Advanced DDS for Delivering Anti-VEGF Agents: Comparison
Please note this is a comparison between Version 1 by Kevin Yang Wu and Version 5 by Rita Xu.

The treatment of posterior segment eye diseases is challenging due to the complex anatomy of the eye, which limits the effective delivery of medications. Conventional treatments such as topical eye drops and intravitreal injections have poor bioavailability and short residence time, requiring frequent dosing. Biodegradable nano-based drug delivery systems (DDSs) offer a potential solution to these limitations, with longer residence time in ocular tissues and better penetration through ocular barriers. These DDSs use biodegradable polymers that are nanosized, reducing the risk of toxicity and adverse reactions.

The treatment of posterior segment eye diseases is challenging due to the complex anatomy of the eye, which limits the effective delivery of medications. Conventional treatments such as topical eye drops and intravitreal injections have poor bioavailability and short residence time, requiring frequent dosing. Biodegradable nano-based drug delivery systems (DDSs) offer a potential solution to these limitations, with longer residence time in ocular tissues and better penetration through ocular barriers. These DDSs use biodegradable polymers that are nanosized, reducing the risk of toxicity and adverse reactions.

In this review, we provide a comprehensive overview of the latest advances in biodegradable nano-based DDSs for treating posterior segment diseases, examining current therapeutic challenges and exploring various types of biodegradable nanocarriers (Figure 1). Our review includes pre-clinical and clinical studies published between 2017 and 2022, highlighting the potential of these systems to enhance treatment outcomes. With advancing biodegradable materials and improved understanding of ocular pharmacology, nano-based DDSs hold great promise for overcoming obstacles encountered by ophthalmologists. 

  • ocular surface disease
  • retinal disease
  • nanosystems for ocular drug delivery
  • nanocarriers
  • biodegradable polymers
  • ocular drug delivery system
  • hydrogels
  • ocular inserts
  • exosomes

1. Anti-VEGF Agents

Pathological neovascularization is involved in various retinal diseases, including proliferative diabetic retinopathy (PDR), retinopathy of prematurity (RoP), and retinal vein occlusion (RVO), caused by retinal hypoxia [1][2][101,102]. On the other hand, choroidal neovascularization (CNV) is often caused by a ruptured or damaged Bruch’s membrane and is associated with various retinal disorders, such as wet age-related macular degeneration, pathologic myopia, presumed ocular histoplasmosis syndrome (POHS), and traumatic choroidal rupture [3][103]. Anti-VEGF agents are the gold standard treatment for ocular neovascular diseases, including PDR, RoP, RVO, and CNV. Bevacizumab (Avastin™), Ranibizumab (Lucentis™), Aflibercept (Eylea™), and Pegaptanib (Macugen®) are commonly used anti-VEGF drugs [4][104]. These monoclonal antibodies target retinal and choroidal endothelial cells to stop angiogenesis. However, their large size limits their penetration through ocular barriers, resulting in poor bioavailability and the need for frequent intravitreal injections [4][104].

Non-degradable implants have been suggested as an alternative for anti-VEGF delivery. However, they have some drawbacks. Although they provide long-term drug release, their removal requires secondary surgery, which is associated with additional risks and potential complications. Additionally, these implants can cause several issues, such as impacting the visual axis due to their large size and migration to the anterior chamber, leading to corneal edema and permanent endothelial decompensation caused by direct contact with the endothelium, mechanical trauma, or chemical toxicity [5][105].

The use of biodegradable nanocarriers for sustained-release of anti-VEGF drugs presents a potentially favorable option for enhancing the efficacy, bioavailability, bioactivity, duration of action, and safety of treatment, while minimizing the adverse effects associated with non-degradable implants. These carriers utilize biopolymers that can be gradually degraded within the eye, eliminating the need for a second surgery, and their release rate can be adjusted by modifying the composition and molecular weight of the carrier. Additionally, the small size of these carriers ensures optical clarity and reduces the risk of visual disturbances. A comprehensive overview of the latest and most pertinent studies on biodegradable nanocarriers can be found in Table 2, offering valuable insights and key findings. [105]

The most commonly used anti-VEGF drugs in ocular drug delivery systems are bevacizumab, aflibercept, and ranibizumab [6][106]. Bevacizumab is frequently used in studies and for wet-AMD due to its well-known toxicity and pharmacokinetic characteristics [7][107]. Aflibercept and ranibizumab are also used for treating wet-AMD. Aflibercept is a potent drug that requires less frequent dosing and may improve patient adherence, but there are concerns about rare but severe adverse effects [8][108]. It is also more expensive than bevacizumab, which may explain why it is not commonly used in current clinical practice.

2. Novel DDS for Anti-VEGF Agents

 

Novel DDS for Anti-VEGF Agents

Nanocarriers, which can be lipid-based, polymers, or inorganic nanoparticles, present advantages and challenges, and can be classified according to their material components. However, protecting anti-VEGF agents from conformational changes and preserving their bioactivity while minimizing interaction with the nanocarrier is still a challenge, as too strong interactions can compromise drug capture and release processes and lead to protein denaturation [9][109].

 

2.1. Hydrogel

Hydrogel

Hydrogel nanocarriers are a promising option for drug delivery due to their unique properties. They are three-dimensional polymer networks with a porous structure that can interact with water-soluble molecules. Despite a high initial burst of drug release, they are biocompatible, biodegradable, and safe. Hydrogel nanocarriers can carry water molecules while remaining in a solid state, and are known to maintain drug stability. However, their delicate structure can be affected by sterilization processes.

Hydrogels that can change their properties in response to environmental triggers, such as pH or temperature changes, are often referred to as “smart” hydrogels [10][112]. In a study by Osswald et al., a thermoresponsive hydrogel composed of suspended PLGA microspheres was developed to carry ranibizumab and aflibercept [11][113]. The addition of microspheres in the hydrogel resulted in extended drug release by 27.2%, with the DDS remaining bioactive for 196 days in vitro. The DDS showed promising results in inhibiting human umbilical vein endothelial cell (HUVEC) proliferation, which prompted further experiments on in vivo models. In a subsequent study on laser-induced rat CNV models, the nanotherapeutic significantly reduced CNV lesion areas by 60% compared to the control group in vivo [12][114]. Over the course of 12-week treatment, less drugs were needed in the novel nanotherapeutics compared to the standard posology delivered via bolus administration. However, it is important to note that the small animal samples per treatment group, which was of four eyes, limited the results. The potential advantages of this DDS over standard treatment include limiting toxicity related to high drug dosage.

Hu et al. developed a thermoresponsive mPEG-PLGA-BOX hydrogel to test the efficacy of bevacizumab in inhibiting angiogenesis induced by retinal laser photocoagulation [13][115]. The hydrogel transitioned from a solution phase to a gel-phase after body temperature exposure, and both in vitro and in Rex rabbits, it successfully inhibited angiogenesis for 35 days while maintaining the anti-angiogenic bioactivity of bevacizumab. No cytotoxic effects were reported during nanocarrier biodegradation in the rabbits. Although this study was conducted on only 11 Rex rabbits divided into two groups, the results are promising, demonstrating the potential of DDS as a novel therapeutic gelling carrier against angiogenesis.

Xue et al. developed a thermoresponsive hydrogel made of PED–PPG–PCL and encapsulated bevacizumab and aflibercept [14][116]. In vitro tests on HUVEC showed that both drugs significantly inhibited proliferation. Ex vivo choroidal sprouting model studies also showed that both drugs, when independently injected with the nanocarrier, significantly reduced the relative sprouting percentage by more than 80%. Anti-angiogenic effects were observed ex vivo and in vivo in a persistent retinal neovascularization rabbit model. The drug release rate was extended by fine-tuning the hydrophilic/lipophilic ratio of the hydrogel, with the longest drug release of 40 days in vitro and at least 28 days in vivo achieved by increasing the hydrogel concentration to 20 weight percent with an optimized PEG/PPG ratio of 4:1. This DDS has a prolonged drug release rate that can be extended via polymer fine-tuning and represents a promising bioactive drug carrier.

Studies on the use of thermoresponsive hydrogels as drug delivery systems (DDS) have yielded optimistic results in vitro and in vivo, although for limited time periods. For instance, Liu et al. investigated the use of a thermoresponsive hydrogel to deliver bevacizumab over six months in vitro using PGLA in a PEG–PLLA–DA/NIPAAm hydrogel loaded with ranibizumab [15][38]. By optimizing the cross-linker concentration and microsphere load quantity, the hydrogel achieved enhanced biodegradability, drug release, and needle-injection feasibility. The hydrogel was effective in vitro for 190 days and was also tested with aflibercept in vitro, which was successfully released for six months while maintaining bioactive therapeutic levels [16][117]. The biodegradable cross-linker PEG–PLLA–DA prolonged the hydrogel nanocarrier degradation. Liu et al. further evaluated the nanotherapeutic's efficacy by intravitreally injecting it into a laser-induced CNV rat model, where it proved as effective as bimonthly aflibercept injections for six consecutive months, while avoiding inflammation and ocular complications [17][118]. This nanotherapeutic showed promising results on the rodent eye model, but its applicability to humans may be limited by anatomical differences and potential differences in drug pharmacokinetics and immune reactions.

Fan et al. demonstrated a promising approach for delivering conbercept, a novel anti-VEGF drug with a short half-life, using a short chain pH-sensitive peptide hydrogel DDS in vitro [18][119]. The nano-based DDS inhibited HREC proliferation and tube formation, indicating its potential therapeutic application for neovascular AMD. Moreover, the hydrogel peptide nanocarrier demonstrated good biocompatibility with HRECs. However, further in vivo studies are necessary to determine the pharmacokinetics of the DDS, and therefore, the results remain preliminary.

Li et al. developed an injectable hydrogel (cSA@Lip-HAC) loaded with sunitinib and acriflavine liposomes, which demonstrated high antiangiogenic properties in vitro and increased drug residency in vivo [19][120]. The combination of co-drug-loaded liposomes in the hydrogel and subtenon administration route led to increased efficacy and significant anti-CNV results. The DDS remained active for 21 days in vivo, showing promise for a novel therapeutic avenue with fewer complications than with the intravitreal route. However, the limited time of the DDS may affect patient compliance, and further investigation is necessary to extend its duration of activity.

2.2. Polymers Nanoparticles and Microparticles (MPs)

 

Polymers Nanoparticles and Microparticles (MPs)

Polymers have become the most widely studied drug delivery system for anti-VEGF drugs in recent years due to their versatility and tunability. They can encapsulate a wide range of hydrophilic and hydrophobic molecules, from peptides to biological macromolecules. Their pharmacokinetic characteristics can be adjusted by modifying their composition, ratios, and combining different biomaterials. Polymers offer several advantages, including biodegradability, non-toxicity, and the ability to customize their environmental, release, and retention rate features. They can be natural, synthetic, or a combination thereof. The most successful formulas are bevacizumab-loaded PLGA and chitosan-based nanoparticles.

PLGA-based nanocarriers are a versatile and promising synthetic option for drug delivery, owing to their biocompatibility, nontoxicity, degradability, and FDA-approved status. They consist of a hydrophobic core for carrying the drug and a hydrophilic outer shell (corona) that controls drug release. This amphiphilic nature makes them compatible with a wide range of drugs, enhancing their utility.

In vitro studies have shown that PLGA microspheres developed by Tanetsugu et al. can deliver ranibizumab biosimilar with more than 80% drug release achieved after three weeks [20][121]. Additionally, the DDS has been observed to inhibit tube formation in HUVECs. The microsphere fully degrades within 1.5 months, making it a promising candidate for prolonged anti-VEGF drug release treatment.

Sousa et al. developed PLGA-based nanoparticles loaded with bevacizumab, which showed a prolonged drug release time and preserved drug bioactivity in vitro [21][22][122, 123]. They also demonstrated that bevacizumab could be stored for over 6 months while retaining its angiogenic effect using a lyophilized protocol. In another study, Zhang et al. encapsulated bevacizumab in PLGA-based nanoparticles, which were more efficient than free bevacizumab in inhibiting HUVEC proliferation and tube formation in vitro [23][124]. In vivo experiments on mouse models showed increased drug bioactivity in inhibiting CNV and RNV angiogenesis, with no reported toxicity or cytotoxicity. These findings suggest that PLGA-based nanoparticles loaded with bevacizumab may represent a safe and effective treatment option.

Kelly et al. investigated the use of PLGA nanoparticles to deliver aflibercept for retinal diseases treatment [24][125]. The study demonstrated that the DDS exhibited high encapsulation efficacy and prolonged drug release up to seven days. On day seven, 75% of the drug was released with the DDS, compared to 100% drug release after 24 h following a standard aflibercept injection. These results show the potential of the polymer as a promising nanocarrier for delivering aflibercept.

