基于刺激响应材料的智能摩擦电纳米发电机: Comparison
Please note this is a comparison between Version 3 by Sirius Huang and Version 2 by Xueqing Wang.

Smart responsive materials can respond to external stimuli through reversible mechanisms and can be directly combined with triboelectric nanogenerators (teng) to provide a variety of intelligent applications such as sensors, actuators, robotics, artificial muscles, and controlled drug delivery. Not only that, but the mechanical energy in the reversible response of innovative materials can be extracted and converted into an interpretable electrical signal.

  • smart materials
  • stimuli-responsive
  • triboelectric nanogenerator
  • energy conversion
  • self-powered system

1.Introduction

Currently, the ever-growing need for versatile and efficient intelligent devices stimulates people’s intense research interest in integrating smart response materials with traditional electronics [1,2,3][1][2][3]. The original concept of smart materials stems from natural biological systems that follow a perception-reaction-learning mechanism. Presently, they are defined as materials that can respond to a variety of external stimuli or environmental changes. This is because smart materials can adjust their function and respond accordingly by rearranging their structure at the molecular level. They represent a family of innovative materials for understanding experiences with self-awareness and purposeful responses [4,5,6,7,8][4][5][6][7][8].
Historically, applications of functional smart materials with controllable shape or volume changes in response to external stimuli have been investigated in several frontier fields, such as sensors, actuators, optoelectronic devices, information storage, and biomedicine [9,10,11,12,13][9][10][11][12][13]. These external stimuli include chemical incentives (e.g., changes in concentration, humidity, pH) [14[14][15][16],15,16], mechanical stimuli (e.g., pressure, strain) [17,18][17][18], physical stimuli (e.g., light, sound, temperature, color) [19,20,21[19][20][21][22][23],22,23], and electromagnetic stimuli (e.g., electric, magnetic, charge injection) [24,25,26,27][24][25][26][27]. The unique and excellent responsive characteristics of smart materials enable them to be used specifically and accurately in certain applications, allowing them to perceive changes in the environment and adapt future smart polymers to similar situations and specific behaviors in specific applications [28,29,30][28][29][30].
A triboelectric nanogenerator (TENG) is a newly developed energy harvesting technology based on the coupling effect of contact charge and electrostatics [31,32][31][32]. It can convert almost any type of mechanical energy, such as vibration [33], water waves [34], wind [35], raindrops [36], and human motion [37], into electrical energy, and power various sensors. In principle, TENGs have a wide selection of materials, such as organic materials [27[27][38],38], polymers [39], hydrogels [40], and elastic rubbers [41[41][42],42], which can be directly used to manufacture TENG or serve as active component of TENG systems. Thus, smart materials can also be promising candidates combined with TENG devices and generate many multifunctional applications. The introduction of smart materials not only improves the performance of TENG in terms of material optimization, but also provides various applications, such as sensors [43[43][44],44], actuators [45], robots [46], artificial muscles [47], and controlled drug delivery [48]. Moreover, the mechanical energy in the reversible response of smart materials can be cleared and converted into electrical energy, which is highly dependent on the amplitude and frequency of environmental stimuli and can be digitized for the latter. Therefore, a self-powered smart system can be constructed, with broad applications in catalysis [49], sensors [50], drug/gene delivery [51[51][52],52], and self-assembly [53,54][53][54].

2. Basic Principle and Working Modes of TENGs

TENG is capable of transforming mechanical energy from the surrounding environment into electrical power by utilizing a combination of triboelectrification and electrostatic induction effects [55,56][55][56]. Typically, this involves contacting two materials with differing charge affinities, causing electrostatic charges to build up on their surfaces until reaching saturation with repeated contact. These charges generate an electric field that drives the flow of electrons through an external load over time, ultimately converting mechanical energy into electrical energy [57,58][57][58]. TENGs can be categorized into four working modes(Figure 1): the vertical contact separation mode, which uses vertical polarization; the lateral sliding mode, utilizing lateral polarization from the relative movement between two media [59]; the single-electrode mode, which can harvest energy from a freely moving object without attaching conductive wires [60]; the independent triboelectric layer mode, which uses electrostatic induction between a pair of electrodes to generate electrical energy [61].
Figure 1.
The basic principle of TENG.
Vertical contact separation mode is the basic model of TENG, which involves the creation of opposite charges on the surfaces of two dielectric films with distinct electron affinity upon physical contact. When there is an appropriate gap between the two films, an electric potential difference occurs between the surfaces of the two dielectric films. If the films were connected through electrodes and external circuits, the free electrons in one electrode will flow to the other to balance the electrostatic field. Once the gap is closed, the potential difference caused by the friction charge disappears, and the induced electrons flow back. Regular contact and separation between the two materials drive rated electrons to flow back and forth between the two electrodes, resulting in an AC output in the external circuit. It is the basic model of TENG. Lateral sliding mode involves relative movement in the direction parallel to the interface between two materials with opposite triboelectric polarities. When the materials are brought into contact, surface charge transfer occurs due to the triboelectrification effect. When the materials are separated by a distance, a potential difference is generated across two electrodes due to the effective dipole polarization created in parallel to the direction of the displacement. Single electrode mode converts energy by combining dielectric materials with metal electrodes. When the charged dielectric approaches the grounded metal electrode, an induction charge is created in the metal plate to balance the electrostatic field. When the dielectric moves away from the metal plate, the current flows back to the ground. SE is the most convenient and simplest mode, which harvests the energy of moving objects through only a metal plate without the need for other dielectrics. Independent triboelectric layer mode has high potential in collecting natural energy. The mode needs to place a dielectric layer on top of a pair of symmetrical electrodes that are approximately the same size as the moving object and maintain a small gap between the object and electrodes, an asymmetric charge distribution is generated via induction in the surrounding medium when the object approaches or departs from the electrodes. This occurs only if the object has been previously charged by a triboelectric process. The electrons flow between the two electrodes to balance the local potential distribution. As the object moves back and forth, the electrons oscillate between the paired electrodes and generate an AC output. This mode offers the advantage of harvesting energy from a moving object without requiring grounding, making the system more flexible. The TENG’s open circuit voltage (VOC) can easily reach several thousand volts, while the short circuit current (ISC) is as low as a few microamperes. The output voltage of a TENG decreases as the load resistance decreases. Therefore, intelligent responsive materials can be used as the friction layer or electrode layer material of TENG to improve its output characteristics. Moreover, TENG can also be used to drive some intelligent and responsive materials and devices.

3. Classifications and Underlying Mechanisms of TENGs That Are Based on Smart Materials

The self-adaptability and self-actuation of smart materials are achieved through the autonomous movement of particles at the nanoscale. When stimulated by external factors, molecules and atoms will aggregate, align, and orient themselves to provide the optimal response to the external stimuli [62,63][62][63]. If combined with TENG, the system may deliver various intelligent applications, such as sensors [64], actuators [65], robots [66], artificial muscles [67], and controlled drug delivery [68] with immediate response to stress, electrical current, temperature, magnetic field, or even chemical compounds. This section introduces the combination of different types of smart materials with TENG based on their principles and mechanisms. Table 1 lists the synthesis methods, properties, and application comparison of TENGs combined with different types of smart materials. 
Table 1.
Comparison of synthesis methods, properties and applications of TENGs combined with different types of smart materials.

References

  1. Zheng, Q.; Xu, C.; Jiang, Z.; Zhu, M.; Chen, C.; Fu, F. Smart Actuators Based on External Stimulus Response. Front. Chem. 2021, 9, 650358.
  2. Wei, J.; Li, R.; Li, L.; Wang, W.; Chen, T. Touch-Responsive Hydrogel for Biomimetic Flytrap-Like Soft Actuator. Nano-Micro Lett. 2022, 14, 182.
  3. Long, F.; Cheng, Y.; Ren, Y.; Wang, J.; Li, Z.; Sun, A.; Xu, G. Latest Advances in Development of Smart Phase Change Material for Soft Actuators. Adv. Eng. Mater. 2022, 24, 2270012.
  4. Jingcheng, L.; Reddy, V.S.; Jayathilaka, W.A.D.M.; Chinnappan, A.; Ramakrishna, S.; Ghosh, R. Intelligent Polymers, Fibers and Applications. Polymers 2021, 13, 1427.
  5. Wang, W.; Li, P.-F.; Xie, R.; Ju, X.-J.; Liu, Z.; Chu, L.-Y. Designable Micro-/Nano-Structured Smart Polymeric Materials. Adv. Mater. 2022, 34, 7877.
  6. Haq, M.A.; Su, Y.L.; Wang, D.J. Mechanical properties of PNIPAM based hydrogels: A review. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 70, 842–855.
  7. Das, S.; Ngashangva, L.; Goswami, P. Carbon Dots: An Emerging Smart Material for Analytical Applications. Micromachines 2021, 12, 84.
  8. Hajra, S.; Sahu, M.; Sahu, R.; Padhan, A.M.; Alagarsamy, P.; Kim, H.-G.; Lee, H.; Oh, S.; Yamauchi, Y.; Kim, H.J. Significant effect of synthesis methodologies of metal-organic frameworks upon the additively manufactured dual-mode triboelectric nanogenerator towards self-powered applications. Nano Energy 2022, 98, 107253.
