Your browser does not fully support modern features. Please upgrade for a smoother experience.
Natural Killer Cells in Tumor Metastasis: Comparison
Please note this is a comparison between Version 3 by Dean Liu and Version 2 by Yanlin Yu.

Innate immune natural killer (NK) cells are capable of killing metastatic cancer cells without activation by antigen-presenting cells beforehand. The cytotoxic effects and immune regulation of NK cells are precisely controlled by an energetic balance of signals produced by a group of activating and inhibitory receptors expressed on NK cells, while metastatic tumor cells with multiple strategies escape immune cells attack.

  • NK cell function
  • metastasis
  • NK cell-based immunotherapy

1. NK Cell Function Related to Metastasis

NK cells were first found for their capability to eliminate tumor cells without prior stimulation by antigen-presenting cells [63,64][1][2]. Studies have reported that patients with a higher cancer incidence had inadequate peripheral NK cell cytotoxicity responses in various types of cancer [65,66,67,68,69][3][4][5][6][7]. Additionally, the patients who suffered NK cell dysfunction had an increased rate of malignancies and metastases [70,71,72,73,74,75,76,77][8][9][10][11][12][13][14][15]. Using an experimental metastasis assay, wresearchers and others found that antibodies mediated depletion of NK function or the use of an NK cell-deficient host increased metastasis, suggesting that NK cells play an essential role in antimetastasis ([78][16], our the unpublished data). An intravital imaging system directly observed NK cells attack disseminated tumor cells leading to cancer cell death in mouse models [78][16]. These observations indicated that NK cells act as a killer in tumor progression, especially cancer cells spreading from their original site to the bloodstream [29,62][17][18]. Clinically, the patients who suffered various cancers with low amounts of peripheral or infiltrating NK cells at tumor sites have higher numbers of metastatic lesions. [74,79,80,81,82,83,84][12][19][20][21][22][23][24]. In contrast, the patients who suffered an increased metastatic cancer risk with high levels of NK cell activating receptors (NKAR) have good prognoses [77,85,86,87,88,89][15][25][26][27][28][29]. Moreover, a high level of IFNγ production by circulating NK cells and the presence of NKp30 are associated with a positive prediction for long-term survival in patients with breast cancer, gastrointestinal stromal tumor, or melanoma under treatments [69,79,80,90,91,92][7][19][20][30][31][32]. More recently, a study has shown that NK cells could sustain breast cancer dormancy for controlling breast cancer liver metastasis [93][33]. These facts suggest the notion that NK cells mediate antimetastatic effects in clinical. The notion has also been strongly linked to cancer treatment and preventing tumor metastasis. For example, after successfully removing the tumor by surgery, many patients still developed distant metastasis later; one of the important reasons is that low NK cell cytotoxicity and less IFNγ secretion link impaired NK cell function directly to increased postoperative metastases [94,95,96][34][35][36]. Thus, the functional restoration of NK cells by agents such as arginine prevents metastases [97,98][37][38].

2. How NK Cells Kill Metastases

It is well appreciated that the amount of positive and negative signals transmitted by NK cell activating or inhibitory receptors determines the fate of the targets [99][39]. Normal cells typically express low amounts of activating ligands and have higher amounts of MHC-I molecules that interact with inhibitory receptors and transduce more negative signals; therefore, NK cells will not eliminate normal somatic cells. In contrast, in malignant tumor cells, the expression of activating ligands has been increased, and the positive signals will overcome the negative signals, thus ensuring that aberrant cells are destroyed by NK cells [100,101][40][41]. The deficiency of NK cell activating receptor NCR1 in a GEM (genetically engineered mouse) model was shown to promote tumor growth [101,102][41][42]. Interestingly, when comparing with B16 melanoma growing subcutaneously in either NCR1 heterozygous (het) or homozygous (KO) mice, the tumor size in the two groups had no significant difference. Still, there was a substantial difference in the rate of metastasis between the two groups: NCR1 KO mice appeared to have significantly higher metastatic lesions than NCR1 het mice [102,103][42][43]. This indicates that the absence of an activating receptor dramatically affects metastasis development but has no evident effect on the primary tumor, implying that the level of NK cell activating signaling plays a vital role in controlling tumor metastasis. Subsequently, it was found that elevated secretion of IFNγ by NK cells enhanced the level of FN1 in the tumor, resulting in architectural alteration and less aggressive metastasis. In contrast, deficient NCR1 abolished the release of IFNγ [103][43]. Recent studies have also reported that NK cells are necessary for the selective destruction of circulating single breast tumor cells [104,105][44][45]. Extensive studies also support that NK cells control metastasis by activating receptor signaling. For example, NK cells efficiently eliminate metastatic melanoma cells when overexpressing ligands for NKp44, NKp46, and DNAM-1 [74][12]. In contrast, GEM mice deficient in DNAM-1 [106[46][47],107], Tlr3 (regulating NK cell responses to cytokines) [108][48], Il2rg (ablating NKp46+ NK cells) [109][49], or T-bet (regulating the differentiation of NK cells) [110,111][50][51] are susceptible to metastatic colonization. Interestingly, the metastatic potential could be prevented by transplanting bulk NK cells [110,111,112,113,114,115,116][50][51][52][53][54][55][56]. Moreover, treating NK cells with activating cytokine IL-15 can restore protection from metastasis in Tbx21-deficient mice [111][51]. Deletion of a negative regulator Clbl also promotes NK cell-dependent antimetastatic effects in mice [115][55]. Furthermore, deficient endogenous IL-15 inhibitor of Cish in NK cells (Cish−/−NK cells) leads to NK cell hyperactivation; transplanting the Cish−/−NK cells into mice could robustly abrogate the metastatic phenotype of highly metastatic B16F10 melanoma cells [117,118][57][58]. Decrease in DNAM-1 limits NK cytotoxicity and blocks IFNγ production, while the overexpression of DNAM-1 ligand in tumor cells causes a decrease in NKG2D ligands, indicating that NK cell-induced killing is initiated by DNAM-1 or NKG2D signaling pathway [74,117,119][12][57][59]. Moreover, NK cell depletion with antibodies of NK1.1 or asiago-GM markedly enhances the metastasis [116,120,121,122][56][60][61][62]. Mice with NK cell activating factors, including IFNγ, perforin 1 (PRF1), or TRAIL deficiency by gene knockout or antibody-caused neutralization, were more susceptible to metastatic incidences following challenges with tumor cell inoculation or with carcinogen-induced tumors [123,124,125][63][64][65]. NK cells also produce and release IFNγ and TNFα to function on macrophages and dendritic cells for enhancing the immune response [126][66]. Interestingly, using an image tracker system, a recent study functionally visualized that NK cells directly contacted metastatic tumor cells rapidly, leading to its ERK activation and metastatic tumor cell apoptosis [78][16]. They then confirmed metastatic tumor cell death related to DNAM-1 activation in NK cells [78][16]. Whereas a more recent study has shown that activation of inhibitory receptor NKG2A/HLA-E signaling promoted the distant metastasis of PDAC; blocking this pathway provokes NK cells and inhibits PDAC metastasis [127][67]. Whether the NK cells destroy metastatic cancer depends on the amounts of signals from activating and inhibitory receptors in the NK cells. Activating receptors interact with molecules on the surface of cancer cells and ‘turn on’ activation of the NK cell. Inhibitory receptors on NK cells check the signals from its ligands on metastatic cancer cells to block the ability of NK cell-mediated killing. Metastatic tumor cells often lose NK cell inhibitory receptor ligands of MHC-I, which reduce the inhibitory signal and leave them vulnerable to NK cell killing. Activating signals through activating receptors in NK cells promote NK proliferation and stimulate the secretion of cytotoxic granules to release perforin and granzymes, leading to metastatic tumor lysis.

3. Immunosuppression of NK in Tumor Metastasis

The effectiveness of NK cell killing of metastatic tumors depends not only on the immensity of the NK cell response, such as the activation of NK cells, but also on the capacity of cancer cells to evade destruction. Tumor cells can develop a wide range of strategies to elude detection and destruction by NK cells, continue to grow at distant sites, and then form metastases [61][68]. The process by which tumor cells develop the intrinsic properties to avoid recognition and elimination by NK cells is referred to as “escape” [61][68]. The efficiency of escape determines the success of disseminated tumor cells in giving rise to distant metastases. Most strategies tumor cells use to evade NK cell killing are described here. First, tumor cells can increase ligands of NK inhibitory receptors such as CD111 [128][69], PD-L1 [129][70], HLA-G [130][71], galectin-9 [131][72], HMGB-1 [132[73][74][75],133,134], and CEACAM-1 [135][76], therefore the activation of inhibitory receptor signal pathways [127][67]. The expression of nonclassical HLA-G is reported in various metastatic cancers, which ties up the inhibitory receptor of LIR-1 to transduce the inhibitory signals to NK cells and inhibit the NK cell proliferation and gene expression [130][71]. In fact, cancer cells frequently lose their MHC-1 to escape T cell attack but are vulnerable to NK cell killing, and the metastatic tumor has too many tricks to manage the MHC-1 level for refraining both T cell and NK cell elimination [67][5], such as genetic and epigenetic modification, and transcriptional and translational regulation [136,137,138][77][78][79]. Second, metastatic cancer cells decrease the ligands of NK cells activating receptors (NKAR) [139,140][80][81]. For example, metastatic tumor cells often shed the NKG2D ligand of MICA and MICB proteins [141][82] through proteolytic proteins such as ADAM10, ADAM17, and MMP14 [142[83][84],143], thereby producing soluble variants of ligands, acting as molecular decoys for blocking NK cell activation [144,145][85][86]. Indeed, in many different cohorts of cancers, patients with advanced stage tumors often have a high level of soluble NKAR ligands [146,147][87][88]. Loss of PVR and nectin 2, a ligand for the NK cell activating receptor DNAM-1, abolished NK cell-mediated destruction of metastatic melanoma B16F10 [78][16]; the consequence of deletion of DNAM-1 ligand caused due to failure to activation of ERK signal pathway in NK cells [78][16]. The downregulation of a death receptor FAS in metastatic tumors is another way to turn off NK cells for killing the metastatic cells through the FAS/FASL pathway [148][89]. Tumor cells can also decrease immunostimulatory factors within the TME. Tumor cells can secrete IL10, CXCL8, and TGFB1, which directly reduce NK cell cytotoxic functions [149,150,151][90][91][92] and/or recruit other immune cells such as Treg cells [152][93], MDSCs [153][94], CD11b + Ly6G + neutrophils [122[62][95],154], and DC [155][96], thus inhibiting NK cell functions indirectly. Analysis of the secreted protein profiling of progressive cancers showed little amounts of NK cell-stimulating molecules such as IFN [156][97] and IL-15 [157][98]. Tumor cells can rewrite their metabolic programming and release the metabolites that affect the TME to interfere with the antimetastatic functions of NK cells. For example, overexpression of the ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1) in metastatic tumor cells hydrolyze extracellular ATP into AMP to convert it to adenosine in hypoxia condition caused by HIF-1 [158,159][99][100]. Adenosine unleashes powerful immunosuppressive effects on NK cells via adenosine A2a receptor (ADORA2A) signaling [159,160,161,162][100][101][102][103]. Hypoxia in TME favors metastatic tumor cells for avoiding NK cell elimination by releasing TGFB1 and miRNAs through exosome to target NKG2D [163][104] and trigger cell autophagy to block tumor cells to GZMB-mediated lysis [164][105]. In contrast, hyperoxia promotes the destruction of metastases through immune responses of CD8+ CTLs and NK cells [165][106]. Inhibition of ENTPD1 by small molecular inhibitor polyoxometalate-1 or Entpd1 deletion blocked the metastasis of melanoma and colon cancer cells [166][107]. In addition, lactate produced by tumors creates a favorable niche for metastasis and modulates the TME preventing NK cell activation [167,168][108][109]. Furthermore, tumor-derived stromal inflammation has a condition-dependent effect on controlling metastasis by NK cells [169,170][110][111]. Recent studies showed other proteins such as PAEP, pp12, and pp14 upregulated in metastatic tumor cells to hamper NK cell function [171,172][112][113]. Last, some reports have shown that metastases exhibited higher stemness features than primary tumors, suggesting that metastatic tumor cells may obtain immune escape abilities from stem cells or dormant cells [173,174][114][115] that could shield their proliferation and hide in distant sites for a long time.

References

  1. Chiossone, L.; Dumas, P.Y.; Vienne, M.; Vivier, E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol. 2018, 18, 671–688.
  2. Barlozzari, T.; Reynolds, C.W.; Herberman, R.B. In vivo role of natural killer cells: Involvement of large granular lymphocytes in the clearance of tumor cells in anti-asialo GM1-treated rats. J. Immunol. 1983, 131, 1024–1027.
  3. Imai, K.; Matsuyama, S.; Miyake, S.; Suga, K.; Nakachi, K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: An 11-year follow-up study of a general population. Lancet 2000, 356, 1795–1799.
  4. Balsamo, M.; Vermi, W.; Parodi, M.; Pietra, G.; Manzini, C.; Queirolo, P.; Lonardi, S.; Augugliaro, R.; Moretta, A.; Facchetti, F.; et al. Melanoma cells become resistant to NK-cell-mediated killing when exposed to NK-cell numbers compatible with NK-cell infiltration in the tumor. Eur. J. Immunol. 2012, 42, 1833–1842.
  5. Sandel, M.H.; Speetjens, F.M.; Menon, A.G.; Albertsson, P.A.; Basse, P.H.; Hokland, M.; Nagelkerke, J.F.; Tollenaar, R.A.; van de Velde, C.J.; Kuppen, P.J. Natural killer cells infiltrating colorectal cancer and MHC class I expression. Mol. Immunol. 2005, 42, 541–546.
  6. Esendagli, G.; Bruderek, K.; Goldmann, T.; Busche, A.; Branscheid, D.; Vollmer, E.; Brandau, S. Malignant and non-malignant lung tissue areas are differentially populated by natural killer cells and regulatory T cells in non-small cell lung cancer. Lung Cancer 2008, 59, 32–40.
  7. Mamessier, E.; Sylvain, A.; Thibult, M.L.; Houvenaeghel, G.; Jacquemier, J.; Castellano, R.; Gonçalves, A.; André, P.; Romagné, F.; Thibault, G.; et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Investig. 2011, 121, 3609–3622.
  8. Orange, J.S. Natural killer cell deficiency. J. Allergy Clin. Immunol. 2013, 132, 515–525.
  9. MacFarlane, A.W.; Jillab, M.; Smith, M.R.; Alpaugh, R.K.; Cole, M.E.; Litwin, S.; Millenson, M.M.; Al-Saleem, T.; Cohen, A.D.; Campbell, K.S. NK cell dysfunction in chronic lymphocytic leukemia is associated with loss of the mature cells expressing inhibitory killer cell Ig-like receptors. OncoImmunology 2017, 6, e1330235.
  10. Pazina, T.; MacFarlane, A.W.; Bernabei, L.; Dulaimi, E.; Kotcher, R.; Yam, C.; Bezman, N.A.; Robbins, M.D.; Ross, E.A.; Campbell, K.S.; et al. Alterations of NK Cell Phenotype in the Disease Course of Multiple Myeloma. Cancers 2021, 13, 226.
  11. Vetter, C.S.; Groh, V.; Thor Straten, P.; Spies, T.; Brocker, E.B.; Becker, J.C. Expression of stress-induced MHC class I related chain molecules on human melanoma. J. Investig. Dermatol. 2002, 118, 600–605.
  12. Lakshmikanth, T.; Burke, S.; Ali, T.H.; Kimpfler, S.; Ursini, F.; Ruggeri, L.; Capanni, M.; Umansky, V.; Paschen, A.; Sucker, A.; et al. NCRs and DNAM 1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J. Clin. Investig. 2009, 119, 1251–1263.
  13. Erdag, G.; Schaefer, J.T.; Smolkin, M.E.; Deacon, D.H.; Shea, S.M.; Dengel, L.T.; Patterson, J.W.; Slingluff, C.L., Jr. Immuno type and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res. 2012, 72, 1070–1080.
  14. Halama, N.; Braun, M.; Kahlert, C.; Spille, A.; Quack, C.; Rahbari, N.; Koch, M.; Weitz, J.; Kloor, M.; Zoernig, I.; et al. Natural killer cells are scarce in colorectal carcinoma tissue despite high levels of chemokines and cytokines. Clin. Cancer Res. 2011, 17, 678–689.
  15. Remark, R.; Alifano, M.; Cremer, I.; Lupo, A.; Dieu-Nosjean, M.C.; Riquet, M.; Crozet, L.; Ouakrim, H.; Goc, J.; Cazes, A.; et al. Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: Influence of tumor origin. Clin. Cancer Res. 2013, 19, 4079–4091.
  16. Ichise, H.; Tsukamoto, S.; Hirashima, T.; Konishi, Y.; Oki, C.; Tsukiji, S.; Iwano, S.; Miyawaki, A.; Sumiyama, K.; Terai, K.; et al. Functional visualization of NK cell-mediated killing of metastatic single tumor cells. Elife 2022, 11, e76269.
  17. Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 2018, 32, 1267–1284.
  18. López-Soto, A.; Gonzalez, S.; Smyth, M.J.; Galluzzi, L. Control of Metastasis by NK Cells. Cancer Cell 2017, 32, 135–154.
  19. Delahaye, N.F.; Rusakiewicz, S.; Martins, I.; Ménard, C.; Roux, S.; Lyonnet, L.; Paul, P.; Sarabi, M.; Chaput, N.; Semeraro, M.; et al. Circulating CD56bright NK cells inversely correlate with survival of melanoma patients. Sci. Rep. 2019, 9, 4487.
  20. Semeraro, M.; Rusakiewicz, S.; Minard-Colin, V.; Delahaye, N.F.; Enot, D.; Vély, F.; Marabelle, A.; Papoular, B.; Piperoglou, C.; Ponzoni, M.; et al. Clinical impact of the NKp30/B7-H6 axis in high-risk neuroblastoma patients. Sci. Transl. Med. 2015, 7, 283ra55.
  21. Ishigami, S.; Natsugoe, S.; Tokuda, K.; Nakajo, A.; Che, X.; Iwashige, H.; Aridome, K.; Hokita, S.; Aikou, T. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 2000, 88, 577–583.
  22. Coca, S.; Perez-Piqueras, J.; Martinez, D.; Colmenarejo, A.; Saez, M.A.; Vallejo, C.; Martos, J.A.; Moreno, M. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 1997, 79, 2320–2328.
  23. Donskov, F.; von der Maase, H. Impact of immune parameters on long-term survival in metastatic renal cell carcinoma. J. Clin. Oncol. 2006, 24, 1997–2005.
  24. Gannon, P.O.; Poisson, A.O.; Delvoye, N.; Lapointe, R.; Mes-Masson, A.M.; Saad, F. Characterization of the intra-prostatic immune cell infiltration in androgen-deprived prostate cancer patients. J. Immunol. Methods 2009, 348, 9–17.
  25. Rusakiewicz, S.; Semeraro, M.; Sarabi, M.; Desbois, M.; Locher, C.; Mendez, R.; Vimond, N.; Concha, A.; Garrido, F.; Isambert, N.; et al. Immune infil trates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res. 2013, 73, 3499–3510.
  26. Pasero, C.; Gravis, G.; Granjeaud, S.; Guerin, M.; Thomassin-Piana, J.; Rocchi, P.; Salem, N.; Walz, J.; Moretta, A.; Olive, D. Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget 2015, 6, 14360–14373.
  27. Platonova, S.; Cherfils-Vicini, J.; Damotte, D.; Crozet, L.; Vieillard, V.; Validire, P.; André, P.; Dieu-Nosjean, M.C.; Alifano, M.; Régnard, J.F.; et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 2011, 71, 5412–5422.
  28. Pasero, C.; Gravis, G.; Guerin, M.; Granjeaud, S.; Thomassin-Piana, J.; Rocchi, P.; Paciencia-Gros, M.; Poizat, F.; Bentobji, M.; Azario-Cheillan, F.; et al. Inherent and tumor-driven immune tolerance in the prostate microenvironment impairs natural killer cell antitumor activity. Cancer Res. 2016, 76, 2153–2165.
  29. de Andrade, L.F.; Lu, Y.; Luoma, A.; Ito, Y.; Pan, D.; Pyrdol, J.W.; Yoon, C.H.; Yuan, G.C.; Wucherpfennig, K.W. Discovery of specialized NK cell populations infiltrating human melanoma metastases. JCI Insight 2019, 4, e133103.
  30. Couanet, D.; Gutierrez, J.C.; Nunès, J.A.; Commo, F.; Bonvalot, S.; Ibrahim, N.; Terrier, P.; Opolon, P.; Bottino, C.; Moretta, A.; et al. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med. 2011, 17, 700–707.
  31. Ménard, C.; Blay, J.Y.; Borg, C.; Michiels, S.; Ghiringhelli, F.; Robert, C.; Nonn, C.; Chaput, N.; Taïeb, J.; Delahaye, N.F.; et al. Natural killer cell IFN-gamma levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res. 2009, 69, 3563–3569.
  32. Messaoudene, M.; Fregni, G.; Enot, D.; Jacquelot, N.; Neves, E.; Germaud, N.; Garchon, H.J.; Boukouaci, W.; Tamouza, R.; Chanal, J.; et al. NKp30 isoforms and NKp46 transcripts in metastatic melanoma patients: Unique NKp30 pattern in rare melanoma patients with favorable evolution. OncoImmunology 2016, 5, e1154251.
  33. Correia, A.L.; Guimaraes, J.C.; Auf der Maur, P.; De Silva, D.; Trefny, M.P.; Okamoto, R.; Bruno, S.; Schmidt, A.; Mertz, K.; Volkmann, K.; et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature 2021, 594, 566–571.
  34. Angka, L.; Martel, A.B.; Kilgour, M.; Jeong, A.; Sadiq, M.; de Souza, C.T.; Baker, L.; Kennedy, M.A.; Kekre, N.; Auer, R.C. Natural killer cell IFNg secretion is profoundly suppressed following colorectal cancer surgery. Ann. Surg. Oncol. 2018, 25, 3747–3754.
  35. Seth, R.; Tai, L.H.; Falls, T.; de Souza, C.T.; Bell, J.C.; Carrier, M.; Atkins, H.; Boushey, R.; Auer, R.A. Surgical stress promotes the development of cancer metastases by a coagulation-dependent mechanism involving natural killer cells in a murine model. Ann. Surg. 2013, 258, 158–168.
  36. Angka, L.; Khan, S.; Kilgour, M.; Xu, R.; Kennedy, M.; Auer, R. Dysfunctional natural killer cells in the aftermath of cancer surgery. Int. J. Mol. Sci. 2017, 18, 1787.
  37. Tai, L.H.; de Souza, C.T.; Bélanger, S.; Ly, L.; Alkayyal, A.A.; Zhang, J.; Rintoul, J.L.; Ananth, A.A.; Lam, T.; Breitbach, C.J.; et al. Preventing postoperative metastatic disease by inhibiting surgery-induced dysfunction in natural killer cells. Cancer Res. 2013, 73, 97–107.
  38. Angka, L.; Tanese de Souza, C.; Baxter, K.E.; Khan, S.T.; Market, M.; Martel, A.B.; Tai, L.H.; Kennedy, M.A.; Bell, J.C.; Auer, R.C. Perioperative arginine prevents metastases by accelerating natural killer cell recovery after surgery. Mol. Ther. 2022, 30, 3270–3283.
  39. Koch, J.; Steinle, A.; Watzl, C.; Mandelboim, O. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol. 2013, 34, 182–191.
  40. Ascierto, M.L.; Idowu, M.O.; Zhao, Y.; Khalak, H.; Payne, K.K.; Wang, X.Y.; Dumur, C.I.; Bedognetti, D.; Tomei, S.; Ascierto, P.A.; et al. Molecular signatures mostly associated with NK cells are predictive of relapse free survival in breast cancer patients. J. Transl. Med. 2013, 11, 145.
  41. Halfteck, G.G.; Elboim, M.; Gur, C.; Achdout, H.; Ghadially, H.; Mandelboim, O. Enhanced in vivo growth of lymphoma tumors in the absence of the NK-activating receptor NKp46/NCR1. J. Immunol. 2009, 182, 2221–2230.
  42. Glasner, A.; Ghadially, H.; Gur, C.; Stanietsky, N.; Tsukerman, P.; Enk, J.; Mandelboim, O. Recognition and prevention of tumor metastasis by the NK receptor NKp46/NCR1. J. Immunol. 2012, 188, 2509–2515.
  43. Glasner, A.; Levi, A.; Enk, J.; Isaacson, B.; Viukov, S.; Orlanski, S.; Scope, A.; Neuman, T.; Enk, C.D.; Hanna, J.H.; et al. NKp46 receptor-mediated interferon-γ production by natural killer cells increases fibronectin 1 to alter tumor architecture and control metastasis. Immunity 2018, 48, 107–119.
  44. Laughney, A.M.; Hu, J.; Campbell, N.R.; Bakhoum, S.F.; Setty, M.; Lavallée, V.P.; Xie, Y.; Masilionis, I.; Carr, A.J.; Kottapalli, S.; et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 2020, 26, 259–269.
  45. Lo, H.C.; Xu, Z.; Kim, I.S.; Pingel, B.; Aguirre, S.; Kodali, S.; Liu, J.; Zhang, W.; Muscarella, A.M.; Hein, S.M.; et al. Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nat. Cancer 2020, 1, 709–722.
  46. Iguchi-Manaka, A.; Kai, H.; Yamashita, Y.; Shibata, K.; Tahara-Hanaoka, S.; Honda, S.; Yasui, T.; Kikutani, H.; Shibuya, K.; Shibuya, A. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J. Exp. Med. 2008, 205, 2959–2964.
  47. Chan, C.J.; Andrews, D.M.; McLaughlin, N.M.; Yagita, H.; Gilfillan, S.; Colonna, M.; Smyth, M.J. DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. J. Immunol. 2010, 184, 902–911.
  48. Guillerey, C.; Chow, M.T.; Miles, K.; Olver, S.; Sceneay, J.; Takeda, K.; Möller, A.; Smyth, M.J. Toll-like receptor 3 regulates NK cell responses to cytokines and controls experimental metastasis. OncoImmunology 2015, 4, e1027468.
  49. Merzoug, L.B.; Marie, S.; Satoh-Takayama, N.; Lesjean, S.; Albanesi, M.; Luche, H.; Fehling, H.J.; Di Santo, J.P.; Vosshenrich, C.A. Conditional ablation of NKp46+ cells using a novel Ncr1(greenCre) mouse strain: NK cells are essential for protection against pulmonary B16 metastases. Eur. J. Immunol. 2014, 44, 3380–3391.
  50. Werneck, M.B.; Lugo-Villarino, G.; Hwang, E.S.; Cantor, H.; Glimcher, L.H. T-bet plays a key role in NK-mediated control of melanoma metastatic disease. J. Immunol. 2008, 180, 8004–8010.
  51. Malaisé, M.; Rovira, J.; Renner, P.; Eggenhofer, E.; Sabet-Baktach, M.; Lantow, M.; Lang, S.A.; Koehl, G.E.; Farkas, S.A.; Loss, M.; et al. KLRG1+ NK cells protect T-bet-deficient mice from pulmonary metastatic colorectal carcinoma. J. Immunol. 2014, 192, 1954–1961.
  52. Chan, C.J.; Martinet, L.; Gilfillan, S.; Souza-Fonseca-Guimaraes, F.; Chow, M.T.; Town, L.; Ritchie, D.S.; Colonna, M.; Andrews, D.M.; Smyth, M.J. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat. Immunol. 2014, 15, 431–438.
  53. Martinet, L.; Ferrari De Andrade, L.; Guillerey, C.; Lee, J.S.; Liu, J.; Souza-Fonseca-Guimaraes, F.; Hutchinson, D.S.; Kolesnik, T.B.; Nicholson, S.E.; Smyth, M.J. DNAM-1 expression marks an alternative program of NK cell maturation. Cell Rep. 2015, 11, 85–97.
  54. de Andrade, L.F.; Ngiow, S.F.; Martinet, L.; Smyth, M.J. Natural Killer cell control of BRAFV600E mutant melanoma during targeted therapy. Oncoimmunology 2015, 4, e998119.
  55. Paolino, M.; Choidas, A.; Wallner, S.; Pranjic, B.; Uribesalgo, I.; Loeser, S.; Jamieson, A.M.; Langdon, W.Y.; Ikeda, F.; Fededa, J.P.; et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 2014, 507, 508–512.
  56. Ferrari de Andrade, L.; Ngiow, S.F.; Stannard, K.; Rusakiewicz, S.; Kalimutho, M.; Khanna, K.K.; Tey, S.K.; Takeda, K.; Zitvogel, L.; Martinet, L.; et al. Natural killer cells are essential for the ability of BRAF inhibitors to control BRAFV600E-mutant metastatic melanoma. Cancer Res. 2014, 74, 7298–7308.
  57. Putz, E.M.; Guillerey, C.; Kos, K.; Stannard, K.; Miles, K.; Delconte, R.B.; Takeda, K.; Nicholson, S.E.; Huntington, N.D.; Smyth, M.J. Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis. OncoImmunology 2017, 6, e1267892.
  58. Delconte, R.B.; Kolesnik, T.B.; Dagley, L.F.; Rautela, J.; Shi, W.; Putz, E.M.; Stannard, K.; Zhang, J.G.; Teh, C.; Firth, M.; et al. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat. Immunol. 2016, 17, 816–824.
  59. Morisaki, T.; Onishi, H.; Katano, M. Cancer immunotherapy using NKG2D and DNAM-1 systems. Anticancer Res. 2012, 32, 2241–2247.
  60. Spiegel, A.; Brooks, M.W.; Houshyar, S.; Reinhardt, F.; Ardolino, M.; Fessler, E.; Chen, M.B.; Krall, J.A.; DeCock, J.; Zervantonakis, I.K.; et al. Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov. 2016, 6, 630–649.
  61. Diefenbach, A.; Jensen, E.R.; Jamieson, A.M.; Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 2001, 413, 165–171.
  62. Malladi, S.; Macalinao, D.G.; Jin, X.; He, L.; Basnet, H.; Zou, Y.; de Stanchina, E.; Massague, J. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 2016, 165, 45–60.
  63. Street, S.E.; Cretney, E.; Smyth, M.J. Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 2001, 97, 192–197.
  64. Smyth, M.J.; Thia, K.Y.; Cretney, E.; Kelly, J.M.; Snook, M.B.; Forbes, C.A.; Scalzo, A.A. Perforin is a major contributor to NK cell control of tumor metastasis. J. Immunol. 1999, 162, 6658–6662.
  65. Takeda, K.; Hayakawa, Y.; Smyth, M.J.; Kayagaki, N.; Yamaguchi, N.; Kakuta, S.; Iwakura, Y.; Yagita, H.; Okumura, K. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat. Med. 2001, 7, 94–100.
  66. Prager, I.; Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 2019, 105, 1319–1329.
  67. Liu, X.; Song, J.; Zhang, H.; Liu, X.; Zuo, F.; Zhao, Y.; Zhao, Y.; Yin, X.; Guo, X.; Wu, X.; et al. Immune ch.eckpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell 2023, 41, 272–287.e9.
  68. Chan, I.S.; Knútsdóttir, H.; Ramakrishnan, G.; Padmanaban, V.; Warrier, M.; Ramirez, J.C.; Dunworth, M.; Zhang, H.; Jaffee, E.M.; Bader, J.S.; et al. Cancer cells educate natural killer cells to a metastasis-promoting cell state. J. Cell Biol. 2020, 219, e202001134.
  69. Wang, X.; Xing, Z.; Chen, H.; Yang, H.; Wang, Q.; Xing, T. High expression of nectin-1 indicates a poor prognosis and promotes metastasis in hepatocellular carcinoma. Front. Oncol. 2022, 12, 953529.
  70. Benson, D.M., Jr.; Bakan, C.E.; Mishra, A.; Hofmeister, C.C.; Efebera, Y.; Becknell, B.; Baiocchi, R.A.; Zhang, J.; Yu, J.; Smith, M.K.; et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: A therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 2010, 116, 2286–2294.
  71. Carosella, E.D.; Rouas-Freiss, N.; Tronik-Le Roux, D.; Moreau, P.; LeMaoult, J. HLA-G: An immune checkpoint molecule. Adv. Immunol. 2015, 127, 33–144.
  72. Girotti, M.R.; Salatino, M.; Dalotto-Moreno, T.; Rabinovich, G.A. Sweetening the hallmarks of cancer: Galectins as multifunctional mediators of tumor progression. J. Exp. Med. 2020, 217, e20182041.
  73. Yan, W.; Chang, Y.; Liang, X.; Cardinal, J.S.; Huang, H.; Thorne, S.H.; Monga, S.P.; Geller, D.A.; Lotze, M.T.; Tsung, A. High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 2012, 55, 1863–1875.
  74. Moriwaka, Y.; Luo, Y.; Ohmori, H.; Fujii, K.; Tatsumoto, N.; Sasahira, T.; Kuniyasu, H. HMGB1 attenuates antimetastatic defense of the lymph nodes in colorectal cancer. Pathobiology 2010, 77, 17–23.
  75. Chiba, S.; Baghdadi, M.; Akiba, H.; Yoshiyama, H.; Kinoshita, I.; Dosaka-Akita, H.; Fujioka, Y.; Ohba, Y.; Gorman, J.V.; Colgan, J.D.; et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol. 2012, 13, 832–842.
  76. Thies, A.; Mauer, S.; Fodstad, O.; Schumacher, U. Clinically proven markers of metastasis predict metastatic spread of human melanoma cells engrafted in scid mice. Br. J. Cancer 2007, 96, 609–616.
  77. Cornel, A.M.; Mimpen, I.L.; Nierkens, S. MHC Class I downregulation in cancer: Underlying mechanisms and potential targets for cancer immunotherapy. Cancers 2020, 12, 1760.
  78. Garrido, F.; Aptsiauri, N. Cancer immune escape: MHC expression in primary tumours versus metastases. Immunology 2019, 158, 255–266.
  79. Taylor, B.C.; Balko, J.M. Mechanisms of MHC-I downregulation and role in immunotherapy response. Front. Immunol. 2022, 13, 844866.
  80. Armeanu, S.; Bitzer, M.; Lauer, U.M.; Venturelli, S.; Pathil, A.; Krusch, M.; Kaiser, S.; Jobst, J.; Smirnow, I.; Wagner, A.; et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 2005, 65, 6321–6329.
  81. Lopez-Soto, A.; Folgueras, A.R.; Seto, E.; Gonzalez, S. HDAC3 represses the expression of NKG2D ligands ULBPs in epithelial tumour cells: Potential implications for the immunosurveillance of cancer. Oncogene 2009, 28, 2370–2382.
  82. Deng, W.; Gowen, B.G.; Zhang, L.; Wang, L.; Lau, S.; Iannello, A.; Xu, J.; Rovis, T.L.; Xiong, N.; Raulet, D.H. Antitumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science 2015, 348, 136–139.
  83. Chitadze, G.; Lettau, M.; Bhat, J.; Wesch, D.; Steinle, A.; Furst, D.; Mytilineos, J.; Kalthoff, H.; Janssen, O.; Oberg, H.H.; et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: Heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int. J. Cancer 2013, 133, 1557–1566.
  84. Liu, G.; Atteridge, C.L.; Wang, X.; Lundgren, A.D.; Wu, J.D. The membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of MHC class I chain-related molecule A independent of A disintegrin and metalloproteinases. J. Immunol. 2010, 184, 3346–3350.
  85. Zhang, J.; Basher, F.; Wu, J.D. NKG2D ligands in tumor immunity: Two sides of a coin. Front. Immunol. 2015, 6, 97.
  86. Schlecker, E.; Fiegler, N.; Arnold, A.; Altevogt, P.; Rose-John, S.; Moldenhauer, G.; Sucker, A.; Paschen, A.; von Strandmann, E.P.; Textor, S.; et al. Metalloprotease-mediated tumor cell shedding of B7-H6, the ligand of the natural killer cell-activating receptor NKp30. Cancer Res. 2014, 74, 3429–3440.
  87. Yamaguchi, K.; Chikumi, H.; Shimizu, A.; Takata, M.; Kinoshita, N.; Hashimoto, K.; Nakamoto, M.; Matsunaga, S.; Kurai, J.; Miyake, N.; et al. Diagnostic and prognostic impact of serum-soluble UL16-binding protein 2 in lung cancer patients. Cancer Sci. 2012, 103, 1405–1413.
  88. Paschen, A.; Sucker, A.; Hill, B.; Moll, I.; Zapatka, M.; Nguyen, X.D.; Sim, G.C.; Gutmann, I.; Hassel, J.; Becker, J.C.; et al. Differential clinical significance of individual NKG2D ligands in melanoma: Soluble ULBP2 as an indicator of poor prognosis superior to S100B. Clin. Cancer Res. 2009, 15, 5208–5215.
  89. Maecker, H.L.; Yun, Z.; Maecker, H.T.; Giaccia, A.J. Epigenetic changes in tumor Fas levels determine immune escape and response to therapy. Cancer Cell 2002, 2, 139–148.
  90. Bruno, A.; Focaccetti, C.; Pagani, A.; Imperatori, A.S.; Spagnoletti, M.; Rotolo, N.; Cantelmo, A.R.; Franzi, F.; Capella, C.; Ferlazzo, G.; et al. The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia 2013, 15, 133–142.
  91. Kopp, H.G.; Placke, T.; Salih, H.R. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res. 2009, 69, 7775–7783.
  92. Tang, P.M.; Zhou, S.; Meng, X.M.; Wang, Q.M.; Li, C.J.; Lian, G.Y.; Huang, X.R.; Tang, Y.J.; Guan, X.Y.; