] [PubMed]
  117. Giannaccini, M.; Usai, A.; Chiellini, F.; Guadagni, V.; Andreazzoli, M.; Ori, M.; Pasqualetti, M.; Dente, L.; Raffa, V. Neurotrophin-Conjugated Nanoparticles Prevent Retina Damage Induced by Oxidative Stress. Cell Mol. Life Sci. 2018, 75, 1255–1267. [Google Scholar] [CrossRef] [PubMed][Green Version]
  118. García-Caballero, C.; Prieto-Calvo, E.; Checa-Casalengua, P.; García-Martín, E.; Polo-Llorens, V.; García-Feijoo, J.; Molina-Martínez, I.T.; Bravo-Osuna, I.; Herrero-Vanrell, R. Six Month Delivery of GDNF from PLGA/Vitamin E Biodegradable Microspheres after Intravitreal Injection in Rabbits. Eur. J. Pharm. Sci. 2017, 103, 19–26. [Google Scholar] [CrossRef]
  119. Arranz-Romera, A.; Davis, B.M.; Bravo-Osuna, I.; Esteban-Pérez, S.; Molina-Martínez, I.T.; Shamsher, E.; Ravindran, N.; Guo, L.; Cordeiro, M.F.; Herrero-Vanrell, R. Simultaneous Co-Delivery of Neuroprotective Drugs from Multi-Loaded PLGA Microspheres for the Treatment of Glaucoma. J. Control Release 2019, 297, 26–38. [Google Scholar] [CrossRef]
  120. Brugnera, M.; Vicario-de-la-Torre, M.; Andrés-Guerrero, V.; Bravo-Osuna, I.; Molina-Martínez, I.T.; Herrero-Vanrell, R. Validation of a Rapid and Easy-to-Apply Method to Simultaneously Quantify Co-Loaded Dexamethasone and Melatonin PLGA Microspheres by HPLC-UV: Encapsulation Efficiency and In Vitro Release. Pharmaceutics 2022, 14, 288. [Google Scholar] [CrossRef]
  121. Ding, Y.; Chow, S.H.; Chen, J.; Brun, A.P.L.; Wu, C.-M.; Duff, A.P.; Wang, Y.; Song, J.; Wang, J.-H.; Wong, V.H.Y.; et al. Targeted Delivery of LM22A-4 by Cubosomes Protects Retinal Ganglion Cells in an Experimental Glaucoma Model. Acta Biomater. 2021, 126, 433–444. [Google Scholar] [CrossRef]
  122. Luo, L.-J.; Nguyen, D.D.; Lai, J.-Y. Benzoic Acid Derivative-Modified Chitosan-g-Poly(N-Isopropylacrylamide): Methoxylation Effects and Pharmacological Treatments of Glaucoma-Related Neurodegeneration. J. Control Release 2020, 317, 246–258. [Google Scholar] [CrossRef] [PubMed]
  123. Nguyen, D.D.; Luo, L.; Lai, J. Dendritic Effects of Injectable Biodegradable Thermogels on Pharmacotherapy of Inflammatory Glaucoma-Associated Degradation of Extracellular Matrix. Adv. Healthc. Mater. 2019, 8, 1900702. [Google Scholar] [CrossRef] [PubMed]
  124. Kabiri, M.; Kamal, S.H.; Pawar, S.V.; Roy, P.R.; Derakhshandeh, M.; Kumar, U.; Hatzikiriakos, S.G.; Hossain, S.; Yadav, V.G. A Stimulus-Responsive, in Situ-Forming, Nanoparticle-Laden Hydrogel for Ocular Drug Delivery. Drug Deliv. Transl. Res. 2018, 8, 484–495. [Google Scholar] [CrossRef] [PubMed][Green Version]
  125. Taskar, P.S.; Patil, A.; Lakhani, P.; Ashour, E.; Gul, W.; ElSohly, M.A.; Murphy, B.; Majumdar, S. Δ9-Tetrahydrocannabinol Derivative-Loaded Nanoformulation Lowers Intraocular Pressure in Normotensive Rabbits. Transl. Vis. Sci. Technol. 2019, 8, 15. [Google Scholar] [CrossRef][Green Version]
  126. El-Salamouni, N.S.; Farid, R.M.; El-Kamel, A.H.; El-Gamal, S.S. Nanostructured Lipid Carriers for Intraocular Brimonidine Localisation: Development, in-Vitro and in-Vivo Evaluation. J. Microencapsul. 2018, 35, 102–113. [Google Scholar] [CrossRef]
  127. Sánchez-López, E.; Egea, M.A.; Davis, B.M.; Guo, L.; Espina, M.; Silva, A.M.; Calpena, A.C.; Souto, E.M.B.; Ravindran, N.; Ettcheto, M.; et al. Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. Small 2018, 14, 1701808. [Google Scholar] [CrossRef]
  128. Narsineni, L.; Rao, P.P.N.; Pham, A.T.; Foldvari, M. Peptide-Modified Gemini Surfactants as Delivery System Building Blocks with Dual Functionalities for Glaucoma Treatment: Gene Carriers and Amyloid-Beta (Aβ) Self-Aggregation Inhibitors. Mol. Pharm. 2022, 19, 2737–2753. [Google Scholar] [CrossRef]
  129. Alqawlaq, S.; Sivak, J.M.; Huzil, J.T.; Ivanova, M.V.; Flanagan, J.G.; Beazely, M.A.; Foldvari, M. Preclinical Development and Ocular Biodistribution of Gemini-DNA Nanoparticles after Intravitreal and Topical Administration: Towards Non-Invasive Glaucoma Gene Therapy. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1637–1647. [Google Scholar] [CrossRef]
  130. Wang, L.; Mao, X. Role of Retinal Amyloid-β in Neurodegenerative Diseases: Overlapping Mechanisms and Emerging Clinical Applications. Int. J. Mol. Sci. 2021, 22, 2360. [Google Scholar] [CrossRef]
  131. Li, T.; Wang, Y.; Chen, J.; Gao, X.; Pan, S.; Su, Y.; Zhou, X. Co-Delivery of Brinzolamide and MiRNA-124 by Biodegradable Nanoparticles as a Strategy for Glaucoma Therapy. Drug Deliv. 2020, 27, 410–421. [Google Scholar] [CrossRef][Green Version]
  132. Zhao, L.; Chen, G.; Li, J.; Fu, Y.; Mavlyutov, T.A.; Yao, A.; Nickells, R.W.; Gong, S.; Guo, L.-W. An Intraocular Drug Delivery System Using Targeted Nanocarriers Attenuates Retinal Ganglion Cell Degeneration. J. Control Release 2017, 247, 153–166. [Google Scholar] [CrossRef][Green Version]
  133. Silva, B.; Gonçalves, L.M.; Braz, B.S.; Delgado, E. Chitosan and Hyaluronic Acid Nanoparticles as Vehicles of Epoetin Beta for Subconjunctival Ocular Delivery. Mar. Drugs 2022, 20, 151. [Google Scholar] [CrossRef]
  134. Hsueh, H.T.; Kim, Y.-C.; Pitha, I.; Shin, M.D.; Berlinicke, C.A.; Chou, R.T.; Kimball, E.; Schaub, J.; Quillen, S.; Leo, K.T.; et al. Ion-Complex Microcrystal Formulation Provides Sustained Delivery of a Multimodal Kinase Inhibitor from the Subconjunctival Space for Protection of Retinal Ganglion Cells. Pharmaceutics 2021, 13, 647. [Google Scholar] [CrossRef]
  135. Khatib, T.Z.; Martin, K.R. Neuroprotection in Glaucoma: Towards Clinical Trials and Precision Medicine. Curr. Eye Res. 2020, 45, 327–338. [Google Scholar] [CrossRef][Green Version]
  136. Ghosn, C.; Rajagopalan, L.; Ugarte, S.; Mistry, S.; Orilla, W.; Goodkin, M.L.; Robinson, M.R.; Engles, M.; Dibas, M. Intraocular Pressure-Lowering Efficacy of a Sustained-Release Bimatoprost Implant in Dog Eyes Pretreated with Selective Laser Trabeculoplasty. J. Ocul. Pharmacol. Ther. 2022, 38, 311–318. [Google Scholar] [CrossRef]
  137. Andrés-Guerrero, V.; Camacho-Bosca, I.; Salazar-Quiñones, L.; Ventura-Abreu, N.; Molero-Senosiain, M.; Hernández-Ruiz, S.; Bernal-Sancho, G.; Herrero-Vanrell, R.; García-Feijóo, J. The Effect of a Triple Combination of Bevacizumab, Sodium Hyaluronate and a Collagen Matrix Implant in a Trabeculectomy Animal Model. Pharmaceutics 2021, 13, 896. [Google Scholar] [CrossRef] [PubMed]
  138. Vildanova, R.; Lobov, A.; Spirikhin, L.; Kolesov, S. Hydrogels on the Base of Modified Chitosan and Hyaluronic Acid Mix as Polymer Matrices for Cytostatics Delivery. Gels 2022, 8, 104. [Google Scholar] [CrossRef] [PubMed]
  139. Qiao, X.; Peng, X.; Qiao, J.; Jiang, Z.; Han, B.; Yang, C.; Liu, W. Evaluation of a Photocrosslinkable Hydroxyethyl Chitosan Hydrogel as a Potential Drug Release System for Glaucoma Surgery. J. Mater. Sci. Mater. Med. 2017, 28, 149. [Google Scholar] [CrossRef] [PubMed]
  140. Chun, Y.Y.; Yap, Z.L.; Seet, L.F.; Chan, H.H.; Toh, L.Z.; Chu, S.W.L.; Lee, Y.S.; Wong, T.T.; Tan, T.T.Y. Positive-Charge Tuned Gelatin Hydrogel-SiSPARC Injectable for SiRNA Anti-Scarring Therapy in Post Glaucoma Filtration Surgery. Sci. Rep. 2021, 11, 1470. [Google Scholar] [CrossRef]
  141. Seet, L.F.; Tan, Y.F.; Toh, L.Z.; Chu, S.W.; Lee, Y.S.; Venkatraman, S.S.; Wong, T.T. Targeted Therapy for the Post-Operative Conjunctiva: SPARC Silencing Reduces Collagen Deposition. Br. J. Ophthalmol. 2018, 102, 1460–1470. [Google Scholar] [CrossRef]
  142. Jóhannesson, G.; Gottfredsdóttir, M.S.; Ásgrimsdóttir, G.M.; Loftsson, T.; Stefánsson, E. Can Postoperative Dexamethasone Nanoparticle Eye Drops Replace Mitomycin C in Trabeculectomy? Acta Ophthalmol. 2020, 98, 607–612. [Google Scholar] [CrossRef] [PubMed][Green Version]
  143. Swann, F.B.; Singh, S.; Blake, D.; John, V.; Le, C.; Fullerton, M.; Margo, C.; Zhang, Z.; Muddasani, N.; Wall, J.; et al. Effect of 2 Novel Sustained-Release Drug Release Systems on Bleb Fibrosis: An In Vivo Trabeculectomy Study in a Rabbit Model. J. Glaucoma 2019, 28, 512–518. [Google Scholar] [CrossRef]
  144. Goldberg, D.F.; Malhotra, R.P.; Schechter, B.A.; Justice, A.; Weiss, S.L.; Sheppard, J.D. A Phase 3, Randomized, Double-Masked Study of OTX-101 Ophthalmic Solution 0.09% in the Treatment of Dry Eye Disease. Ophthalmology 2019, 126, 1230–1237. [Google Scholar] [CrossRef][Green Version]
  145. Schopf, L.; Enlow, E.; Popov, A.; Bourassa, J.; Chen, H. Ocular Pharmacokinetics of a Novel Loteprednol Etabonate 0.4% Ophthalmic Formulation. Ophthalmol. Ther. 2014, 3, 63–72. [Google Scholar] [CrossRef][Green Version]
  146. Compositions and Methods for Ophthalmic and/or Other Applications—Patent US-10857096-B2—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-10857096-B2 (accessed on 24 February 2023).
  147. Korenfeld, M.; Nichols, K.K.; Goldberg, D.; Evans, D.; Sall, K.; Foulks, G.; Coultas, S.; Brazzell, K. Safety of KPI-121 Ophthalmic Suspension 0.25% in Patients With Dry Eye Disease: A Pooled Analysis of 4 Multicenter, Randomized, Vehicle-Controlled Studies. Cornea 2021, 40, 564–570. [Google Scholar] [CrossRef]
  148. Gupta, P.K.; Venkateswaran, N. The Role of KPI-121 0.25% in the Treatment of Dry Eye Disease: Penetrating the Mucus Barrier to Treat Periodic Flares. Ther. Adv. Ophthalmol. 2021, 13, 251584142110127. [Google Scholar] [CrossRef] [PubMed]
  149. Escobar-Chávez, J.J.; López-Cervantes, M.; Naik, A.; Kalia, Y.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. Applications of Thermo-Reversible Pluronic F-127 Gels in Pharmaceutical Formulations. J. Pharm. Pharm. Sci. 2006, 9, 339. [Google Scholar]
  150. Mun, J.; won Mok, J.; Jeong, S.; Cho, S.; Joo, C.-K.; Hahn, S.K. Drug-Eluting Contact Lens Containing Cyclosporine-Loaded Cholesterol-Hyaluronate Micelles for Dry Eye Syndrome. RSC Adv. 2019, 9, 16578–16585. [Google Scholar] [CrossRef] [PubMed][Green Version]
  151. Nagai, N.; Ishii, M.; Seiriki, R.; Ogata, F.; Otake, H.; Nakazawa, Y.; Okamoto, N.; Kanai, K.; Kawasaki, N. Novel Sustained-Release Drug Delivery System for Dry Eye Therapy by Rebamipide Nanoparticles. Pharmaceutics 2020, 12, 155. [Google Scholar] [CrossRef][Green Version]
  152. Qiao, H.; Xu, Z.; Sun, M.; Fu, S.; Zhao, F.; Wang, D.; He, Z.; Zhai, Y.; Sun, J. Rebamipide Liposome as an Effective Ocular Delivery System for the Management of Dry Eye Disease. J. Drug Deliv. Sci. Technol. 2022, 75, 103654. [Google Scholar] [CrossRef]
  153. Wang, S.; Wang, M.; Liu, Y.; Hu, D.; Gu, L.; Fei, X.; Zhang, J. Effect of Rapamycin Microspheres in Sjögren Syndrome Dry Eye: Preparation and Outcomes. Ocul. Immunol. Inflamm. 2019, 27, 1357–1364. [Google Scholar] [CrossRef]
  154. Luo, L.-J.; Nguyen, D.D.; Lai, J.-Y. Long-Acting Mucoadhesive Thermogels for Improving Topical Treatments of Dry Eye Disease. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 115, 111095. [Google Scholar] [CrossRef] [PubMed]
  155. Dünnhaupt, S.; Kammona, O.; Waldner, C.; Kiparissides, C.; Bernkop-Schnürch, A. Nano-Carrier Systems: Strategies to Overcome the Mucus Gel Barrier. Eur. J. Pharm. Biopharm. 2015, 96, 447–453. [Google Scholar] [CrossRef] [PubMed]
  156. Nepp, J.; Knoetzl, W.; Prinz, A.; Hoeller, S.; Prinz, M. Management of Moderate-to-Severe Dry Eye Disease Using Chitosan-N-Acetylcysteine (Lacrimera®) Eye Drops: A Retrospective Case Series. Int. Ophthalmol. 2020, 40, 1547–1552. [Google Scholar] [CrossRef] [PubMed][Green Version]
  157. Puri, V.; Sharma, A.; Kumar, P.; Singh, I. Thiolation of Biopolymers for Developing Drug Delivery Systems with Enhanced Mechanical and Mucoadhesive Properties: A Review. Polymers 2020, 12, 1803. [Google Scholar] [CrossRef]
  158. Sheng, Y.; Sun, X.; Han, J.; Hong, W.; Feng, J.; Xie, S.; Li, Y.; Yan, F.; Li, K.; Tian, B. N-Acetylcysteine Functionalized Chitosan Oligosaccharide-Palmitic Acid Conjugate Enhances Ophthalmic Delivery of Flurbiprofen and Its Mechanisms. Carbohydr. Polym. 2022, 291, 119552. [Google Scholar] [CrossRef] [PubMed]
  159. Bachu, R.D.; Chowdhury, P.; Al-Saedi, Z.H.F.; Karla, P.K.; Boddu, S.H.S. Ocular Drug Delivery Barriers—Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases. Pharmaceutics 2018, 10, 28. [Google Scholar] [CrossRef][Green Version]
  160. Bu, J.; Wu, Y.; Cai, X.; Jiang, N.; Jeyalatha, M.V.; Yu, J.; He, X.; He, H.; Guo, Y.; Zhang, M.; et al. Hyperlipidemia Induces Meibomian Gland Dysfunction. Ocul. Surf. 2019, 17, 777–786. [Google Scholar] [CrossRef]
  161. Seen, S.; Tong, L. Dry Eye Disease and Oxidative Stress. Acta Ophthalmol. 2018, 96, e412–e420. [Google Scholar] [CrossRef] [PubMed][Green Version]
  162. Choi, S.W.; Cha, B.G.; Kim, J. Therapeutic Contact Lens for Scavenging Excessive Reactive Oxygen Species on the Ocular Surface. ACS Nano 2020, 14, 2483–2496. [Google Scholar] [CrossRef] [PubMed]
  163. Jo, Y.J.; Lee, J.E.; Lee, J.S. Clinical Efficacy of 0.05% Cyclosporine Nano-Emulsion in the Treatment of Dry Eye Syndrome Associated with Meibomian Gland Dysfunction. Int. J. Ophthalmol. 2022, 15, 1924–1931. [Google Scholar] [CrossRef]
  164. Leonardi, A.; Doan, S.; Amrane, M.; Ismail, D.; Montero, J.; Németh, J.; Aragona, P.; Bremond-Gignac, D.; VEKTIS Study Group. A Randomized, Controlled Trial of Cyclosporine A Cationic Emulsion in Pediatric Vernal Keratoconjunctivitis: The VEKTIS Study. Ophthalmology 2019, 126, 671–681. [Google Scholar] [CrossRef][Green Version]
  165. Sun, K.; Hu, K. Preparation and Characterization of Tacrolimus-Loaded SLNs in Situ Gel for Ocular Drug Delivery for the Treatment of Immune Conjunctivitis. Drug Des. Devel. Ther. 2021, 15, 141–150. [Google Scholar] [CrossRef]
  166. Mirzaeei, S.; Taghe, S.; Asare-Addo, K.; Nokhodchi, A. Polyvinyl Alcohol/Chitosan Single-Layered and Polyvinyl Alcohol/Chitosan/Eudragit RL100 Multi-Layered Electrospun Nanofibers as an Ocular Matrix for the Controlled Release of Ofloxacin: An In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2021, 22, 170. [Google Scholar] [CrossRef] [PubMed]
  167. Deepthi, S.; Jose, J. Novel Hydrogel-Based Ocular Drug Delivery System for the Treatment of Conjunctivitis. Int. Ophthalmol. 2019, 39, 1355–1366. [Google Scholar] [CrossRef] [PubMed]
  168. Aytekin, E.; Öztürk, N.; Vural, İ.; Polat, H.K.; Çakmak, H.B.; Çalış, S.; Pehlivan, S.B. Design of Ocular Drug Delivery Platforms and in Vitro–in Vivo Evaluation of Riboflavin to the Cornea by Non-Interventional (Epi-on) Technique for Keratoconus Treatment. J. Control Release 2020, 324, 238–249. [Google Scholar] [CrossRef] [PubMed]
  169. Wo, N.; Zhai, J. Combinatorial Therapeutic Drug Delivery of Riboflavin and Dexamethasone for the Treatment of Keratoconus Affected Corneas of Mice: Ex Vivo Permeation and Hemolytic Toxicity. Micro Nano Lett. 2021, 16, 492–499. [Google Scholar] [CrossRef]
  170. Varela-Fernández, R.; García-Otero, X.; Díaz-Tomé, V.; Regueiro, U.; López-López, M.; González-Barcia, M.; Lema, M.I.; Otero-Espinar, F.J. Design, Optimization, and Characterization of Lactoferrin-Loaded Chitosan/TPP and Chitosan/Sulfobutylether-β-Cyclodextrin Nanoparticles as a Pharmacological Alternative for Keratoconus Treatment. ACS Appl. Mater. Interfaces 2021, 13, 3559–3575. [Google Scholar] [CrossRef]
  171. Chou, T.Y.; Hong, B.Y. Ganciclovir Ophthalmic Gel 0.15% for the Treatment of Acute Herpetic Keratitis: Background, Effectiveness, Tolerability, Safety, and Future Applications. Ther. Clin. Risk Manag. 2014, 10, 665–681. [Google Scholar] [CrossRef][Green Version]
  172. Colin, J. Ganciclovir Ophthalmic Gel, 0.15%: A Valuable Tool for Treating Ocular Herpes. Clin. Ophthalmol. Auckl. NZ 2007, 1, 441–453. [Google Scholar]
  173. Yang, X.; Shah, S.J.; Wang, Z.; Agrahari, V.; Pal, D.; Mitra, A.K. Nanoparticle-Based Topical Ophthalmic Formulation for Sustained Release of Stereoisomeric Dipeptide Prodrugs of Ganciclovir. Drug Deliv. 2016, 23, 2399–2409. [Google Scholar] [CrossRef] [PubMed]
  174. Jain, P.; Jaiswal, C.P.; Mirza, M.A.; Anwer, M.K.; Iqbal, Z. Preparation of Levofloxacin Loaded in Situ Gel for Sustained Ocular Delivery: In Vitro and Ex Vivo Evaluations. Drug Dev. Ind. Pharm. 2020, 46, 50–56. [Google Scholar] [CrossRef] [PubMed]
  175. Roy, G.; Galigama, R.D.; Thorat, V.S.; Mallela, L.S.; Roy, S.; Garg, P.; Venuganti, V.V.K. Amphotericin B Containing Microneedle Ocular Patch for Effective Treatment of Fungal Keratitis. Int. J. Pharm. 2019, 572, 118808. [Google Scholar] [CrossRef] [PubMed]
  176. Sebastián-Morelló, M.; Calatayud-Pascual, M.A.; Rodilla, V.; Balaguer-Fernández, C.; López-Castellano, A. Ex Vivo Rabbit Cornea Diffusion Studies with a Soluble Insert of Moxifloxacin. Drug Deliv. Transl. Res. 2018, 8, 132–139. [Google Scholar] [CrossRef]
  177. Li, J.; Li, Z.; Liang, Z.; Han, L.; Feng, H.; He, S.; Zhang, J. Fabrication of a Drug Delivery System That Enhances Antifungal Drug Corneal Penetration. Drug Deliv. 2018, 25, 938–949. [Google Scholar] [CrossRef][Green Version]
  178. Titiyal, J.S.; Thangavel, R.; Kaur, M.; Venkatesh, P.; Velpandian, T.; Sinha, R. Comparative Evaluation of Once-Daily and Twice-Daily Dosing of Topical Bromfenac 0.09%: Aqueous Pharmacokinetics and Clinical Efficacy Study. J. Cataract Refract. Surg. 2021, 47, 1115–1121. [Google Scholar] [CrossRef]
  179. Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal Prospects of Antioxidants: A Review. Eur. J. Med. Chem. 2019, 178, 687–704. [Google Scholar] [CrossRef]
  180. Anbukkarasi, M.; Thomas, P.A.; Sheu, J.-R.; Geraldine, P. In Vitro Antioxidant and Anticataractogenic Potential of Silver Nanoparticles Biosynthesized Using an Ethanolic Extract of Tabernaemontana Divaricata Leaves. Biomed. Pharmacother. Biomed. Pharmacother. 2017, 91, 467–475. [Google Scholar] [CrossRef]
  181. Chen, H.; Yang, J.; Sun, L.; Zhang, H.; Guo, Y.; Qu, J.; Jiang, W.; Chen, W.; Ji, J.; Yang, Y.-W.; et al. Synergistic Chemotherapy and Photodynamic Therapy of Endophthalmitis Mediated by Zeolitic Imidazolate Framework-Based Drug Delivery Systems. Small 2019, 15, e1903880. [Google Scholar] [CrossRef]
  182. Lee, B.; Lee, M.J.; Yun, S.J.; Kim, K.; Choi, I.-H.; Park, S. Silver Nanoparticles Induce Reactive Oxygen Species-Mediated Cell Cycle Delay and Synergistic Cytotoxicity with 3-Bromopyruvate in Candida Albicans, but Not in Saccharomyces Cerevisiae. Int. J. Nanomed. 2019, 14, 4801–4816. [Google Scholar] [CrossRef][Green Version]
  183. Hanafy, B.I. Formulation of Cerium Oxide Nanoparticles towards the Prevention and Treatment of Cataract. Ph.D. Thesis, Nottingham Trent University, Nottingham, UK, 2020. [Google Scholar]
  184. Zhu, S.; Gong, L.; Li, Y.; Xu, H.; Gu, Z.; Zhao, Y. Safety Assessment of Nanomaterials to Eyes: An Important but Neglected Issue. Adv. Sci. 2019, 6, 1802289. [Google Scholar] [CrossRef] [PubMed][Green Version]
  185. Liu, Y.; Dong, Y.; Pu, X.; Yin, X. Fabrication of Anti-Oxidant Curcumin Loaded Ceria Nanoclusters for the Novel Delivery System to Prevention of Selenite-Induced Cataract Therapy in Alleviating Diabetic Cataract. Process Biochem. 2022, 120, 239–249. [Google Scholar] [CrossRef]
  186. Li, N.; Zhao, Z.; Ma, H.; Liu, Y.; Nwafor, E.-O.; Zhu, S.; Jia, L.; Pang, X.; Han, Z.; Tian, B.; et al. Optimization and Characterization of Low-Molecular-Weight Chitosan-Coated Baicalin MPEG-PLGA Nanoparticles for the Treatment of Cataract. Mol. Pharm. 2022, 19, 3831–3845. [Google Scholar] [CrossRef]
  187. Lan, Q.; Di, D.; Wang, S.; Zhao, Q.; Gao, Y.; Chang, D.; Jiang, T. Chitosan-N-Acetylcysteine Modified HP-β-CD Inclusion Complex as a Potential Ocular Delivery System for Anti-Cataract Drug: Quercetin. J. Drug Deliv. Sci. Technol. 2020, 55, 101407. [Google Scholar] [CrossRef]
  188. Bodoki, E.; Vostinaru, O.; Samoila, O.; Dinte, E.; Bodoki, A.E.; Swetledge, S.; Astete, C.E.; Sabliov, C.M. Topical Nanodelivery System of Lutein for the Prevention of Selenite-Induced Cataract. Nanomed. Nanotechnol. Biol. Med. 2019, 15, 188–197. [Google Scholar] [CrossRef]
  189. Tauber, J.; Schechter, B.A.; Bacharach, J.; Toyos, M.M.; Smyth-Medina, R.; Weiss, S.L.; Luchs, J.I. A Phase II/III, Randomized, Double-Masked, Vehicle-Controlled, Dose-Ranging Study of the Safety and Efficacy of OTX-101 in the Treatment of Dry Eye Disease. Clin. Ophthalmol. 2018, 12, 1921–1929. [Google Scholar] [CrossRef][Green Version]
  190. Han, Y.; Jiang, L.; Shi, H.; Xu, C.; Liu, M.; Li, Q.; Zheng, L.; Chi, H.; Wang, M.; Liu, Z.; et al. Effectiveness of an Ocular Adhesive Polyhedral Oligomeric Silsesquioxane Hybrid Thermo-Responsive FK506 Hydrogel in a Murine Model of Dry Eye. Bioact. Mater. 2022, 9, 77–91. [Google Scholar] [CrossRef] [PubMed]
  191. Peng, W.; Chen, R.; Dai, H.; Zhu, L.; Li, Y.; Gao, Z.; Li, X.; Zhou, S. Efficacy, Safety, and Tolerability of a Novel Cyclosporine, a Formulation for Dry Eye Disease: A Multicenter Phase II Clinical Study. Clin. Ther. 2021, 43, 613–628. [Google Scholar] [CrossRef]
  192. Mahmoud, D.B.; Afifi, S.A.; El Sayed, N.S. Crown Ether Nanovesicles (Crownsomes) Repositioned Phenytoin for Healing of Corneal Ulcers. Mol. Pharm. 2020, 17, 3952–3965. [Google Scholar] [CrossRef] [PubMed]
  193. Terreni, E.; Burgalassi, S.; Chetoni, P.; Tampucci, S.; Zucchetti, E.; Fais, R.; Ghelardi, E.; Lupetti, A.; Monti, D. Development and Characterization of a Novel Peptide-Loaded Antimicrobial Ocular Insert. Biomolecules 2020, 10, 664. [Google Scholar] [CrossRef]
  194. Eid, H.M.; Elkomy, M.H.; El Menshawe, S.F.; Salem, H.F. Development, Optimization, and In Vitro/In Vivo Characterization of Enhanced Lipid Nanoparticles for Ocular Delivery of Ofloxacin: The Influence of Pegylation and Chitosan Coating. AAPS PharmSciTech 2019, 20, 183. [Google Scholar] [CrossRef] [PubMed]
  195. Peng, K.; Vora, L.K.; Tekko, I.A.; Permana, A.D.; Domínguez-Robles, J.; Ramadon, D.; Chambers, P.; McCarthy, H.O.; Larrañeta, E.; Donnelly, R.F. Dissolving Microneedle Patches Loaded with Amphotericin B Microparticles for Localised and Sustained Intradermal Delivery: Potential for Enhanced Treatment of Cutaneous Fungal Infections. J. Control Release 2021, 339, 361–380. [Google Scholar] [CrossRef] [PubMed]
  196. Khames, A.; Khaleel, M.A.; El-Badawy, M.F.; El-Nezhawy, A.O.H. Natamycin Solid Lipid Nanoparticles-Sustained Ocular Delivery System of Higher Corneal Penetration against Deep Fungal Keratitis: Preparation and Optimization. Int. J. Nanomed. 2019, 14, 2515–2531. [Google Scholar] [CrossRef] [PubMed][Green Version]
More
Video Production Service