Nanocarriers have been shown to improve anti-CNV activity. Yan et al. developed a novel nanocarrier for AMD treatment composed of PLGA-PEGylated magnetic nanoparticles, which demonstrated increased antiangiogenic efficacy [25][126]. The magnetic nanoparticles conferred several advantages to the DDS, such as stability, biocompatibility, and tunable surface modification. Additionally, the PEG-PLGA copolymer tested in vitro showed effective antiangiogenic activity, making this DDS a promising therapy for AMD.

Liu et al. demonstrated the potential benefits of combining multiple drugs within nanocarriers. They developed a novel poly (D, L-lactide-co-glycolide) and polyethylenimine nanoparticle that was loaded with dexamethasone and had bevacizumab added to the nanoparticle surface (eBev-DPPNs) [26][127]. The eBev-DPPNs were shown to effectively inhibit HUVECs angiogenesis and VEGF secretion in vitro. Furthermore, when injected intravitreally in rabbit laser models of CNV, the nanotherapeutic significantly decreased CNV leakage areas after 28 days. This demonstrates the potential of this DDS in treating CNV in vivo.

Heljak et al. developed a computational model to predict the behavior of intravitreally injected PLGA bevacizumab loaded microspheres, complementing the in vivo and in vitro studies [27][128]. The model successfully predicted the experimental results, indicating its potential for assessing and planning anti-VEGF treatments in clinical settings.

PLGA-based nanocarriers have shown promise for prolonged drug release. However, degradation of PLGA microspheres due to accumulation of lactic and glycolic acids can denature the drug, leading to complications. To address this issue, Liu et al. prepared a polymeric blend of poly (d, l-lactide-co-glycolide)/poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PLGA/PCADK) to deliver bevacizumab-dextran using a solid-in-oil-in-water (S/O/W) emulsification technique [28][129]. This novel polymer blend demonstrated increased biocompatibility compared to PLGA alone and limited the initial burst release to ensure sustained drug release. The DDS delivered drugs over a 50-day period in vitro and in vivo in a rabbit model, demonstrating the potential for this nanocarrier to become a long-term anti-VEGF treatment option.

Tsujinaka et al. developed a promising nanocarrier by using a polymer blend of PLGA-PEG to deliver sunitinib [29][130]. After intravitreal injection, the DDS formed a depot that impressively released drug for 6 months in a laser-induced CNV mouse model, which successfully suppressed CNV over the drug release period. The nanotherapeutic also showed potential in progressive DR therapy as it reduced VEGF-induced leukostasis and nonperfusion in a different mouse model.

Jiang et al. explored the use of polydopamine (PDA) nanoparticles as a nanocarrier for bevacizumab to treat AMD [30][131]. In addition to its antiangiogenic activity, the biodegradable nanocarrier reduced reactive oxygen species (ROS) and successfully delivered bevacizumab in vitro and on ex-vivo porcine eyes. The DDS has the potential to become a practical dual system for delivering antiangiogenic drugs while minimizing ROS production.

Cai et al. developed a novel drug delivery system (DDS) using modified S-PEG polymers with arginine-glycine-aspartic acid (RGD) peptide to deliver anti-VEGF agents intravenously [31][132]. The nanoparticles exhibited antiangiogenic activity in vitro and effectively decreased CNV lesion areas in laser-induced CNV mouse models. Moreover, the nanoparticles displayed good specificity by spending minimal time in the entire organism and by not accumulating in organs other than CNV areas, indicating their biosafety.

Natural polymers are attractive candidates for anti-VEGF nanocarriers due to their easy degradability. Although the intravitreal route remains the most common method of anti-VEGF administration, HSA nanoparticles have been explored as a potential topical route for drug delivery. HSA nanoparticles are simple to prepare and adhere well to the corneal epithelium, resulting in sustained drug bioavailability without any reported toxicity. In a study by Luis de Redin et al., bevacizumab was loaded onto HSA nanoparticles, resulting in a 13% increase in loading capacity compared to nanoparticles cross-linked with glutaraldehyde. The initial burst release of the drug was evaluated to 35% of the loaded drug within the first five minutes in vitro, with a decreased rate over the next 24 hours. In rats, the DDS was released over 4 hours before being evacuated in the gastrointestinal tract. In vivo, bevacizumab-nanoparticles showed a better antiangiogenic activity in CNV rat models than bevacizumab alone, reducing the required drug dosage by 2.4 times. The nanoparticles also significantly improved bevacizumab neovascularization inhibiting efficacy and decreased fibrosis, inflammation, and edema in rats treated with them. Although the results of this study are promising, further validation on animal models that can be easily transposed to human eye anatomy is necessary.

Llabot et al. also investigated the use of HSA nanoparticles to deliver anti-VEGF agents topically, but with the addition of Gantrez® ES-425 polymer as a stabilizing coating [32][135]. The nanoparticles were tested in vitro and designed to treat CNV. Gantrez® polymer was found to be a better stabilizing agent than glutaraldehyde, with improved drug stability and preserved bioactivity. In vitro release studies showed that suramin was released faster than bevacizumab, with 80% released within 8 h compared to 50% for bevacizumab. In vivo animal studies for CNV treatment with these nanoparticles are yet to be conducted.

Abdi et al. investigated the potential of chitosan nanoparticles as a carrier for bevacizumab and found that the two had minimal interactions, allowing for efficient capture and release of the drug. The study suggested that the combination of bevacizumab and chitosan nanoparticles could be a promising nanocarrier approach.

Several studies have utilized chitosan nanoparticles as a drug delivery system (DDS) for sustained drug release. Pandit et al. developed a subconjunctival injection of bevacizumab loaded PLGA nanoparticles coated with chitosan, which reduced initial drug burst release to 25%. In vitro studies showed that the DDS extended drug residency in the retina and sustained drug release for 72 h. Similarly, Ugurlu et al. administered chitosan particles loaded with bevacizumab through subtenon injection in rabbits’ eyes, resulting in a sustained drug release for 3 weeks in vitro. However, in vivo results decreased within one week despite better control and progressive drug release from the DDS. Savin et al. synthesized bevacizumab loaded chitosan grafted-poly(ethylene glycol) methacrylate nanoparticles, which successfully released bevacizumab in vitro for 14-30 days. Overall, chitosan nanoparticles have shown promise as a suitable DDS for sustained drug release.

Jiang et al. developed a chitosan-based nanocarrier capable of releasing drugs over months to treat AMD. Their polycaprolactone (PLA) chitosan bi-layered hybrid shell capsule can load high drug amounts and impressively released drug over one year while preserving drug potency. Jian et al. also developed a novel DDS combining natural and synthetic polymers to carry bevacizumab in microparticles. Their chitosan-polycaprolactone core-shell microparticles increased loading capacity by 25% and decreased initial burst release to nearly 30%, while maintaining drug potency for six months. The nanotherapeutic was biocompatible with over 90% cell viability. In vivo studies remain needed to assess safety and drug efficacy.

Chaharband et al. investigated gene delivery therapy using chitosan-hyaluronic acid nano-polyplexes to deliver VEGFR-2 siRNA intravitreally in a rabbit and rat laser model of CNV [33][141]. The DDS was found to effectively suppress VEGFR-2 expression by 70% in vitro and significantly reduce CNV in vivo after 14 days. Although gene delivery therapy remains limited by the 1-month drug release threshold, the study suggests that the chitosan-hyaluronic acid nano-polyplexes could become an efficient intravitreal gene delivery therapy.

2.3. Lipid-Based

 

Lipid-Based

Formica et al. developed a hybrid lipid-based nanocapsule for co-loading bevacizumab and triamcinolone acetonide. This approach offers the potential for more effective treatment of diseases by reducing inflammation and neovascularization. The nanocarrier was shown to inhibit capillary formation in vitro, demonstrating its potential for loading multiple drugs [34][142].

Liposomes are a promising drug delivery system due to their hydrophilic core and hydrophobic outer shell that can be modified to improve tissue penetration. However, interactions with macrophages, pH changes, and enzymes can affect their performance, making it challenging to predict their physiological behavior accurately. In a study by Mu et al., multivesicular liposomes (MVLs) were used to encapsulate bevacizumab. The MVLs had a size ranging from 1 to 100 µm, which enabled them to avoid being captured by macrophages and to be rapidly degraded. The liposomes showed minimal toxicity, good biocompatibility, encapsulation efficacy, and low immunotoxicity. In vitro, bevacizumab was released by diffusion and erosion while maintaining its integral structure. In the laser-induced CNV rat model, the nanocarrier sustainably released the drug, and after 28 days of treatment, the DDS inhibited CNV lesions. Compared to bevacizumab solution, the DDS could potentially reduce the frequency of intravitreal injections.

Kayland Karumanchi et al. developed liposomes to encapsulate bevacizumab, achieving even longer drug release than previous studies. In vivo results showed that the DDS maintained therapeutic levels of the drug for 22 weeks, compared to less than 6 weeks for bevacizumab solution, while preserving drug potency. This suggests that liposomes have potential for prolonged and controlled drug release. [35].[144]

Liposomes have also shown potential in cancer treatment. De Cristo Soares Alves et al. developed a chitosan-coated lipid core nanocapsule for the delivery of bevacizumab to treat solid tumors, such as glioblastoma [36][145]. In vitro studies showed that the drug-loaded nanocarrier induced significantly more apoptosis than bevacizumab alone. In addition, in the chicken embryo chorioallantoic membrane (CAM) assay, the nanocarrier required 5.6 times less bevacizumab than the bevacizumab solution to exhibit higher antiangiogenic effects. This suggests that the nanocarrier may reduce the toxicity and adverse effects associated with high drug doses. The results of this study suggest that this DDS has the potential to be used in the treatment of solid ocular tumors.

 

 

[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][91][92][93][94][95][96][97][98][99][100][101][102][103][104][105][106][107][108][109][110][111][112][113][114][115][116][117][118][119][120][121][122][123][124][125][126][127][128][129][130][131][132][133][134][135][136][137][138][139][140][141][142][143][144][145][146][147][148][149][150][151][152][153][154][155][156][157][158][159][160][161][162][163][164][165][166][167][168][169][170][171][172][173][174][175][176][177][178][179][180][181][182][183][184][185][186][187][188][189][190][191][192][193][194][195][196][197][198][199]

References

  1. Sun, Q.; Shen, Y.; Su, L.; Xu, X. Inhibition of Pathological Retinal Neovascularization by a Small Peptide Derived from Human Tissue-Type Plasminogen Kringle 2. Front. Pharmacol. 2020, 10, 1639. Urtti, A. Challenges and Obstacles of Ocular Pharmacokinetics and Drug Delivery. Adv. Drug Deliv. Rev. 2006, 58, 1131–1135. [Google Scholar] [CrossRef]
  2. Ishibazawa, A.; Nagaoka, T.; Yokota, H.; Takahashi, A.; Omae, T.; Song, Y.S.; Takahashi, T.; Yoshida, A. Characteristics of Retinal Neovascularization in Proliferative Diabetic Retinopathy Imaged by Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6247–6255. Akhter, M.H.; Ahmad, I.; Alshahrani, M.Y.; Al-Harbi, A.I.; Khalilullah, H.; Afzal, O.; Altamimi, A.S.A.; Najib Ullah, S.N.M.; Ojha, A.; Karim, S. Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels 2022, 8, 82. [Google Scholar] [CrossRef]
  3. Sacconi, R.; Fragiotta, S.; Sarraf, D.; Sadda, S.V.R.; Freund, K.B.; Parravano, M.; Corradetti, G.; Cabral, D.; Capuano, V.; Miere, A.; et al. Towards a Better Understanding of Non-Exudative Choroidal and Macular Neovascularization. Prog. Retin. Eye Res. 2023, 92, 101113. Addo, R.T. Ocular Drug Delivery: Advances, Challenges and Applications. In Ocular Drug Delivery: Advances, Challenges and Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–185. [Google Scholar] [CrossRef]
  4. Fernandes, A.R.; dos Santos, T.; Granja, P.L.; Sanchez-Lopez, E.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Permeability, Anti-Inflammatory and Anti-VEGF Profiles of Steroidal-Loaded Cationic Nanoemulsions in Retinal Pigment Epithelial Cells under Oxidative Stress. Int. J. Pharm. 2022, 617, 121615. Chang, A.Y.; Purt, B. Biochemistry, Tear Film. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
  5. García-Estrada, P.; García-Bon, M.A.; López-Naranjo, E.J.; Basaldúa-Pérez, D.N.; Santos, A.; Navarro-Partida, J. Polymeric Implants for the Treatment of Intraocular Eye Diseases: Trends in Biodegradable and Non-Biodegradable Materials. Pharmaceutics 2021, 13, 701. Bachu, R.D.; Chowdhury, P.; Al-Saedi, Z.H.F.; Karla, P.K.; Boddu, S.H.S. Ocular Drug Delivery Barriers—Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases. Pharmaceutics 2018, 10, 28. [Google Scholar] [CrossRef]
  6. Gil-Martínez, M.; Santos-Ramos, P.; Fernández-Rodríguez, M.; Abraldes, M.J.; Rodríguez-Cid, M.J.; Santiago-Varela, M.; Fernández-Ferreiro, A.; Gómez-Ulla, F. Pharmacological Advances in the Treatment of Age-Related Macular Degeneration. Curr. Med. Chem. 2020, 27, 583–598. Wu, K.Y.; Kulbay, M.; Tanasescu, C.; Jiao, B.; Nguyen, B.H.; Tran, S.D. An Overview of the Dry Eye Disease in Sjögren’s Syndrome Using Our Current Molecular Understanding. Int. J. Mol. Sci. 2023, 24, 1580. [Google Scholar] [CrossRef] [PubMed]
  7. Ferrara, N.; Adamis, A.P. Ten Years of Anti-Vascular Endothelial Growth Factor Therapy. Nat. Rev. Drug Discov. 2016, 15, 385–403. Goel, M.; Picciani, R.G.; Lee, R.K.; Bhattacharya, S.K. Aqueous Humor Dynamics: A Review. Open Ophthalmol. J. 2010, 4, 52–59. [Google Scholar] [CrossRef] [PubMed]
  8. Klettner, A.; Recber, M.; Roider, J. Comparison of the Efficacy of Aflibercept, Ranibizumab, and Bevacizumab in an RPE/Choroid Organ Culture. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 1593–1598. Chen, M.-S.; Hou, P.-K.; Tai, T.-Y.; Lin, B.J. Blood-Ocular Barriers. Tzu Chi Med. J. 2008, 20, 25–34. [Google Scholar] [CrossRef]
  9. Oo, C.; Kalbag, S.S. Leveraging the Attributes of Biologics and Small Molecules, and Releasing the Bottlenecks: A New Wave of Revolution in Drug Development. Expert. Rev. Clin. Pharmacol. 2016, 9, 747–749. Cunha-Vaz, J.; Bernardes, R.; Lobo, C. Blood-Retinal Barrier. Eur. J. Ophthalmol. 2011, 21, 3–9. [Google Scholar] [CrossRef] [PubMed]
  10. Bordbar-Khiabani, A.; Gasik, M. Smart Hydrogels for Advanced Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23, 3665. Bertens, C.J.F.; Gijs, M.; van den Biggelaar, F.J.H.M.; Nuijts, R.M.M.A. Topical Drug Delivery Devices: A Review. Exp. Eye Res. 2018, 168, 149–160. [Google Scholar] [CrossRef] [PubMed]
  11. Osswald, C.R.; Kang-Mieler, J.J. Controlled and Extended In Vitro Release of Bioactive Anti-Vascular Endothelial Growth Factors from a Microsphere-Hydrogel Drug Delivery System. Curr. Eye Res. 2016, 41, 1216–1222. Singh Malik, D.; Mital, N.; Kaur, G. Topical Drug Delivery Systems: A Patent Review. Expert Opin. Ther. Pat. 2016, 26, 213–228. [Google Scholar] [CrossRef]
  12. Osswald, C.R.; Guthrie, M.J.; Avila, A.; Valio, J.A.; Mieler, W.F.; Kang-Mieler, J.J. In Vivo Efficacy of an Injectable Microsphere-Hydrogel Ocular Drug Delivery System. Curr. Eye Res. 2017, 42, 1293–1301. Farkouh, A.; Frigo, P.; Czejka, M. Systemic Side Effects of Eye Drops: A Pharmacokinetic Perspective. Clin. Ophthalmol. 2016, 10, 2433–2441. [Google Scholar] [CrossRef]
  13. Hu, C.C.; Chiu, Y.C.; Chaw, J.R.; Chen, C.F.; Liu, H.W. Thermo-Responsive Hydrogel as an Anti-VEGF Drug Delivery System to Inhibit Retinal Angiogenesis in Rex Rabbits. Technol. Health Care 2019, 27, S153–S163. Wu, W.; He, Z.; Zhang, Z.; Yu, X.; Song, Z.; Li, X. Intravitreal Injection of Rapamycin-Loaded Polymeric Micelles for Inhibition of Ocular Inflammation in Rat Model. Int. J. Pharm. 2016, 513, 238–246. [Google Scholar] [CrossRef] [PubMed]
  14. Xue, K.; Zhao, X.; Zhang, Z.; Qiu, B.; Tan, Q.S.W.; Ong, K.H.; Liu, Z.; Parikh, B.H.; Barathi, V.A.; Yu, W.; et al. Sustained Delivery of Anti-VEGFs from Thermogel Depots Inhibits Angiogenesis without the Need for Multiple Injections. Biomater. Sci. 2019, 7, 4603–4614. Abrishami, M.; Shariati, M.M.; Malaekeh-Nikouei, B.; Tajani, A.S.; Mahmoudi, A.; Abrishami, M.; Khameneh, B. Preparation and in Vivo Evaluation of Nanoliposomes Containing Vancomycin after Intravitreal Injection in Albino Rabbits. Iran. J. Basic Med. Sci. 2020, 23, 551–555. [Google Scholar] [CrossRef] [PubMed]
  15. Liu, W.; Borrell, M.A.; Venerus, D.C.; Mieler, W.F.; Kang-Mieler, J.J. Characterization of Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Ranibizumab. Transl. Vis. Sci. Technol. 2019, 8, 12. García-Caballero, C.; Prieto-Calvo, E.; Checa-Casalengua, P.; García-Martín, E.; Polo-Llorens, V.; García-Feijoo, J.; Molina-Martínez, I.T.; Bravo-Osuna, I.; Herrero-Vanrell, R. Six Month Delivery of GDNF from PLGA/Vitamin E Biodegradable Microspheres after Intravitreal Injection in Rabbits. Eur. J. Pharm. Sci. 2017, 103, 19–26. [Google Scholar] [CrossRef]
  16. Liu, W.; Lee, B.S.; Mieler, W.F.; Kang-Mieler, J.J. Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Bioactive Aflibercept In Vitro. Curr. Eye Res. 2019, 44, 264–274. Park, J.G.; Callaway, N.F.; Ludwig, C.A.; Mahajan, V.B. Intravitreal Methotrexate and Fluocinolone Acetonide Implantation for Vogt-Koyanagi-Harada Uveitis. Am. J. Ophthalmol. Case Rep. 2020, 19, 100859. [Google Scholar] [CrossRef] [PubMed]
  17. Liu, W.; Tawakol, A.P.; Rudeen, K.M.; Mieler, W.F.; Kang-Mieler, J.J. Treatment Efficacy and Biocompatibility of a Biodegradable Aflibercept-Loaded Microsphere-Hydrogel Drug Delivery System. Transl. Vis. Sci. Technol. 2020, 9, 13. Glendenning, A.; Crews, K.; Sturdivant, J.; deLong, M.A.; Kopczynski, C.; Lin, C.-W. Sustained Release, Biodegradable PEA Implants for Intravitreal Delivery of the ROCK/PKC Inhibitor AR-13503. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5672. [Google Scholar]
  18. Fan, W.; Li, S.; Tao, J.; Yu, C.; Sun, M.; Xie, Z.; Wu, X.; Ge, L.; Wu, Y.; Liu, Y. Anti-Vascular Endothelial Growth Factor Drug Conbercept-Loaded Peptide Hydrogel Reduced Angiogenesis in the Neovascular Age-Related Macular Degeneration. J. Biomed. Nanotechnol. 2022, 18, 277–287. Blazaki, S.; Pachis, K.; Tzatzarakis, M.; Tsilimbaris, M.; Antimisiaris, S.G. Novel Liposome Aggregate Platform (LAP) System for Sustained Retention of Drugs in the Posterior Ocular Segment Following Intravitreal Injection. Int. J. Pharm. 2020, 576, 118987. [Google Scholar] [CrossRef]
  19. Li, J.; Tian, Q.; Sun, H.; Zhang, Y.; Yang, X.; Kaur, P.; Wang, R.; Fang, Y.; Yan, H.; Du, X.; et al. A Novel, Liposome-Loaded, Injectable Hydrogel for Enhanced Treatment of Choroidal Neovascularization by Sub-Tenon’s Injection. Mater. Today Nano 2022, 20, 100264. Agban, Y.; Thakur, S.S.; Mugisho, O.O.; Rupenthal, I.D. Depot Formulations to Sustain Periocular Drug Delivery to the Posterior Eye Segment. Drug Discov. Today 2019, 24, 1458–1469. [Google Scholar] [CrossRef]
  20. Tanetsugu, Y.; Tagami, T.; Terukina, T.; Ogawa, T.; Ohta, M.; Ozeki, T. Development of a Sustainable Release System for a Ranibizumab Biosimilar Using Poly(Lactic-Co-Glycolic Acid) Biodegradable Polymer-Based Microparticles as a Platform. Biol. Pharm. Bull. 2017, 40, 145–150. Radhakrishnan, K.; Vincent, A.; Joseph, R.R.; Moreno, M.; Dickescheid, A.; Agrawal, R.; Venkatraman, S. Hollow Microcapsules as Periocular Drug Depot for Sustained Release of Anti-VEGF Protein. Pharmaceutics 2019, 11, 330. [Google Scholar] [CrossRef]
  21. Sousa, F.; Cruz, A.; Fonte, P.; Pinto, I.M.; Neves-Petersen, M.T.; Sarmento, B. A New Paradigm for Antiangiogenic Therapy through Controlled Release of Bevacizumab from PLGA Nanoparticles. Sci. Rep. 2017, 7, 3736. Yiu, G.; Chung, S.H.; Mollhoff, I.N.; Nguyen, U.T.; Thomasy, S.M.; Yoo, J.; Taraborelli, D.; Noronha, G. Suprachoroidal and Subretinal Injections of AAV Using Transscleral Microneedles for Retinal Gene Delivery in Nonhuman Primates. Mol. Ther. Methods Clin. Dev. 2020, 16, 179–191. [Google Scholar] [CrossRef]
  22. Sousa, F.; Cruz, A.; Pinto, I.M.; Sarmento, B. Nanoparticles Provide Long-Term Stability of Bevacizumab Preserving Its Antiangiogenic Activity. Acta Biomater. 2018, 78, 285–295. Weijtens, O.; Feron, E.J.; Schoemaker, R.C.; Cohen, A.F.; Lentjes, E.G.W.M.; Romijn, F.P.H.T.M.; Van Meurs, J.C. High Concentration of Dexamethasone in Aqueous and Vitreous after Subconjunctival Injection. Am. J. Ophthalmol. 1999, 128, 192–197. [Google Scholar] [CrossRef]
  23. Zhang, X.P.; Sun, J.G.; Yao, J.; Shan, K.; Liu, B.H.; Yao, M.D.; Ge, H.M.; Jiang, Q.; Zhao, C.; Yan, B. Effect of Nanoencapsulation Using Poly (Lactide-Co-Glycolide) (PLGA) on Anti-Angiogenic Activity of Bevacizumab for Ocular Angiogenesis Therapy. Biomed. Pharmacother. 2018, 107, 1056–1063. Salama, H.A.; Ghorab, M.; Mahmoud, A.A.; Abdel Hady, M. PLGA Nanoparticles as Subconjunctival Injection for Management of Glaucoma. AAPS PharmSciTech 2017, 18, 2517–2528. [Google Scholar] [CrossRef] [PubMed]
  24. Kelly, S.J.; Hirani, A.; Shahidadpury, V.; Solanki, A.; Halasz, K.; Gupta, S.V.; Madow, B.; Sutariya, V. Aflibercept Nanoformulation Inhibits VEGF Expression in Ocular In Vitro Model: A Preliminary Report. Biomedicines 2018, 6, 92. Fu, J.; Sun, F.; Liu, W.; Liu, Y.; Gedam, M.; Hu, Q.; Fridley, C.; Quigley, H.A.; Hanes, J.; Pitha, I. Subconjunctival Delivery of Dorzolamide-Loaded Poly(Ether-Anhydride) Microparticles Produces Sustained Lowering of Intraocular Pressure in Rabbits. Mol. Pharm. 2016, 13, 2987–2995. [Google Scholar] [CrossRef] [PubMed]
  25. Yan, J.; Peng, X.; Cai, Y.; Cong, W. Development of Facile Drug Delivery Platform of Ranibizumab Fabricated PLGA-PEGylated Magnetic Nanoparticles for Age-Related Macular Degeneration Therapy. J. Photochem. Photobiol. B 2018, 183, 133–136. Cuming, R.S.; Abarca, E.M.; Duran, S.; Wooldridge, A.A.; Stewart, A.J.; Ravis, W.; Babu, R.J.; Lin, Y.J.; Hathcock, T. Development of a Sustained-Release Voriconazole-Containing Thermogel for Subconjunctival Injection in Horses. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2746–2754. [Google Scholar] [CrossRef] [PubMed]
  26. Liu, J.; Zhang, X.; Li, G.; Xu, F.; Li, S.; Teng, L.; Li, Y.; Sun, F. Anti-Angiogenic Activity Of Bevacizumab-Bearing Dexamethasone-Loaded PLGA Nanoparticles For Potential Intravitreal Applications. Int. J. Nanomed. 2019, 14, 8819–8834. Martínez-Carrasco, R.; Sánchez-Abarca, L.I.; Nieto-Gómez, C.; Martín García, E.; Sánchez-Guijo, F.; Argüeso, P.; Aijón, J.; Hernández-Galilea, E.; Velasco, A. Subconjunctival Injection of Mesenchymal Stromal Cells Protects the Cornea in an Experimental Model of GVHD. Ocul. Surf. 2019, 17, 285–294. [Google Scholar] [CrossRef] [PubMed]
  27. Heljak, M.K.; Swieszkowski, W. In Silico Model of Bevacizumab Sustained Release from Intravitreal Administrated PLGA Drug-Loaded Microspheres. Mater. Lett. 2021, 307, 131080. Lindholm, J.M.; Taipale, C.; Ylinen, P.; Tuuminen, R. Perioperative Subconjunctival Triamcinolone Acetonide Injection for Prevention of Inflammation and Macular Oedema after Cataract Surgery. Acta Ophthalmol. 2020, 98, 36–42. [Google Scholar] [CrossRef]
  28. Liu, J.; Li, S.; Li, G.; Li, X.; Yu, C.; Fu, Z.; Li, X.; Teng, L.; Li, Y.; Sun, F. Highly Bioactive, Bevacizumab-Loaded, Sustained-Release PLGA/PCADK Microspheres for Intravitreal Therapy in Ocular Diseases. Int. J. Pharm. 2019, 563, 228–236. Schneider, M.E.; Milstein, D.E.; Oyakawa, R.T.; Ober, R.R.; Campo, R. Ocular Perforation from a Retrobulbar Injection. Am. J. Ophthalmol. 1988, 106, 35–40. [Google Scholar] [CrossRef]
  29. Tsujinaka, H.; Fu, J.; Shen, J.; Yu, Y.; Hafiz, Z.; Kays, J.; McKenzie, D.; Cardona, D.; Culp, D.; Peterson, W.; et al. Sustained Treatment of Retinal Vascular Diseases with Self-Aggregating Sunitinib Microparticles. Nat. Commun. 2020, 11, 694. Safi, M.; Ang, M.J.; Patel, P.; Silkiss, R.Z. Rhino-Orbital-Cerebral Mucormycosis (ROCM) and Associated Cerebritis Treated with Adjuvant Retrobulbar Amphotericin B. Am. J. Ophthalmol. Case Rep. 2020, 19, 100771. [Google Scholar] [CrossRef]
  30. Luo, L.; Yang, J.; Oh, Y.; Hartsock, M.J.; Xia, S.; Kim, Y.C.; Ding, Z.; Meng, T.; Eberhart, C.G.; Ensign, L.M.; et al. Controlled Release of Corticosteroid with Biodegradable Nanoparticles for Treating Experimental Autoimmune Uveitis. J. Control. Release 2019, 296, 68–80. Arbisser, L.B. Safety of Intracameral Moxifloxacin for Prophylaxis of Endophthalmitis after Cataract Surgery. J. Cataract. Refract. Surg. 2008, 34, 1114–1120. [Google Scholar] [CrossRef]
  31. Cai, W.; Chen, Q.; Shen, T.; Yang, Q.; Hu, W.; Zhao, P.; Yu, J. Intravenous Anti-VEGF Agents with RGD Peptide-Targeted Core Cross-Linked Star (CCS) Polymers Modified with Indocyanine Green for Imaging and Treatment of Laser-Induced Choroidal Neovascularization. Biomater. Sci. 2020, 8, 4481–4491. Christopher, K.; Chauhan, A. Contact Lens Based Drug Delivery to the Posterior Segment Via Iontophoresis in Cadaver Rabbit Eyes. Pharm. Res. 2019, 36. [Google Scholar] [CrossRef]
  32. Llabot, J.M.; Luis de Redin, I.; Agüeros, M.; Dávila Caballero, M.J.; Boiero, C.; Irache, J.M.; Allemandi, D. In Vitro Characterization of New Stabilizing Albumin Nanoparticles as a Potential Topical Drug Delivery System in the Treatment of Corneal Neovascularization (CNV). J. Drug Deliv. Sci. Technol. 2019, 52, 379–385. Jung, J.H.; Chiang, B.; Grossniklaus, H.E.; Prausnitz, M.R. Ocular Drug Delivery Targeted by Iontophoresis in the Suprachoroidal Space Using a Microneedle. J. Control. Release 2018, 277, 14–22. [Google Scholar] [CrossRef]
  33. Chaharband, F.; Daftarian, N.; Kanavi, M.R.; Varshochian, R.; Hajiramezanali, M.; Norouzi, P.; Arefian, E.; Atyabi, F.; Dinarvand, R. Trimethyl Chitosan-Hyaluronic Acid Nano-Polyplexes for Intravitreal VEGFR-2 SiRNA Delivery: Formulation and in Vivo Efficacy Evaluation. Nanomedicine 2020, 26, 102181. See, G.L.; Sagesaka, A.; Torizuka, H.; Todo, H.; Sugibayashi, K. Iontophoresis-Aided Drug Delivery into the Eyeball via Eyelid Skin. J. Drug Deliv. Sci. Technol. 2018, 47, 380–385. [Google Scholar] [CrossRef]
  34. Formica, M.L.; Legeay, S.; Bejaud, J.; Montich, G.G.; Ullio Gamboa, G.V.; Benoit, J.P.; Palma, S.D. Novel Hybrid Lipid Nanocapsules Loaded with a Therapeutic Monoclonal Antibody—Bevacizumab—And Triamcinolone Acetonide for Combined Therapy in Neovascular Ocular Pathologies. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 119, 111398. dos Santos, G.A.; Ferreira-Nunes, R.; Dalmolin, L.F.; dos Santos Ré, A.C.; Anjos, J.L.V.; Mendanha, S.A.; Aires, C.P.; Lopez, R.F.V.; Cunha-Filho, M.; Gelfuso, G.M.; et al. Besifloxacin Liposomes with Positively Charged Additives for an Improved Topical Ocular Delivery. Sci. Rep. 2020, 10, 19285. [Google Scholar] [CrossRef] [PubMed]
  35. Karumanchi, D.K.; Skrypai, Y.; Thomas, A.; Gaillard, E.R. Rational Design of Liposomes for Sustained Release Drug Delivery of Bevacizumab to Treat Ocular Angiogenesis. J. Drug Deliv. Sci. Technol. 2018, 47, 275–282. Habot-Wilner, Z.; Noronha, G.; Wykoff, C.C. Suprachoroidally Injected Pharmacological Agents for the Treatment of Chorio-Retinal Diseases: A Targeted Approach. Acta Ophthalmol. 2019, 97, 460–472. [Google Scholar] [CrossRef]
  36. de Cristo Soares Alves, A.; Lavayen, V.; Figueiró, F.; Dallemole, D.R.; de Fraga Dias, A.; Cé, R.; Battastini, A.M.O.; Guterres, S.S.; Pohlmann, A.R. Chitosan-Coated Lipid-Core Nanocapsules Functionalized with Gold-III and Bevacizumab Induced In Vitro Cytotoxicity against C6 Cell Line and In Vivo Potent Antiangiogenic Activity. Pharm. Res. 2020, 37, 91. Allyn, M.M.; Luo, R.H.; Hellwarth, E.B.; Swindle-Reilly, K.E. Considerations for Polymers Used in Ocular Drug Delivery. Front. Med. 2022, 8, 787644. [Google Scholar] [CrossRef]
  37. Bodratti, A.M.; Alexandridis, P. Amphiphilic Block Copolymers in Drug Delivery: Advances in Formulation Structure and Performance. Expert. Opin. Drug Deliv. 2018, 15, 1085–1104. [Google Scholar] [CrossRef] [PubMed]
  38. Liu, W.; Borrell, M.A.; Venerus, D.C.; Mieler, W.F.; Kang-Mieler, J.J. Characterization of Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Ranibizumab. Transl. Vis. Sci. Technol. 2019, 8, 12. [Google Scholar] [CrossRef]
  39. Zhang, X.; Wei, D.; Xu, Y.; Zhu, Q. Hyaluronic Acid in Ocular Drug Delivery. Carbohydr. Polym. 2021, 264, 118006. [Google Scholar] [CrossRef]
  40. Orasugh, J.T.; Dutta, S.; Das, D.; Nath, J.; Pal, C.; Chattopadhyay, D. Utilization of Cellulose Nanocrystals (CNC) Biopolymer Nanocomposites in Ophthalmic Drug Delivery System (ODDS). J. Nanotechnol. Res. 2019, 1, 75–87. [Google Scholar]
  41. Gupta, B.; Mishra, V.; Gharat, S.; Momin, M.; Omri, A. Cellulosic Polymers for Enhancing Drug Bioavailability in Ocular Drug Delivery Systems. Pharmaceuticals 2021, 14, 1201. [Google Scholar] [CrossRef]
  42. Tavakolian, M.; Jafari, S.M.; van de Ven, T.G.M. A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials. Nanomicro Lett. 2020, 12, 73. [Google Scholar] [CrossRef]
  43. Junnuthula, V.; Boroujeni, A.S.; Cao, S.; Tavakoli, S.; Ridolfo, R.; Toropainen, E.; Ruponen, M.; van Hest, J.C.M.; Urtti, A. Intravitreal Polymeric Nanocarriers with Long Ocular Retention and Targeted Delivery to the Retina and Optic Nerve Head Region. Pharmaceutics 2021, 13, 445. [Google Scholar] [CrossRef] [PubMed]
  44. Kianersi, S.; Solouk, A.; Saber-Samandari, S.; Keshel, S.H.; Pasbakhsh, P. Alginate Nanoparticles as Ocular Drug Delivery Carriers. J. Drug Deliv. Sci. Technol. 2021, 66, 102889. [Google Scholar] [CrossRef]
  45. Wong, F.S.Y.; Tsang, K.K.; Chu, A.M.W.; Chan, B.P.; Yao, K.M.; Lo, A.C.Y. Injectable Cell-Encapsulating Composite Alginate-Collagen Platform with Inducible Termination Switch for Safer Ocular Drug Delivery. Biomaterials 2019, 201, 53–67. [Google Scholar] [CrossRef] [PubMed]
  46. Jiang, G.; Jia, H.; Qiu, J.; Mo, Z.; Wen, Y.; Zhang, Y.; Wen, Y.; Xie, Q.; Ban, J.; Lu, Z.; et al. PLGA Nanoparticle Platform for Trans-Ocular Barrier to Enhance Drug Delivery: A Comparative Study Based on the Application of Oligosaccharides in the Outer Membrane of Carriers. Int. J. Nanomed. 2020, 15, 9373–9387. [Google Scholar] [CrossRef] [PubMed]
  47. Swetledge, S.; Carter, R.; Stout, R.; Astete, C.E.; Jung, J.P.; Sabliov, C.M. Stability and Ocular Biodistribution of Topically Administered PLGA Nanoparticles. Sci. Rep. 2021, 11, 12270. [Google Scholar] [CrossRef]
  48. Weng, Y.H.; Ma, X.W.; Che, J.; Li, C.; Liu, J.; Chen, S.Z.; Wang, Y.Q.; Gan, Y.L.; Chen, H.; Hu, Z.B.; et al. Nanomicelle-Assisted Targeted Ocular Delivery with Enhanced Antiinflammatory Efficacy In Vivo. Adv. Sci. 2017, 5, 1700455. [Google Scholar] [CrossRef]
  49. Dai, L.; Li, X.; Yao, M.; Niu, P.; Yuan, X.; Li, K.; Chen, M.; Fu, Z.; Duan, X.; Liu, H.; et al. Programmable Prodrug Micelle with Size-Shrinkage and Charge-Reversal for Chemotherapy-Improved IDO Immunotherapy. Biomaterials 2020, 241, 119901. [Google Scholar] [CrossRef]
  50. Hwang, D.; Ramsey, J.D.; Kabanov, A.V. Polymeric Micelles for the Delivery of Poorly Soluble Drugs: From Nanoformulation to Clinical Approval. Adv. Drug Deliv. Rev. 2020, 156, 80–118. [Google Scholar] [CrossRef] [PubMed]
  51. Sun, H.; Meng, F.; Cheng, R.; Deng, C.; Zhong, Z. Reduction-Responsive Polymeric Micelles and Vesicles for Triggered Intracellular Drug Release. Antioxid. Redox Signal. 2014, 21, 755–767. [Google Scholar] [CrossRef] [PubMed]
  52. Yu, Y.; Chen, D.; Li, Y.; Yang, W.; Tu, J.; Shen, Y. Improving the Topical Ocular Pharmacokinetics of Lyophilized Cyclosporine A-Loaded Micelles: Formulation, in Vitro and in Vivo Studies. Drug Deliv. 2018, 25, 888–899. [Google Scholar] [CrossRef]
  53. Xu, X.; Sun, L.; Zhou, L.; Cheng, Y.; Cao, F. Functional Chitosan Oligosaccharide Nanomicelles for Topical Ocular Drug Delivery of Dexamethasone. Carbohydr. Polym. 2020, 227, 115356. [Google Scholar] [CrossRef] [PubMed]
  54. Lai, S.; Wei, Y.; Wu, Q.; Zhou, K.; Liu, T.; Zhang, Y.; Jiang, N.; Xiao, W.; Chen, J.; Liu, Q.; et al. Liposomes for Effective Drug Delivery to the Ocular Posterior Chamber. J. Nanobiotechnol. 2019, 17, 64. [Google Scholar] [CrossRef] [PubMed]
  55. Abdi, F.; Arkan, E.; Mansouri, K.; Shekarbeygi, Z.; Barzegari, E. Interactions of Bevacizumab with Chitosan Biopolymer Nanoparticles: Molecular Modeling and Spectroscopic Study. J. Mol. Liq. 2021, 339, 116655. [Google Scholar] [CrossRef]
  56. Ishida, T.; Harashima, H.; Kiwada, H. Liposome Clearance. Biosci. Rep. 2002, 22, 197–224. [Google Scholar] [CrossRef] [PubMed]
  57. Jin, X.; Zhu, L.; Xue, B.; Zhu, X.; Yan, D. Supramolecular Nanoscale Drug-Delivery System with Ordered Structure. Natl. Sci. Rev. 2019, 6, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
  58. Ji, T.; Kohane, D.S. Nanoscale Systems for Local Drug Delivery. Nano Today 2019, 28, 100765. [Google Scholar] [CrossRef]
  59. Di, J.; Gao, X.; Du, Y.; Zhang, H.; Gao, J.; Zheng, A. Size, Shape, Charge and “Stealthy” Surface: Carrier Properties Affect the Drug Circulation Time in Vivo. Asian J. Pharm. Sci. 2021, 16, 444–458. [Google Scholar] [CrossRef]
  60. Rebibo, L.; Tam, C.; Sun, Y.; Shoshani, E.; Badihi, A.; Nassar, T.; Benita, S. Topical Tacrolimus Nanocapsules Eye Drops for Therapeutic Effect Enhancement in Both Anterior and Posterior Ocular Inflammation Models. J. Control. Release 2021, 333, 283–297. [Google Scholar] [CrossRef]
  61. Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Siva Kumar, N.; Vekariya, R.L. A Brief Review on Solid Lipid Nanoparticles: Part and Parcel of Contemporary Drug Delivery Systems. RSC Adv. 2020, 10, 26777–26791. [Google Scholar] [CrossRef]
  62. Lancina, M.G.; Yang, H. Dendrimers for Ocular Drug Delivery. Can. J. Chem. 2017, 95, 897–902. [Google Scholar] [CrossRef]
  63. Lin, D.; Lei, L.; Shi, S.; Li, X. Stimulus-Responsive Hydrogel for Ophthalmic Drug Delivery. Macromol. Biosci. 2019, 19, e1900001. [Google Scholar] [CrossRef] [PubMed]
  64. Lynch, C.R.; Kondiah, P.P.D.; Choonara, Y.E.; du Toit, L.C.; Ally, N.; Pillay, V. Hydrogel Biomaterials for Application in Ocular Drug Delivery. Front. Bioeng. Biotechnol. 2020, 8, 228. [Google Scholar] [CrossRef] [PubMed]
  65. Nagai, N.; Otake, H. Novel Drug Delivery Systems for the Management of Dry Eye. Adv. Drug Deliv. Rev. 2022, 191, 114582. [Google Scholar] [CrossRef] [PubMed]
  66. Jacob, S.; Nair, A.B.; Shah, J. Emerging Role of Nanosuspensions in Drug Delivery Systems. Biomater. Res. 2020, 24, 3. [Google Scholar] [CrossRef]
  67. Xie, J.; Luo, Y.; Liu, Y.; Ma, Y.; Yue, P.; Yang, M. Novel Redispersible Nanosuspensions Stabilized by Co-Processed Nanocrystalline Cellulose-Sodium Carboxymethyl Starch for Enhancing Dissolution and Oral Bioavailability of Baicalin. Int. J. Nanomed. 2019, 14, 353–369. [Google Scholar] [CrossRef]
  68. Gade, S.S.; Pentlavalli, S.; Mishra, D.; Vora, L.K.; Waite, D.; Alvarez-Lorenzo, C.I.; Herrero Vanrell, M.R.; Laverty, G.; Larraneta, E.; Donnelly, R.F.; et al. Injectable Depot Forming Thermoresponsive Hydrogel for Sustained Intrascleral Delivery of Sunitinib Using Hollow Microneedles. J. Ocul. Pharmacol. Ther. 2022, 38, 433–448. [Google Scholar] [CrossRef]
  69. Gorantla, S.; Rapalli, V.K.; Waghule, T.; Singh, P.P.; Dubey, S.K.; Saha, R.N.; Singhvi, G. Nanocarriers for Ocular Drug Delivery: Current Status and Translational Opportunity. RSC Adv. 2020, 10, 27835–27855. [Google Scholar] [CrossRef]
  70. Cuenca, N.; Fernández-Sánchez, L.; Campello, L.; Maneu, V.; De la Villa, P.; Lax, P.; Pinilla, I. Cellular Responses Following Retinal Injuries and Therapeutic Approaches for Neurodegenerative Diseases. Prog. Retin. Eye Res. 2014, 43, 17–75. [Google Scholar] [CrossRef]
  71. Arranz-Romera, A.; Esteban-Pérez, S.; Molina-Martínez, I.T.; Bravo-Osuna, I.; Herrero-Vanrell, R. Co-Delivery of Glial Cell-Derived Neurotrophic Factor (GDNF) and Tauroursodeoxycholic Acid (TUDCA) from PLGA Microspheres: Potential Combination Therapy for Retinal Diseases. Drug Deliv. Transl. Res. 2021, 11, 566–580. [Google Scholar] [CrossRef]
  72. Martín-Sabroso, C.; Fraguas-Sánchez, A.I.; Aparicio-Blanco, J.; Cano-Abad, M.F.; Torres-Suárez, A.I. Critical Attributes of Formulation and of Elaboration Process of PLGA-Protein Microparticles. Int. J. Pharm. 2015, 480, 27–36. [Google Scholar] [CrossRef]
  73. Sen, M.; Bassetto, M.; Poulhes, F.; Zelphati, O.; Ueffing, M.; Arango-Gonzalez, B. Efficient Ocular Delivery of VCP SiRNA via Reverse Magnetofection in RHO P23H Rodent Retina Explants. Pharmaceutics 2021, 13, 225. [Google Scholar] [CrossRef] [PubMed]
  74. Sen, M.; Al-Amin, M.; Kicková, E.; Sadeghi, A.; Puranen, J.; Urtti, A.; Caliceti, P.; Salmaso, S.; Arango-Gonzalez, B.; Ueffing, M. Retinal Neuroprotection by Controlled Release of a VCP Inhibitor from Self-Assembled Nanoparticles. J. Control. Release 2021, 339, 307–320. [Google Scholar] [CrossRef] [PubMed]
  75. Platania, C.B.M.; Dei Cas, M.; Cianciolo, S.; Fidilio, A.; Lazzara, F.; Paroni, R.; Pignatello, R.; Strettoi, E.; Ghidoni, R.; Drago, F.; et al. Novel Ophthalmic Formulation of Myriocin: Implications in Retinitis Pigmentosa. Drug Deliv. 2019, 26, 237–243. [Google Scholar] [CrossRef]
  76. Strettoi, E.; Gargini, C.; Novelli, E.; Sala, G.; Piano, I.; Gasco, P.; Ghidoni, R. Inhibition of Ceramide Biosynthesis Preserves Photoreceptor Structure and Function in a Mouse Model of Retinitis Pigmentosa. Proc. Natl. Acad. Sci. USA 2010, 107, 18706–18711. [Google Scholar] [CrossRef] [PubMed]
  77. Xia, W.; Li, C.; Chen, Q.; Huang, J.; Zhao, Z.; Liu, P.; Xu, K.; Li, L.; Hu, F.; Zhang, S.; et al. Intravenous Route to Choroidal Neovascularization by Macrophage-Disguised Nanocarriers for MTOR Modulation. Acta Pharm. Sin. B 2022, 12, 2506–2521. [Google Scholar] [CrossRef] [PubMed]
  78. Mei, L.; Yu, M.; Liu, Y.; Weh, E.; Pawar, M.; Li, L.; Besirli, C.G.; Schwendeman, A.A. Synthetic High-Density Lipoprotein Nanoparticles Delivering Rapamycin for the Treatment of Age-Related Macular Degeneration. Nanomedicine 2022, 44, 102571. [Google Scholar] [CrossRef]
  79. Martin, D.F.; Maguire, M.G.; Fine, S.L.; Ying, G.; Jaffe, G.J.; Grunwald, J.E.; Toth, C.; Redford, M.; Ferris, F.L. Ranibizumab and Bevacizumab for Treatment of Neovascular Age-Related Macular Degeneration: Two-Year Results. Ophthalmology 2020, 127, S135–S145. [Google Scholar] [CrossRef]
  80. Feng, L.; Ju, M.; Lee, K.Y.V.; Mackey, A.; Evangelista, M.; Iwata, D.; Adamson, P.; Lashkari, K.; Foxton, R.; Shima, D.; et al. A Proinflammatory Function of Toll-Like Receptor 2 in the Retinal Pigment Epithelium as a Novel Target for Reducing Choroidal Neovascularization in Age-Related Macular Degeneration. Am. J. Pathol. 2017, 187, 2208–2221. [Google Scholar] [CrossRef]
  81. Zhang, L.; Yan, J.J.; Wang, H.Y.; Li, M.Q.; Wang, X.X.; Fan, L.; Wang, Y.S. A Trojan Horse Biomimetic Delivery System Using Mesenchymal Stem Cells for HIF-1α SiRNA-Loaded Nanoparticles on Retinal Pigment Epithelial Cells under Hypoxia Environment. Int. J. Ophthalmol. 2022, 15, 1743–1751. [Google Scholar] [CrossRef]
  82. Kimbrel, E.A.; Lanza, R. Next-Generation Stem Cells—Ushering in a New Era of Cell-Based Therapies. Nat. Rev. Drug Discov. 2020, 19, 463–479. [Google Scholar] [CrossRef]
  83. Nguyen, D.D.; Luo, L.J.; Yang, C.J.; Lai, J.Y. Highly Retina-Permeating and Long-Acting Resveratrol/Metformin Nanotherapeutics for Enhanced Treatment of Macular Degeneration. ACS Nano 2023, 17, 168–183. [Google Scholar] [CrossRef]
  84. Oshitari, T. Neurovascular Impairment and Therapeutic Strategies in Diabetic Retinopathy. Int. J. Environ. Res. Public Health 2021, 19, 439. [Google Scholar] [CrossRef]
  85. Zeng, L.; Ma, W.; Shi, L.; Chen, X.; Wu, R.; Zhang, Y.; Chen, H.; Chen, H. Poly(Lactic-Co-Glycolic Acid) Nanoparticle-Mediated Interleukin-12 Delivery for the Treatment of Diabetic Retinopathy. Int. J. Nanomed. 2019, 14, 6357–6369. [Google Scholar] [CrossRef]
  86. Romeo, A.; Bonaccorso, A.; Carbone, C.; Lupo, G.; Daniela Anfuso, C.; Giurdanella, G.; Caggia, C.; Randazzo, C.; Russo, N.; Luca Romano, G.; et al. Melatonin Loaded Hybrid Nanomedicine: DoE Approach, Optimization and in Vitro Study on Diabetic Retinopathy Model. Int. J. Pharm. 2022, 627, 122195. [Google Scholar] [CrossRef]
  87. Zingale, E.; Rizzo, S.; Bonaccorso, A.; Consoli, V.; Vanella, L.; Musumeci, T.; Spadaro, A.; Pignatello, R. Optimization of Lipid Nanoparticles by Response Surface Methodology to Improve the Ocular Delivery of Diosmin: Characterization and In-Vitro Anti-Inflammatory Assessment. Pharmaceutics 2022, 14, 1961. [Google Scholar] [CrossRef]
  88. Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv. Pharm. Bull. 2020, 10, 150–165. [Google Scholar] [CrossRef]
  89. Müller, R.H.; Shegokar, R.; Keck, C.M. 20 Years of Lipid Nanoparticles (SLN and NLC): Present State of Development and Industrial Applications. Curr. Drug Discov. Technol. 2011, 8, 207–227. [Google Scholar] [CrossRef] [PubMed]
  90. Radwan, S.E.S.; El-Kamel, A.; Zaki, E.I.; Burgalassi, S.; Zucchetti, E.; El-Moslemany, R.M. Hyaluronic-Coated Albumin Nanoparticles for the Non-Invasive Delivery of Apatinib in Diabetic Retinopathy. Int. J. Nanomed. 2021, 16, 4481–4494. [Google Scholar] [CrossRef]
  91. Mahaling, B.; Srinivasarao, D.A.; Raghu, G.; Kasam, R.K.; Bhanuprakash Reddy, G.; Katti, D.S. A Non-Invasive Nanoparticle Mediated Delivery of Triamcinolone Acetonide Ameliorates Diabetic Retinopathy in Rats. Nanoscale 2018, 10, 16485–16498. [Google Scholar] [CrossRef] [PubMed]
  92. Tang, B.C.; Dawson, M.; Lai, S.K.; Wang, Y.Y.; Suk, J.S.; Yang, M.; Zeitlin, P.; Boyle, M.P.; Fu, J.; Hanes, J. Biodegradable Polymer Nanoparticles That Rapidly Penetrate the Human Mucus Barrier. Proc. Natl. Acad. Sci. USA 2009, 106, 19268–19273. [Google Scholar] [CrossRef] [PubMed]
  93. Navarro-Partida, J.; Altamirano-Vallejo, J.C.; la Rosa, A.G.D.; Armendariz-Borunda, J.; Castro-Castaneda, C.R.; Santos, A. Safety and Tolerability of Topical Ophthalmic Triamcinolone Acetonide-Loaded Liposomes Formulation and Evaluation of Its Biologic Activity in Patients with Diabetic Macular Edema. Pharmaceutics 2021, 13, 322. [Google Scholar] [CrossRef] [PubMed]
  94. Chan, C.K.M.; Fan, D.S.P.; Chan, W.M.; Lai, W.W.; Lee, V.Y.W.; Lam, D.S.C. Ocular-Hypertensive Response and Corneal Endothelial Changes after Intravitreal Triamcinolone Injections in Chinese Subjects: A 6-Month Follow-up Study. Eye 2005, 19, 625–630. [Google Scholar] [CrossRef] [PubMed]
  95. Khalil, M.; Hashmi, U.; Riaz, R.; Rukh Abbas, S. Chitosan Coated Liposomes (CCL) Containing Triamcinolone Acetonide for Sustained Delivery: A Potential Topical Treatment for Posterior Segment Diseases. Int. J. Biol. Macromol. 2020, 143, 483–491. [Google Scholar] [CrossRef]
  96. Alambiaga-Caravaca, A.M.; Domenech-Monsell, I.M.; Sebastián-Morelló, M.; Calatayud-Pascual, M.A.; Merino, V.; Rodilla, V.; López-Castellano, A. Development, Characterization, and Ex Vivo Evaluation of an Insert for the Ocular Administration of Progesterone. Int. J. Pharm. 2021, 606, 120921. [Google Scholar] [CrossRef] [PubMed]
  97. Yadav, M.; Schiavone, N.; Guzman-Aranguez, A.; Giansanti, F.; Papucci, L.; Perez de Lara, M.J.; Singh, M.; Kaur, I.P. Correction to: Atorvastatin-Loaded Solid Lipid Nanoparticles as Eye Drops: Proposed Treatment Option for Age-Related Macular Degeneration (AMD). Drug Deliv. Transl. Res. 2020, 10, 1531. [Google Scholar] [CrossRef]
  98. Mitra, R.N.; Gao, R.; Zheng, M.; Wu, M.J.; Voinov, M.A.; Smirnov, A.I.; Smirnova, T.I.; Wang, K.; Chavala, S.; Han, Z. Glycol Chitosan Engineered Autoregenerative Antioxidant Significantly Attenuates Pathological Damages in Models of Age-Related Macular Degeneration. ACS Nano 2017, 11, 4669–4685. [Google Scholar] [CrossRef]
  99. Nagai, N.; Daigaku, R.; Motoyama, R.; Kaji, H.; Abe, T. Release of Ranibizumab Using a Porous Poly(Dimethylsiloxane) Capsule Suppressed Laser-Induced Choroidal Neovascularization via the Transscleral Route. J. Mater. Sci. Mater. Med. 2022, 34, 5. [Google Scholar] [CrossRef] [PubMed]
  100. Qiu, F.; Meng, T.; Chen, Q.; Zhou, K.; Shao, Y.; Matlock, G.; Ma, X.; Wu, W.; Du, Y.; Wang, X.; et al. Fenofibrate-Loaded Biodegradable Nanoparticles for the Treatment of Experimental Diabetic Retinopathy and Neovascular Age-Related Macular Degeneration. Mol. Pharm. 2019, 16, 1958–1970. [Google Scholar] [CrossRef]
  101. Sun, Q.; Shen, Y.; Su, L.; Xu, X. Inhibition of Pathological Retinal Neovascularization by a Small Peptide Derived from Human Tissue-Type Plasminogen Kringle 2. Front. Pharmacol. 2020, 10, 1639. [Google Scholar] [CrossRef]
  102. Ishibazawa, A.; Nagaoka, T.; Yokota, H.; Takahashi, A.; Omae, T.; Song, Y.S.; Takahashi, T.; Yoshida, A. Characteristics of Retinal Neovascularization in Proliferative Diabetic Retinopathy Imaged by Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6247–6255. [Google Scholar] [CrossRef]
  103. Sacconi, R.; Fragiotta, S.; Sarraf, D.; Sadda, S.V.R.; Freund, K.B.; Parravano, M.; Corradetti, G.; Cabral, D.; Capuano, V.; Miere, A.; et al. Towards a Better Understanding of Non-Exudative Choroidal and Macular Neovascularization. Prog. Retin. Eye Res. 2023, 92, 101113. [Google Scholar] [CrossRef] [PubMed]
  104. Fernandes, A.R.; dos Santos, T.; Granja, P.L.; Sanchez-Lopez, E.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Permeability, Anti-Inflammatory and Anti-VEGF Profiles of Steroidal-Loaded Cationic Nanoemulsions in Retinal Pigment Epithelial Cells under Oxidative Stress. Int. J. Pharm. 2022, 617, 121615. [Google Scholar] [CrossRef] [PubMed]
  105. García-Estrada, P.; García-Bon, M.A.; López-Naranjo, E.J.; Basaldúa-Pérez, D.N.; Santos, A.; Navarro-Partida, J. Polymeric Implants for the Treatment of Intraocular Eye Diseases: Trends in Biodegradable and Non-Biodegradable Materials. Pharmaceutics 2021, 13, 701. [Google Scholar] [CrossRef] [PubMed]
  106. Gil-Martínez, M.; Santos-Ramos, P.; Fernández-Rodríguez, M.; Abraldes, M.J.; Rodríguez-Cid, M.J.; Santiago-Varela, M.; Fernández-Ferreiro, A.; Gómez-Ulla, F. Pharmacological Advances in the Treatment of Age-Related Macular Degeneration. Curr. Med. Chem. 2020, 27, 583–598. [Google Scholar] [CrossRef]
  107. Ferrara, N.; Adamis, A.P. Ten Years of Anti-Vascular Endothelial Growth Factor Therapy. Nat. Rev. Drug Discov. 2016, 15, 385–403. [Google Scholar] [CrossRef]
  108. Klettner, A.; Recber, M.; Roider, J. Comparison of the Efficacy of Aflibercept, Ranibizumab, and Bevacizumab in an RPE/Choroid Organ Culture. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 1593–1598. [Google Scholar] [CrossRef] [PubMed]
  109. Oo, C.; Kalbag, S.S. Leveraging the Attributes of Biologics and Small Molecules, and Releasing the Bottlenecks: A New Wave of Revolution in Drug Development. Expert. Rev. Clin. Pharmacol. 2016, 9, 747–749. [Google Scholar] [CrossRef]
  110. Li, J.; Mooney, D.J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef] [PubMed]
  111. Galante, R.; Pinto, T.J.A.; Colaço, R.; Serro, A.P. Sterilization of Hydrogels for Biomedical Applications: A Review. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 2472–2492. [Google Scholar] [CrossRef]
  112. Bordbar-Khiabani, A.; Gasik, M. Smart Hydrogels for Advanced Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23, 3665. [Google Scholar] [CrossRef]
  113. Osswald, C.R.; Kang-Mieler, J.J. Controlled and Extended In Vitro Release of Bioactive Anti-Vascular Endothelial Growth Factors from a Microsphere-Hydrogel Drug Delivery System. Curr. Eye Res. 2016, 41, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
  114. Osswald, C.R.; Guthrie, M.J.; Avila, A.; Valio, J.A.; Mieler, W.F.; Kang-Mieler, J.J. In Vivo Efficacy of an Injectable Microsphere-Hydrogel Ocular Drug Delivery System. Curr. Eye Res. 2017, 42, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
  115. Hu, C.C.; Chiu, Y.C.; Chaw, J.R.; Chen, C.F.; Liu, H.W. Thermo-Responsive Hydrogel as an Anti-VEGF Drug Delivery System to Inhibit Retinal Angiogenesis in Rex Rabbits. Technol. Health Care 2019, 27, S153–S163. [Google Scholar] [CrossRef]
  116. Xue, K.; Zhao, X.; Zhang, Z.; Qiu, B.; Tan, Q.S.W.; Ong, K.H.; Liu, Z.; Parikh, B.H.; Barathi, V.A.; Yu, W.; et al. Sustained Delivery of Anti-VEGFs from Thermogel Depots Inhibits Angiogenesis without the Need for Multiple Injections. Biomater. Sci. 2019, 7, 4603–4614. [Google Scholar] [CrossRef]
  117. Liu, W.; Lee, B.S.; Mieler, W.F.; Kang-Mieler, J.J. Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Bioactive Aflibercept In Vitro. Curr. Eye Res. 2019, 44, 264–274. [Google Scholar] [CrossRef]
  118. Liu, W.; Tawakol, A.P.; Rudeen, K.M.; Mieler, W.F.; Kang-Mieler, J.J. Treatment Efficacy and Biocompatibility of a Biodegradable Aflibercept-Loaded Microsphere-Hydrogel Drug Delivery System. Transl. Vis. Sci. Technol. 2020, 9, 13. [Google Scholar] [CrossRef]
  119. Fan, W.; Li, S.; Tao, J.; Yu, C.; Sun, M.; Xie, Z.; Wu, X.; Ge, L.; Wu, Y.; Liu, Y. Anti-Vascular Endothelial Growth Factor Drug Conbercept-Loaded Peptide Hydrogel Reduced Angiogenesis in the Neovascular Age-Related Macular Degeneration. J. Biomed. Nanotechnol. 2022, 18, 277–287. [Google Scholar] [CrossRef] [PubMed]
  120. Li, J.; Tian, Q.; Sun, H.; Zhang, Y.; Yang, X.; Kaur, P.; Wang, R.; Fang, Y.; Yan, H.; Du, X.; et al. A Novel, Liposome-Loaded, Injectable Hydrogel for Enhanced Treatment of Choroidal Neovascularization by Sub-Tenon’s Injection. Mater. Today Nano 2022, 20, 100264. [Google Scholar] [CrossRef]
  121. Tanetsugu, Y.; Tagami, T.; Terukina, T.; Ogawa, T.; Ohta, M.; Ozeki, T. Development of a Sustainable Release System for a Ranibizumab Biosimilar Using Poly(Lactic-Co-Glycolic Acid) Biodegradable Polymer-Based Microparticles as a Platform. Biol. Pharm. Bull. 2017, 40, 145–150. [Google Scholar] [CrossRef]
  122. Sousa, F.; Cruz, A.; Fonte, P.; Pinto, I.M.; Neves-Petersen, M.T.; Sarmento, B. A New Paradigm for Antiangiogenic Therapy through Controlled Release of Bevacizumab from PLGA Nanoparticles. Sci. Rep. 2017, 7, 3736. [Google Scholar] [CrossRef]
  123. Sousa, F.; Cruz, A.; Pinto, I.M.; Sarmento, B. Nanoparticles Provide Long-Term Stability of Bevacizumab Preserving Its Antiangiogenic Activity. Acta Biomater. 2018, 78, 285–295. [Google Scholar] [CrossRef]
  124. Zhang, X.P.; Sun, J.G.; Yao, J.; Shan, K.; Liu, B.H.; Yao, M.D.; Ge, H.M.; Jiang, Q.; Zhao, C.; Yan, B. Effect of Nanoencapsulation Using Poly (Lactide-Co-Glycolide) (PLGA) on Anti-Angiogenic Activity of Bevacizumab for Ocular Angiogenesis Therapy. Biomed. Pharmacother. 2018, 107, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
  125. Kelly, S.J.; Hirani, A.; Shahidadpury, V.; Solanki, A.; Halasz, K.; Gupta, S.V.; Madow, B.; Sutariya, V. Aflibercept Nanoformulation Inhibits VEGF Expression in Ocular In Vitro Model: A Preliminary Report. Biomedicines 2018, 6, 92. [Google Scholar] [CrossRef] [PubMed]
  126. Yan, J.; Peng, X.; Cai, Y.; Cong, W. Development of Facile Drug Delivery Platform of Ranibizumab Fabricated PLGA-PEGylated Magnetic Nanoparticles for Age-Related Macular Degeneration Therapy. J. Photochem. Photobiol. B 2018, 183, 133–136. [Google Scholar] [CrossRef] [PubMed]
  127. Liu, J.; Zhang, X.; Li, G.; Xu, F.; Li, S.; Teng, L.; Li, Y.; Sun, F. Anti-Angiogenic Activity Of Bevacizumab-Bearing Dexamethasone-Loaded PLGA Nanoparticles For Potential Intravitreal Applications. Int. J. Nanomed. 2019, 14, 8819–8834. [Google Scholar] [CrossRef]
  128. Heljak, M.K.; Swieszkowski, W. In Silico Model of Bevacizumab Sustained Release from Intravitreal Administrated PLGA Drug-Loaded Microspheres. Mater. Lett. 2021, 307, 131080. [Google Scholar] [CrossRef]
  129. Liu, J.; Li, S.; Li, G.; Li, X.; Yu, C.; Fu, Z.; Li, X.; Teng, L.; Li, Y.; Sun, F. Highly Bioactive, Bevacizumab-Loaded, Sustained-Release PLGA/PCADK Microspheres for Intravitreal Therapy in Ocular Diseases. Int. J. Pharm. 2019, 563, 228–236. [Google Scholar] [CrossRef]
  130. Tsujinaka, H.; Fu, J.; Shen, J.; Yu, Y.; Hafiz, Z.; Kays, J.; McKenzie, D.; Cardona, D.; Culp, D.; Peterson, W.; et al. Sustained Treatment of Retinal Vascular Diseases with Self-Aggregating Sunitinib Microparticles. Nat. Commun. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
  131. Luo, L.; Yang, J.; Oh, Y.; Hartsock, M.J.; Xia, S.; Kim, Y.C.; Ding, Z.; Meng, T.; Eberhart, C.G.; Ensign, L.M.; et al. Controlled Release of Corticosteroid with Biodegradable Nanoparticles for Treating Experimental Autoimmune Uveitis. J. Control. Release 2019, 296, 68–80. [Google Scholar] [CrossRef] [PubMed]
  132. Cai, W.; Chen, Q.; Shen, T.; Yang, Q.; Hu, W.; Zhao, P.; Yu, J. Intravenous Anti-VEGF Agents with RGD Peptide-Targeted Core Cross-Linked Star (CCS) Polymers Modified with Indocyanine Green for Imaging and Treatment of Laser-Induced Choroidal Neovascularization. Biomater. Sci. 2020, 8, 4481–4491. [Google Scholar] [CrossRef]
  133. Luis de Redín, I.; Boiero, C.; Martínez-Ohárriz, M.C.; Agüeros, M.; Ramos, R.; Peñuelas, I.; Allemandi, D.; Llabot, J.M.; Irache, J.M. Human Serum Albumin Nanoparticles for Ocular Delivery of Bevacizumab. Int. J. Pharm. 2018, 541, 214–223. [Google Scholar] [CrossRef]
  134. Luis de Redín, I.; Boiero, C.; Recalde, S.; Agüeros, M.; Allemandi, D.; Llabot, J.M.; García-Layana, A.; Irache, J.M. In Vivo Effect of Bevacizumab-Loaded Albumin Nanoparticles in the Treatment of Corneal Neovascularization. Exp. Eye Res. 2019, 185, 107697. [Google Scholar] [CrossRef]
  135. Llabot, J.M.; Luis de Redin, I.; Agüeros, M.; Dávila Caballero, M.J.; Boiero, C.; Irache, J.M.; Allemandi, D. In Vitro Characterization of New Stabilizing Albumin Nanoparticles as a Potential Topical Drug Delivery System in the Treatment of Corneal Neovascularization (CNV). J. Drug Deliv. Sci. Technol. 2019, 52, 379–385. [Google Scholar] [CrossRef]
  136. Pandit, J.; Sultana, Y.; Aqil, M. Chitosan-Coated PLGA Nanoparticles of Bevacizumab as Novel Drug Delivery to Target Retina: Optimization, Characterization, and in Vitro Toxicity Evaluation. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1397–1407. [Google Scholar] [CrossRef]
  137. Ugurlu, N.; Aşık, M.D.; Çakmak, H.B.; Tuncer, S.; Turk, M.; Çagıl, N.; Denkbas, E.B. Transscleral Delivery of Bevacizumab-Loaded Chitosan Nanoparticles. J. Biomed. Nanotechnol. 2019, 15, 830–838. [Google Scholar] [CrossRef]
  138. Savin, C.L.; Popa, M.; Delaite, C.; Costuleanu, M.; Costin, D.; Peptu, C.A. Chitosan Grafted-Poly(Ethylene Glycol) Methacrylate Nanoparticles as Carrier for Controlled Release of Bevacizumab. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 843–860. [Google Scholar] [CrossRef] [PubMed]
  139. Jiang, P.; Chaparro, F.J.; Cuddington, C.T.; Palmer, A.F.; Ohr, M.P.; Lannutti, J.J.; Swindle-Reilly, K.E. Injectable Biodegradable Bi-Layered Capsule for Sustained Delivery of Bevacizumab in Treating Wet Age-Related Macular Degeneration. J. Control. Release 2020, 320, 442–456. [Google Scholar] [CrossRef] [PubMed]
  140. Jiang, P.; Jacobs, K.M.; Ohr, M.P.; Swindle-Reilly, K.E. Chitosan-Polycaprolactone Core-Shell Microparticles for Sustained Delivery of Bevacizumab. Mol. Pharm. 2020, 17, 2570–2584. [Google Scholar] [CrossRef]
  141. Chaharband, F.; Daftarian, N.; Kanavi, M.R.; Varshochian, R.; Hajiramezanali, M.; Norouzi, P.; Arefian, E.; Atyabi, F.; Dinarvand, R. Trimethyl Chitosan-Hyaluronic Acid Nano-Polyplexes for Intravitreal VEGFR-2 SiRNA Delivery: Formulation and in Vivo Efficacy Evaluation. Nanomedicine 2020, 26, 102181. [Google Scholar] [CrossRef]
  142. Formica, M.L.; Legeay, S.; Bejaud, J.; Montich, G.G.; Ullio Gamboa, G.V.; Benoit, J.P.; Palma, S.D. Novel Hybrid Lipid Nanocapsules Loaded with a Therapeutic Monoclonal Antibody—Bevacizumab—And Triamcinolone Acetonide for Combined Therapy in Neovascular Ocular Pathologies. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 119, 111398. [Google Scholar] [CrossRef]
  143. Mu, H.; Wang, Y.; Chu, Y.; Jiang, Y.; Hua, H.; Chu, L.; Wang, K.; Wang, A.; Liu, W.; Li, Y.; et al. Multivesicular Liposomes for Sustained Release of Bevacizumab in Treating Laser-Induced Choroidal Neovascularization. Drug Deliv. 2018, 25, 1372–1383. [Google Scholar] [CrossRef] [PubMed]
  144. Karumanchi, D.K.; Skrypai, Y.; Thomas, A.; Gaillard, E.R. Rational Design of Liposomes for Sustained Release Drug Delivery of Bevacizumab to Treat Ocular Angiogenesis. J. Drug Deliv. Sci. Technol. 2018, 47, 275–282. [Google Scholar] [CrossRef]
  145. de Cristo Soares Alves, A.; Lavayen, V.; Figueiró, F.; Dallemole, D.R.; de Fraga Dias, A.; Cé, R.; Battastini, A.M.O.; Guterres, S.S.; Pohlmann, A.R. Chitosan-Coated Lipid-Core Nanocapsules Functionalized with Gold-III and Bevacizumab Induced In Vitro Cytotoxicity against C6 Cell Line and In Vivo Potent Antiangiogenic Activity. Pharm. Res. 2020, 37, 91. [Google Scholar] [CrossRef] [PubMed]
  146. Jiang, P.; Choi, A.; Swindle-Reilly, K.E. Controlled Release of Anti-VEGF by Redox-Responsive Polydopamine Nanoparticles. Nanoscale 2020, 12, 17298–17311. [Google Scholar] [CrossRef] [PubMed]
  147. Webber, A.L.; Sharwood, P. Practical Use and Prescription of Ocular Medications in Children and Infants. Clin. Exp. Optom. 2021, 104, 385–395. [Google Scholar] [CrossRef]
  148. Sheybani, N.D.; Yang, H. Pediatric Ocular Nanomedicines: Challenges and Opportunities. Chin. Chem. Lett. 2017, 28, 1817–1821. [Google Scholar] [CrossRef]
  149. Sunita, M.; Manisha, S.; Sanjeev, M.K.; Ravi, K.S.; Aarzoo, J.; Ajai, A. Anatomical and Clinical Characteristics of Paediatric and Adult Eyes. Natl. J. Clin. Anat. 2021, 10, 5. [Google Scholar] [CrossRef]
  150. Mudgil, P.; Borchman, D.; Ramasubramanian, A. Insights into Tear Film Stability from Babies and Young Adults: A Study of Human Meibum Lipid Conformation and Rheology. Int. J. Mol. Sci. 2018, 19, 3502. [Google Scholar] [CrossRef]
  151. Chidi-Egboka, N.C.; Briggs, N.E.; Jalbert, I.; Golebiowski, B. The Ocular Surface in Children: A Review of Current Knowledge and Meta-Analysis of Tear Film Stability and Tear Secretion in Children. Ocul. Surf. 2019, 17, 28–39. [Google Scholar] [CrossRef]
  152. Mutlu, F.M.; Sarici, S.U. Treatment of Retinopathy of Prematurity: A Review of Conventional and Promising New Therapeutic Options. Int. J. Ophthalmol. 2013, 6, 228–236. [Google Scholar] [CrossRef]
  153. Mukherjee, P.; Bhattacharya, R.; Wang, P.; Wang, L.; Basu, S.; Nagy, J.A.; Atala, A.; Mukhopadhyay, D.; Soker, S. Antiangiogenic Properties of Gold Nanoparticles. Clin. Cancer Res. 2005, 11, 3530–3534. [Google Scholar] [CrossRef]
  154. Saeed, B.A.; Lim, V.; Yusof, N.A.; Khor, K.Z.; Rahman, H.S.; Samad, N.A. Antiangiogenic Properties of Nanoparticles: A Systematic Review. Int. J. Nanomed. 2019, 14, 5135–5146. [Google Scholar] [CrossRef]
  155. Kim, J.H.; Kim, M.H.; Jo, D.H.; Yu, Y.S.; Lee, T.G.; Kim, J.H. The Inhibition of Retinal Neovascularization by Gold Nanoparticles via Suppression of VEGFR-2 Activation. Biomaterials 2011, 32, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
  156. Kolosnjaj-Tabi, J.; Volatron, J.; Gazeau, F. Basic Principles of in Vivo Distribution, Toxicity, and Degradation of Prospective Inorganic Nanoparticles for Imaging. In Design and Applications of Nanoparticles in Biomedical Imaging; Springer: Cham, Switzerland, 2016; pp. 9–41. [Google Scholar] [CrossRef]
  157. Radomska, A.; Leszczyszyn, J.; Radomski, M.W. The Nanopharmacology and Nanotoxicology of Nanomaterials: New Opportunities and Challenges. Adv. Clin. Exp. Med. 2016, 25, 151–162. [Google Scholar] [CrossRef] [PubMed]
  158. Higbee-Dempsey, E.M.; Amirshaghaghi, A.; Case, M.J.; Bouché, M.; Kim, J.; Cormode, D.P.; Tsourkas, A. Biodegradable Gold Nanoclusters with Improved Excretion Due to PH-Triggered Hydrophobic-to-Hydrophilic Transition. J. Am. Chem. Soc. 2020, 142, 7783–7794. [Google Scholar] [CrossRef] [PubMed]
  159. Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2020, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
  160. Bohley, M.; Dillinger, A.E.; Schweda, F.; Ohlmann, A.; Braunger, B.M.; Tamm, E.R.; Goepferich, A. A Single Intravenous Injection of Cyclosporin A-Loaded Lipid Nanocapsules Prevents Retinopathy of Prematurity. Sci. Adv. 2022, 8. [Google Scholar] [CrossRef]
  161. Li, Q.; Weng, J.; Wong, S.N.; Thomas Lee, W.Y.; Chow, S.F. Nanoparticulate Drug Delivery to the Retina. Mol. Pharm. 2021, 18, 506–521. [Google Scholar] [CrossRef]
  162. Bertrand, N.; Leroux, J.C. The Journey of a Drug-Carrier in the Body: An Anatomo-Physiological Perspective. J. Control. Release 2012, 161, 152–163. [Google Scholar] [CrossRef]
  163. Hagigit, T.; Abdulrazik, M.; Valamanesh, F.; Behar-Cohen, F.; Benita, S. Ocular Antisense Oligonucleotide Delivery by Cationic Nanoemulsion for Improved Treatment of Ocular Neovascularization: An in-Vivo Study in Rats and Mice. J. Control. Release 2012, 160, 225–231. [Google Scholar] [CrossRef]
  164. Hagigit, T.; Nassar, T.; Behar-Cohen, F.; Lambert, G.; Benita, S. The Influence of Cationic Lipid Type on In-Vitro Release Kinetic Profiles of Antisense Oligonucleotide from Cationic Nanoemulsions. Eur. J. Pharm. Biopharm. 2008, 70, 248–259. [Google Scholar] [CrossRef]
  165. Hagigit, T.; Abdulrazik, M.; Orucov, F.; Valamanesh, F.; Lambert, M.; Lambert, G.; Behar-Cohen, F.; Benita, S. Topical and Intravitreous Administration of Cationic Nanoemulsions to Deliver Antisense Oligonucleotides Directed towards VEGF KDR Receptors to the Eye. J. Control. Release 2010, 145, 297–305. [Google Scholar] [CrossRef] [PubMed]
  166. Xu, W.; Wu, Y.; Hu, Z.; Sun, L.; Dou, G.; Zhang, Z.; Wang, H.; Guo, C.; Wang, Y. Exosomes from Microglia Attenuate Photoreceptor Injury and Neovascularization in an Animal Model of Retinopathy of Prematurity. Mol. Ther. Nucleic Acids 2019, 16, 778–790. [Google Scholar] [CrossRef] [PubMed]
  167. Moisseiev, E.; Anderson, J.D.; Oltjen, S.; Goswami, M.; Zawadzki, R.J.; Nolta, J.A.; Park, S.S. Protective Effect of Intravitreal Administration of Exosomes Derived from Mesenchymal Stem Cells on Retinal Ischemia. Curr. Eye Res. 2017, 42, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
  168. Ebneter, A.; Kokona, D.; Schneider, N.; Zinkernagel, M.S. Microglia Activation and Recruitment of Circulating Macrophages During Ischemic Experimental Branch Retinal Vein Occlusion. Investig. Ophthalmol. Vis. Sci. 2017, 58, 944–953. [Google Scholar] [CrossRef]
  169. Deliyanti, D.; Talia, D.M.; Zhu, T.; Maxwell, M.J.; Agrotis, A.; Jerome, J.R.; Hargreaves, E.M.; Gerondakis, S.; Hibbs, M.L.; Mackay, F.; et al. Foxp3+ Tregs Are Recruited to the Retina to Repair Pathological Angiogenesis. Nat. Commun. 2017, 8, 748. [Google Scholar] [CrossRef]
  170. Muffat, J.; Li, Y.; Yuan, B.; Mitalipova, M.; Omer, A.; Corcoran, S.; Bakiasi, G.; Tsai, L.H.; Aubourg, P.; Ransohoff, R.M.; et al. Efficient Derivation of Microglia-like Cells from Human Pluripotent Stem Cells. Nat. Med. 2016, 22, 1358–1367. [Google Scholar] [CrossRef]
  171. Wang, Z.; Liu, A.; Zhang, H.; Wang, M.; Tang, Q.; Huang, Y.; Wang, L. Inhibition of Retinal Neovascularization by VEGF SiRNA Delivered via Bioreducible Lipid-like Nanoparticles. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 2407–2418. [Google Scholar] [CrossRef]
  172. Singerman, L. Combination Therapy Using the Small Interfering RNA Bevasiranib. Retina 2009, 29, S49–S50. [Google Scholar] [CrossRef]
  173. Jiang, Y.; Huo, S.; Hardie, J.; Liang, X.J.; Rotello, V.M. Progress and Perspective of Inorganic Nanoparticle-Based SiRNA Delivery Systems. Expert Opin. Drug Deliv. 2016, 13, 547–559. [Google Scholar] [CrossRef]
  174. Huang, K.; Lin, Z.; Ge, Y.; Chen, X.; Pan, Y.; Lv, Z.; Sun, X.; Yu, H.; Chen, J.; Yao, Q. Immunomodulation of MiRNA-223-Based Nanoplatform for Targeted Therapy in Retinopathy of Prematurity. J. Control. Release 2022, 350, 789–802. [Google Scholar] [CrossRef] [PubMed]
  175. Sung, M.S.; Moon, M.J.; Thomas, R.G.; Kim, S.Y.; Lee, J.S.; Jeong, Y.Y.; Park, I.K.; Park, S.W. Intravitreal Injection of Liposomes Loaded with a Histone Deacetylase Inhibitor Promotes Retinal Ganglion Cell Survival in a Mouse Model of Optic Nerve Crush. Int. J. Mol. Sci. 2020, 21, 9297. [Google Scholar] [CrossRef] [PubMed]
  176. Wang, T.; Li, Y.; Guo, M.; Dong, X.; Liao, M.; Du, M.; Wang, X.; Yin, H.; Yan, H. Exosome-Mediated Delivery of the Neuroprotective Peptide PACAP38 Promotes Retinal Ganglion Cell Survival and Axon Regeneration in Rats With Traumatic Optic Neuropathy. Front. Cell Dev. Biol. 2021, 9, 659783. [Google Scholar] [CrossRef] [PubMed]
  177. Mezu-Ndubuisi, O.J.; Wang, Y.; Schoephoerster, J.; Falero-Perez, J.; Zaitoun, I.S.; Sheibani, N.; Gong, S. Intravitreal Delivery of VEGF-A165-Loaded PLGA Microparticles Reduces Retinal Vaso-Obliteration in an In Vivo Mouse Model of Retinopathy of Prematurity. Curr. Eye Res. 2019, 44, 275–286. [Google Scholar] [CrossRef] [PubMed]
  178. Hong, E.H.; Shin, Y.U.; Cho, H. Retinopathy of Prematurity: A Review of Epidemiology and Current Treatment Strategies. Clin. Exp. Pediatr. 2022, 65, 115–126. [Google Scholar] [CrossRef]
  179. Desjarlais, M.; Rivera, J.C.; Lahaie, I.; Cagnone, G.; Wirt, M.; Omri, S.; Chemtob, S. MicroRNA Expression Profile in Retina and Choroid in Oxygen-Induced Retinopathy Model. PLoS ONE 2019, 14, e0218282. [Google Scholar] [CrossRef]
  180. Lee, S.S.; Hughes, P.; Ross, A.D.; Robinson, M.R. Biodegradable Implants for Sustained Drug Release in the Eye. Pharm. Res. 2010, 27, 2043–2053. [Google Scholar] [CrossRef]
  181. Castro-Navarro, V.; Cervera-Taulet, E.; Navarro-Palop, C.; Monferrer-Adsuara, C.; Hernández-Bel, L.; Montero-Hernández, J. Intravitreal Dexamethasone Implant Ozurdex® in Naïve and Refractory Patients with Different Subtypes of Diabetic Macular Edema. BMC Ophthalmol. 2019, 19, 15. [Google Scholar] [CrossRef]
  182. Kuno, N.; Fujii, S. Biodegradable Intraocular Therapies for Retinal Disorders: Progress to Date. Drugs Aging 2010, 27, 117–134. [Google Scholar] [CrossRef]
  183. Khiev, D.; Mohamed, Z.A.; Vichare, R.; Paulson, R.; Bhatia, S.; Mohapatra, S.; Lobo, G.P.; Valapala, M.; Kerur, N.; Passaglia, C.L.; et al. Emerging Nano-Formulations and Nanomedicines Applications for Ocular Drug Delivery. Nanomaterials 2021, 11, 173. [Google Scholar] [CrossRef]
  184. Wong, J.G.; Chang, A.; Guymer, R.H.; Wickremasinghe, S.; Reilly, E.; Bell, N.; Vantipalli, S.; Moshfeghi, A.A.; Goldstein, M.H. Phase 1 Study of an Intravitreal Axitinib Hydrogel-Based Implant for the Treatment of Neovascular Age-Related Macular Degeneration (NAMD). Investig. Ophthalmol. Vis. Sci. 2021, 62, 218. [Google Scholar]
  185. Alshaikh, R.A.; Waeber, C.; Ryan, K.B. Polymer Based Sustained Drug Delivery to the Ocular Posterior Segment: Barriers and Future Opportunities for the Treatment of Neovascular Pathologies. Adv. Drug Deliv. Rev. 2022, 187, 114342. [Google Scholar] [CrossRef] [PubMed]
  186. Vinores, S.A. Pegaptanib in the Treatment of Wet, Age-Related Macular Degeneration. Int. J. Nanomed. 2006, 1, 263–268. [Google Scholar]
  187. Yang, M.; Peterson, W.M.; Yu, Y.; Kays, J.; Cardona, D.; Culp, D.; Gilger, B.C.; Cleland, J. GB-102 for Wet AMD: A Novel Injectable Formulation That Safely Delivers Active Levels of Sunitinib to the Retina and RPE/Choroid for Over Four Months. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5037. [Google Scholar]
  188. Cheng, Y.; Burda, C. 2.01—Nanoparticles for Photodynamic Therapy. In Comprehensive Nanoscience and Technology; Andrews, D.L., Scholes, G.D., Wiederrecht, G.P., Eds.; Academic Press: Amsterdam, The Netherlands, 2011; pp. 1–28. ISBN 978-0-12-374396-1. [Google Scholar]
  189. Rodrigues, G.A.; Lutz, D.; Shen, J.; Yuan, X.; Shen, H.; Cunningham, J.; Rivers, H.M. Topical Drug Delivery to the Posterior Segment of the Eye: Addressing the Challenge of Preclinical to Clinical Translation. Pharm. Res. 2018, 35, 245. [Google Scholar] [CrossRef] [PubMed]
  190. Doukas, J.; Mahesh, S.; Umeda, N.; Kachi, S.; Akiyama, H.; Yokoi, K.; Cao, J.; Chen, Z.; Dellamary, L.; Tam, B.; et al. Topical Administration of a Multi-Targeted Kinase Inhibitor Suppresses Choroidal Neovascularization and Retinal Edema. J. Cell. Physiol. 2008, 216, 29–37. [Google Scholar] [CrossRef]
  191. Yafai, Y.; Yang, X.M.; Niemeyer, M.; Nishiwaki, A.; Lange, J.; Wiedemann, P.; King, A.G.; Yasukawa, T.; Eichler, W. Anti-Angiogenic Effects of the Receptor Tyrosine Kinase Inhibitor, Pazopanib, on Choroidal Neovascularization in Rats. Eur. J. Pharmacol. 2011, 666, 12–18. [Google Scholar] [CrossRef]
  192. Adams, C.M.; Anderson, K.; Artman, G.; Bizec, J.C.; Cepeda, R.; Elliott, J.; Fassbender, E.; Ghosh, M.; Hanks, S.; Hardegger, L.A.; et al. The Discovery of N-(1-Methyl-5-(Trifluoromethyl)-1H-Pyrazol-3-Yl)-5-((6- ((Methylamino)Methyl)Pyrimidin-4-Yl)Oxy)-1H-Indole-1-Carboxamide (Acrizanib), a VEGFR-2 Inhibitor Specifically Designed for Topical Ocular Delivery, as a Therapy for Neovascular Age-Related Macular Degeneration. J. Med. Chem. 2018, 61, 1622–1635. [Google Scholar] [CrossRef] [PubMed]
  193. Zernii, E.Y.; Baksheeva, V.E.; Iomdina, E.N.; Averina, O.A.; Permyakov, S.E.; Philippov, P.P.; Zamyatnin, A.A.; Senin, I.I. Rabbit Models of Ocular Diseases: New Relevance for Classical Approaches. CNS Neurol. Disord. Drug Targets 2016, 15, 267–291. [Google Scholar] [CrossRef]
  194. Owen, G.R.; Brooks, A.C.; James, O.; Robertson, S.M. A Novel in Vivo Rabbit Model That Mimics Human Dosing to Determine the Distribution of Antibiotics in Ocular Tissues. J. Ocul. Pharmacol. Ther. 2007, 23, 335–342. [Google Scholar] [CrossRef]
  195. Shen, J.; Durairaj, C.; Lin, T.; Liu, Y.; Burke, J. Ocular Pharmacokinetics of Intravitreally Administered Brimonidine and Dexamethasone in Animal Models with and without Blood-Retinal Barrier Breakdown. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1056–1066. [Google Scholar] [CrossRef]
  196. Kang-Mieler, J.J.; Rudeen, K.M.; Liu, W.; Mieler, W.F. Advances in Ocular Drug Delivery Systems. Eye 2020, 34, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
  197. Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug Delivery Systems for RNA Therapeutics. Nat. Rev. Genet. 2022, 23, 265–280. [Google Scholar] [CrossRef] [PubMed]
  198. Jahangirian, H.; Lemraski, E.G.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A Review of Drug Delivery Systems Based on Nanotechnology and Green Chemistry: Green Nanomedicine. Int. J. Nanomed. 2017, 12, 2957–2978. [Google Scholar] [CrossRef] [PubMed]
  199. Sung, Y.K.; Kim, S.W. Recent Advances in Polymeric Drug Delivery Systems. Biomater. Res. 2020, 24, 12. [Google Scholar] [CrossRef] [PubMed]
More
ScholarVision Creations