  9. Kim, Y.-J.; Matsunaga, Y.T. Thermo-responsive polymers and their application as smart biomaterials. J. Mater. Chem. B 2017, 5, 4307–4321.
  10. Chen, Z.; Liu, J.; Chen, Y.; Zheng, X.; Liu, H.; Li, H. Multiple-Stimuli-Responsive and Cellulose Conductive Ionic Hydrogel for Smart Wearable Devices and Thermal Actuators. Acs Appl. Mater. Interfaces 2021, 13, 1353–1366.
  11. Niu, Y.; Li, S.; Zhang, J.; Wan, W.; He, Z.; Liu, J.; Liu, K.; Ren, S.; Ge, L.; Du, X.; et al. Static-Dynamic Fluorescence Patterns Based on Photodynamic Disulfide Reactions for Versatile Information Storage. Small 2021, 17, 2102224.
  12. Zhou, Y.; Zhan, P.; Ren, M.; Zheng, G.; Dai, K.; Mi, L.; Liu, C.; Shen, C. Significant Stretchability Enhancement of a Crack-Based Strain Sensor Combined with High Sensitivity and Superior Durability for Motion Monitoring. Acs Appl. Mater. Interfaces 2019, 11, 7405–7414.
  13. Jia, F.; Huang, F.; Ouyang, S.; Cai, C.; Xu, Z.; Wu, C.; Ma, Y.; Wang, M. Design of photoactive hybrid based intelligent photodetectors for identifying the detected wavelength. J. Mater. Chem. C 2016, 4, 10797–10803.
  14. Brighenti, R.; Cosma, M.P. Swelling mechanism in smart polymers responsive to mechano-chemical stimuli. J. Mech. Phys. Solids 2020, 143, 104011.
  15. Zhao, X.; Wang, L.-Y.; Tang, C.-Y.; Zha, X.-J.; Liu, Y.; Su, B.-H.; Ke, K.; Bao, R.-Y.; Yang, M.-B.; Yang, W. Smart Ti3C2Tx MXene Fabric with Fast Humidity Response and Joule Heating for Healthcare and Medical Therapy Applications. Acs Nano 2020, 14, 8793–8805.
  16. Zhou, J.; Jiang, B.; Gao, C.; Zhu, K.; Xu, W.; Song, D. Stable, reusable, and rapid response smart pH-responsive cotton fabric based on covalently immobilized with naphthalimide-rhodamine probe. Sens. Actuators B-Chem. 2022, 355, 131310.
  17. Ozcan, M.; Cakmakci, M.; Temizer, I. Smart composites with tunable stress-strain curves. Comput. Mech. 2020, 65, 375–394.
  18. Brighenti, R.; Li, Y.; Vernerey, F.J. Smart Polymers for Advanced Applications: A Mechanical Perspective Review. Front. Mater. 2020, 7, 196.
  19. Sun, D.; Cao, R.; Wu, H.; Li, X.; Yu, H.; Guo, L. Harsh Environmental-Tolerant and High-Performance Triboelectric Nanogenerator Based on Nanofiber/Microsphere Hybrid Membranes. Materials 2023, 16, 562.
  20. Feng, Y.Q.; Lv, M.L.; Yang, M.; Ma, W.X.; Zhang, G.; Yu, Y.Z.; Wu, Y.Q.; Li, H.B.; Liu, D.Z.; Yang, Y.S. Application of New Energy Thermochromic Composite Thermosensitive Materials of Smart Windows in Recent Years. Molecules 2022, 27, 1638.
  21. Li, J.; Xu, C.; Zhang, W.Y.; Shi, P.P.; Ye, Q.; Fu, D.W. Smart and efficient opto-electronic dual response material based on two-dimensional perovskite crystal/thin film. J. Mater. Chem. C 2020, 8, 1953–1961.
  22. Li, J.N.; Lu, X.G.; Zhang, Y.; Wen, X.X.; Yao, K.K.; Cheng, F.; Wang, D.C.; Ke, X.Q.; Zeng, H.; Yang, S. Dynamic Refractive Index-Matching for Adaptive Thermoresponsive Smart Windows. Small 2022, 18, 2201322.
  23. Wang, C.; Jiang, X.; Cui, P.; Sheng, M.; Gong, X.; Zhang, L.; Fu, S. Multicolor and Multistage Response Electrochromic Color-Memory Wearable Smart Textile and Flexible Display. Acs Appl. Mater. Interfaces 2021, 13, 12313–12321.
  24. Li, J.N.; Lu, X.G.; Zhang, Y.; Cheng, F.; Li, Y.L.; Wen, X.X.; Yang, S. Transmittance Tunable Smart Window Based on Magnetically Responsive 1D Nanochains. Acs Appl. Mater. Interfaces 2020, 12, 31637–31644.
  25. Hou, Z.-L.; Ma, X.; Zhang, J.; Li, C.; Wang, Y.; Cao, M. Fascinating Electrical Transport Behavior of Topological Insulator Bi2Te3 Nanorods: Toward Electrically Responsive Smart Materials. Small 2022, 18, 2205624.
  26. Liu, X.; Li, Y.; Sun, X.; Tang, W.; Deng, G.; Liu, Y.; Song, Z.; Yu, Y.; Yu, R.; Dai, L.; et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.
  27. Saqib, Q.M.; Shaukat, R.A.; Chougale, M.Y.; Khan, M.U.; Kim, J.; Bae, J. Particle triboelectric nanogenerator (P-TENG). Nano Energy 2022, 100, 107475.
  28. Zhang, H.; Fan, T.J.; Chen, W.; Li, Y.C.; Wang, B. Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioact. Mater. 2020, 5, 1071–1086.
  29. Xiao, D.; Zheng, M.-T.; Wu, F.-J. A bio-inspired self-assembled asymmetrical supramolecular film for highly-sensitive fire warning, solvent response, and smart switching. Chem. Eng. J. 2023, 459, 141546.
  30. Mrinalini, M.; Prasanthkumar, S. Recent Advances on Stimuli-Responsive Smart Materials and their Applications. Chempluschem 2019, 84, 1103–1121.
  31. Fan, F.-R.; Tian, Z.-Q.; Wang, Z.L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334.
  32. Xing, F.; Jie, Y.; Cao, X.; Li, T.; Wang, N. Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy. Nano Energy 2017, 42, 138–142.
  33. Jie, Y.; Jia, X.T.; Zou, J.D.; Chen, Y.D.; Wang, N.; Wang, Z.L.; Cao, X. Natural Leaf Made Triboelectric Nanogenerator for Harvesting Environmental Mechanical Energy. Adv. Energy Mater. 2018, 8, 1703133.
  34. Wang, N.; Zou, J.D.; Yang, Y.X.; Li, X.Y.; Guo, Y.L.; Jiang, C.; Jia, X.T.; Cao, X. Kelp-inspired biomimetic triboelectric nanogenerator boosts wave energy harvesting. Nano Energy 2019, 55, 541–547.
  35. Guo, Y.L.; Chen, Y.D.; Ma, J.M.; Zhu, H.R.; Cao, X.; Wang, N.; Wang, Z.L. Harvesting wind energy: A hybridized design of pinwheel by coupling triboelectrification and electromagnetic induction effects. Nano Energy 2019, 60, 641–648.
  36. Liu, Y.; Sun, N.; Liu, J.; Wen, Z.; Sun, X.; Lee, S.-T.; Sun, B. Integrating a Silicon Solar Cell with a Triboelectric Nanogenerator via a Mutual Electrode for Harvesting Energy from Sunlight and Raindrops. Acs Nano 2018, 12, 2893–2899.
  37. Yan, L.X.; Mi, Y.J.; Lu, Y.; Qin, Q.H.; Wang, X.Q.; Meng, J.J.; Liu, F.; Wang, N.; Cao, X. Weaved piezoresistive triboelectric nanogenerator for human motion monitoring and gesture recognition. Nano Energy 2022, 96, 107135.
  38. Khandelwal, G.; Chandrasekhar, A.; Raj, N.P.M.J.; Kim, S.-J. Metal-Organic Framework: A Novel Material for Triboelectric Nanogenerator-Based Self-Powered Sensors and Systems. Adv. Energy Mater. 2019, 9, 1803581.
  39. Lu, Y.; Mi, Y.J.; Wu, T.; Cao, X.; Wang, N. From Triboelectric Nanogenerator to Polymer-Based Biosensor: A Review. Biosensors 2022, 12, 323.
  40. Dong, L.; Wang, M.; Wu, J.; Zhu, C.; Shi, J.; Morikawa, H. Stretchable, Adhesive, Self-Healable, and Conductive Hydrogel-Based Deformable Triboelectric Nanogenerator for Energy Harvesting and Human Motion Sensing. Acs Appl. Mater. Interfaces 2022, 14, 9126–9137.
  41. Cheng, Y.; Wu, D.; Hao, S.F.; Jie, Y.; Cao, X.; Wang, N.; Wang, Z.L. Highly stretchable triboelectric tactile sensor for electronic skin. Nano Energy 2019, 64, 6600–6611.
  42. Parida, K.; Thangavel, G.; Cai, G.; Zhou, X.; Park, S.; Xiong, J.; Lee, P.S. Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun. 2019, 10, 2158.
  43. Zhao, K.; Wang, Z.L.; Yang, Y. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator. Acs Nano 2016, 10, 9044–9052.
  44. Md, S.; Rana, S.M.S.; Md, S.; Hye Su, S.; Selim, R.M.; Seong Hoon, J.; Jae Yeong, P. Highly Electronegative V2CTx/Silicone Nanocomposite-Based Serpentine Triboelectric Nanogenerator for Wearable Self-Powered Sensors and Sign Language Interpretation. Adv. Energy Mater. 2023, 13, 2203812.
  45. Chen, X.; Pu, X.; Jiang, T.; Yu, A.; Xu, L.; Wang, Z.L. Tunable Optical Modulator by Coupling a Triboelectric Nanogenerator and a Dielectric Elastomer. Adv. Funct. Mater. 2017, 27, 1603788.
  46. Liu, S.; Li, Y.; Guo, W.; Huang, X.; Xu, L.; Lai, Y.-C.; Zhang, C.; Wu, H. Triboelectric nanogenerators enabled sensing and actuation for robotics. Nano Energy 2019, 65, 104005.
  47. Li, Y.; Chen, W.; Lu, L. Wearable and Biodegradable Sensors for Human Health Monitoring. ACS Appl. Bio Mater. 2021, 4, 122–139.
  48. Adhikary, P.; Mahmud, M.A.P.; Solaiman, T.; Lin, Z. Recentadvances on biomechanical motion-driven triboelectric nanogenerators for drug delivery. Nano Today 2022, 45, 101513.
  49. Dong, F.; Pang, Z.; Lin, Q.; Wang, D.; Ma, X.; Song, S.; Nie, S. Triboelectric nanogenerator enhanced radical generation in a photoelectric catalysis system via pulsed direct-current. Nano Energy 2022, 100, 107515.
  50. Wang, S.; Yuan, F.; Liu, S.; Zhou, J.; Xuan, S.; Wang, Y.; Gong, X. A smart triboelectric nanogenerator with tunable rheological and electrical performance for self-powered multi-sensors. J. Mater. Chem. C 2020, 8, 3715–3723.
  51. Mi, Y.J.; Lu, Y.; Shi, Y.L.; Zhao, Z.Q.; Wang, X.Q.; Meng, J.J.; Cao, X.; Wang, N. Biodegradable Polymers in Triboelectric Nanogenerators. Polymers 2023, 15, 222.
  52. Nardekar, S.S.; Krishnamoorthy, K.; Manoharan, S.; Pazhamalai, P.; Kim, S.-J. Two Faces Under a Hood: Unravelling the Energy Harnessing and Storage Properties of 1T-MoS2 Quantum Sheets for Next-Generation Stand-Alone Energy Systems. ACS Nano 2022, 16, 3723–3734.
  53. Meng, Q.; Zhang, M.; Tang, R.; Jin, W.; Zhang, J.; Lan, Z.; Shi, S.; Shen, X.; Sun, Q. Stretchable triboelectric nanogenerator with exteroception-visualized multifunctionality. J. Mater. Chem. A 2022, 10, 4300–4305.
  54. Dong, K.; Peng, X.; Wang, Z.L. Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Adv. Mater. 2019, 32, 1902549.
  55. Pang, L.; Li, Z.; Zhao, Y.; Zhang, X.; Du, W.; Chen, L.; Yu, A.; Zhai, J. Triboelectric Nanogenerator Based on Polyimide/Boron Nitride Nanosheets/Polyimide Nanocomposite Film with Enhanced Electrical Performance. Acs Appl. Electron. Mater. 2022, 4, 3027–3035.
  56. Ma, M.; Kang, Z.; Liao, Q.; Zhang, Q.; Gao, F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969.
  57. Wen, J.; He, H.; Niu, C.; Rong, M.; Huang, Y.; Wu, Y. An improved equivalent capacitance model of the triboelectric nanogenerator incorporating its surface roughness. Nano Energy 2022, 96, 107070.
  58. Dharmasena, R.D.I.G.; Jayawardena, K.D.G.I.; Mills, C.A.; Dorey, R.A.; Silva, S.R.P. A unified theoretical model for Triboelectric Nanogenerators. Nano Energy 2018, 48, 391–400.
  59. Lee, Y.; Kang, S.G.; Jeong, J. Sliding triboelectric nanogenerator with staggered electrodes. Nano Energy 2021, 86, 106062.
  60. Wu, Y.H.; Luo, Y.; Qu, J.K.; Daoud, W.A.; Qi, T. Sustainable and shape-adaptable liquid single-electrode triboelectric nanogenerator for biomechanical energy harvesting. Nano Energy 2020, 75, 105027.
  61. Wang, Y.Q.; Yu, X.; Yin, M.F.; Wang, J.L.; Gao, Q.; Yu, Y.; Cheng, T.H.; Wang, Z.L. Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy. Nano Energy 2021, 82, 105740.
  62. You, Y.; Peng, W.L.; Xie, P.; Rong, M.Z.; Zhang, M.Q.; Liu, D. Topological rearrangement-derived homogeneous polymer networks capable of reversibly interlocking: From phantom to reality and beyond. Mater. Today 2020, 33, 45–55.
  63. Edwards, C.E.R.; Mai, D.J.; Tang, S.C.; Olsen, B.D. Molecular anisotropy and rearrangement as mechanisms of toughness and extensibility in entangled physical gels. Phys. Rev. Mater. 2020, 4, 015602.
  64. Chen, C.; Chen, L.; Wu, Z.; Guo, H.; Yu, W.; Du, Z.; Wang, Z.L. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater. Today 2020, 32, 84–93.
  65. Zheng, L.; Dong, S.; Nie, J.; Li, S.; Ren, Z.; Ma, X.; Chen, X.; Li, H.; Wang, Z.L. Dual-Stimulus Smart Actuator and Robot Hand Based on a Vapor-Responsive PDMS Film and Triboelectric Nanogenerator. Acs Appl. Mater. Interfaces 2019, 11, 42504–42511.
  66. Ji, S.; Shin, J.; Yoon, J.; Lim, K.-H.; Sim, G.-D.; Lee, Y.-S.; Kim, D.H.; Cho, H.; Park, J. Three-dimensional skin-type triboelectric nanogenerator for detection of two-axis robotic-arm collision. Nano Energy 2022, 97, 107225.
  67. Yang, D.; Kong, X.; Ni, Y.; Ren, Z.; Li, S.; Nie, J.; Chen, X.; Zhang, L. Ionic polymer-metal composites actuator driven by the pulse current signal of triboelectric nanogenerator. Nano Energy 2019, 66, 104139.
  68. Du, S.; Zhou, N.; Xie, G.; Chen, Y.; Suo, H.; Xu, J.; Tao, J.; Zhang, L.; Zhu, J. Surface-engineered triboelectric nanogenerator patches with drug loading and electrical stimulation capabilities: Toward promoting infected wounds healing. Nano Energy 2021, 85, 106004.
  69. Fatma, B.; Bhunia, R.; Gupta, S.; Verma, A.; Verma, V.; Garg, A. Maghemite/Polyvinylidene Fluoride Nanocomposite for Transparent, Flexible Triboelectric Nanogenerator and Noncontact Magneto-Triboelectric Nanogenerator. Acs Sustain. Chem. Eng. 2019, 7, 14856–14866.
  70. Huang, L.-b.; Xu, W.; Bai, G.; Wong, M.-C.; Yang, Z.; Hao, J. Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 2016, 30, 36–42.
  71. Zhao, X.; Nashalian, A.; Ock, I.W.; Popoli, S.; Xu, J.; Yin, J.; Tat, T.; Libanori, A.; Chen, G.; Zhou, Y.; et al. A Soft Magnetoelastic Generator for Wind-Energy Harvesting. Adv. Mater. 2022, 34, 2204238.
  72. Jana, S.; Garain, S.; Ghosh, S.K.; Sen, S.; Mandal, D. The preparation ofγ-crystalline non-electrically poled photoluminescant ZnO–PVDF nanocomposite film for wearable nanogenerators. Nanotechnology 2016, 27, 445403.
  73. Cheng, C.-Y.; Chiang, Y.-J.; Yu, H.-F.; Hsiao, L.-Y.; Yeh, C.-L.; Chang, L.-Y.; Ho, K.-C.; Yeh, M.-H. Designing a hybrid type photoelectrochromic device with dual coloring modes for realizing ultrafast response/high optical contrast self-powered smart windows. Nano Energy 2021, 90, 106575.
  74. Jao, Y.-T.; Yang, P.-K.; Chiu, C.-M.; Lin, Y.-J.; Chen, S.-W.; Choi, D.; Lin, Z.-H. A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors. Nano Energy 2018, 50, 513–520.
  75. Ren, Z.; Ding, Y.; Nie, J.; Wang, F.; Xu, L.; Lin, S.; Chen, X.; Wang, Z.L. Environmental Energy Harvesting Adapting to Different Weather Conditions and Self-Powered Vapor Sensor Based on Humidity-Responsive Triboelectric Nanogenerators. ACS Appl. Mater. Interfaces 2019, 11, 6143–6153.
  76. Leyla, S.; Nassim, R.; Maryam, B.; Somayeh, F.; Azam, I.; Raheleh, M. Self-Powered Humidity Sensors Based on SnS2 Nanosheets. ACS Appl. Nano Mater. 2022, 5, 17123–17132.
  77. Li, X.; Zhang, L.; Feng, Y.; Zheng, Y.; Wu, Z.; Zhang, X.; Wang, N.; Wang, D.; Zhou, F. Reversible Temperature-Sensitive Liquid–Solid Triboelectrification with Polycaprolactone Material for Wetting Monitoring and Temperature Sensing. Adv. Funct. Mater. 2021, 21, 2010220.
  78. Wang, R.; Ma, J.; Ma, S.; Zhang, Q.; Li, N.; Ji, M.; Jiao, T.; Cao, X. A biodegradable cellulose-based flame-retardant triboelectric nanogenerator for fire warning. Chem. Eng. J. 2022, 450, 137985.
  79. Feng, M.; Kong, X.; Feng, Y.; Li, X.; Luo, N.; Zhang, L.; Du, C.; Wang, D. A New Reversible Thermosensitive Liquid–Solid TENG Based on a P(NIPAM-MMA) Copolymer for Triboelectricity Regulation and Temperature Monitoring. Small 2022, 8, 2201442.
  80. Liu, H.; Dong, J.; Zhou, H.; Yang, X.; Xu, C.; Yao, Y.; Zhou, G.; Zhang, S.; Song, Q. Real-Time Acid Rain Sensor Based on a Triboelectric Nanogenerator Made of a PTFE–PDMS Composite Film. ACS Appl. Electron. Mater. 2021, 3, 4162–4171.
  81. Li, H.; Xu, F.; Guan, T.; Li, Y.; Sun, J. Mechanically and environmentally stable triboelectric nanogenerator based on high-strength and anti-compression self-healing ionogel. Nano Energy 2021, 90, 106645.
  82. Huang, L.-B.; Dai, X.; Sun, Z.; Wong, M.-C.; Pang, S.-Y.; Han, J.; Zheng, Q.; Zhao, C.-H.; Kong, J.; Hao, J. Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogel. Nano Energy 2021, 82, 105724.
  83. Wu, Z.; Chen, J.; Boukhvalov, D.W.; Luo, Z.; Zhu, L.; Shi, Y. A new triboelectric nanogenerator with excellent electric breakdown self-healing performance. Nano Energy 2021, 85, 105990.
  84. Liu, R.; Kuang, X.; Deng, J.; Wang, Y.-C.; Wang, A.C.; Ding, W.; Lai, Y.-C.; Chen, J.; Wang, P.; Lin, Z.; et al. Shape Memory Polymers for Body Motion Energy Harvesting and Self-Powered Mechanosensing. Adv. Mater. 2018, 30, 1705195.
  85. Xiong, J.; Luo, H.; Gao, D.; Zhou, X.; Cui, P.; Thangavel, G.; Parida, K.; Lee, P.S. Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy 2019, 61, 584–593.
  86. Xuan, H.; Guan, Q.; Tan, H.; Zuo, H.; Sun, L.; Guo, Y.; Zhang, L.; Neisiany, R.E.; You, Z. Light-Controlled Triple-Shape-Memory, High-Permittivity Dynamic Elastomer for Wearable Multifunctional Information Encoding Devices. ACS Nano 2022.16.1 6954–16965.
  87. Van Vleck, J.H. A Survey of the Theory of Ferromagnetism. Rev. Mod. Phys. 1945, 17, 27–47.
  88. Kittel, C. Theory of the Structure of Ferromagnetic Domains in Films and Small Particles. Phys. Rev. 1946, 70, 965–971.
  89. Li, Y.; Li, G.; Zhang, P.; Zhang, H.; Ren, C.; Shi, X.; Cai, H.; Zhang, Y.; Wang, Y.; Guo, Z.; et al. Contribution of Ferromagnetic Medium to the Output of Triboelectric Nanogenerators Derived from Maxwell’s Equations. Adv. Energy Mater. 2021, 11, 2003921.
  90. Hariharan, P.S.; Pan, C.J.; Karthikeyan, S.; Xie, D.X.; Shinohara, A.; Yang, C.L.; Wang, L.; Anthony, S.P. Solvent vapour induced rare single-crystal-to-single-crystal transformation of stimuli-responsive fluorophore: Solid state fluorescence tuning, switching and role of molecular conformation and substituents. Dye. Pigment. 2020, 174, 108067.
  91. Hu, S.Q.; Jiang, H.P.; Zhu, J.Q.; Wang, J.Q.; Wang, S.H.; Tang, J.B.; Zhou, Z.X.; Liu, S.J.; Shen, Y.Q. Tumor-specific fluorescence activation of rhodamine isothiocyanate derivatives. J. Control. Release 2021, 330, 842–850.
  92. Kazem-Rostami, M.; Akhmedov, N.G.; Faramarzi, S. Molecular lambda shape light-driven dual switches: Spectroscopic and computational studies of the photoisomerization of bisazo Troger base analogs. J. Mol. Struct. 2019, 1178, 538–543.
  93. Luo, Y.Y.; Zhang, Z.X.; Su, C.Y.; Zhang, W.Y.; Shi, P.P.; Ye, Q.; Fu, D.W. Tunable optoelectronic response multifunctional materials: Exploring switching and photoluminescence integrated in flexible thin films/crystals. J. Mater. Chem. C 2020, 8, 7089–7095.
  94. Liu, Y.Q.; Li, E.L.; Yan, Y.J.; Lin, Z.N.; Chen, Q.Z.; Wang, X.M.; Shan, L.T.; Chen, H.P.; Guo, T.L. A one-structure-layer PDMS/Mxenes based stretchable triboelectric nanogenerator for simultaneously harvesting mechanical and light energy. Nano Energy 2021, 86, 106118.
  95. Bi, S.C.; Feng, C.; Wang, M.Y.; Kong, M.; Liu, Y.; Cheng, X.J.; Wang, X.P.; Chen, X.G. Temperature responsive self-assembled hydroxybutyl chitosan nanohydrogel based on homogeneous reaction for smart window. Carbohydr. Polym. 2020, 229, 115557.
  96. Jochum, F.D.; Theato, P. Temperature- and light-responsive smart polymer materials †. Chem. Soc. Rev. 2012, 42, 7468–7483.
  97. Dhamecha, D.; Le, D.; Chakravarty, T.; Perera, K.; Dutta, A.; Menon, J.U. Fabrication of PNIPAm-based thermoresponsive hydrogel microwell arrays for tumor spheroid formation. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021, 125, 112100.
  98. Li, C.; Li, M.; Ni, Z.S.; Guan, Q.W.; Blackman, B.R.K.; Saiz, E. Stimuli-responsive surfaces for switchable wettability and adhesion. J. R. Soc. Interface 2021, 18, 20210162.
  99. Sun, J.; Wang, Z.; Cao, A.; Sheng, R. Synthesis of crosslinkable diblock terpolymers PDPA-b-P(NMS-co-OEG) and preparation of shell-crosslinked pH/redox-dual responsive micelles as smart nanomaterials †. RSC Adv. 2019, 9, 34535–34546.
  100. Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2016, 8, 144–176.
  101. Li, C.; Guo, H.; Wu, Z.; Wang, P.; Zhang, D.; Sun, Y. Self-Healable Triboelectric Nanogenerators: Marriage between Self-Healing Polymer Chemistry and Triboelectric Devices. Adv. Funct. Mater. 2023, 33, 2208372.
  102. Liu, P.; Sun, N.; Mi, Y.; Luo, X.; Dong, X.; Cai, J.; Jia, X.; Ramos, M.A.; Hu, T.S.; Xu, Q. Ultra-low CNTs filled high-performance fast self-healing triboelectric nanogenerators for wearable electronics. Compos. Sci. Technol. 2021, 208, 108733.
  103. Korde, J.M.; Kandasubramanian, B. Naturally biomimicked smart shape memory hydrogels for biomedical functions. Chem. Eng. J. 2020, 379, 122430.
  104. Delaey, J.; Dubruel, P.; Van Vlierberghe, S. Shape-Memory Polymers for Biomedical Applications. Adv. Funct. Mater. 2020, 30, 1909047.
  105. Xu, W.; Wong, M.C.; Guo, Q.Y.; Jia, T.Z.; Hao, J.H. Healable and shape-memory dual functional polymers for reliable and multipurpose mechanical energy harvesting devices. J. Mater. Chem. A 2019, 7, 16267–16276.
  106. Lee, J.H.; Hinchet, R.; Kim, S.K.; Kim, S.; Kim, S.W. Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 2015, 8, 3605–3613.
  107. Xiang, Z.; Zekun, L.; Wenwen, D.; Yilin, Z.; Wei, W.; Linlin, P.; Li, C.; Aifang, Y.; Junyi, Z. Self-powered triboelectric-mechanoluminescent electronic skin for detecting and differentiating multiple mechanical stimuli. Nano Energy 2022, 96, 107115.
More
Video Production Service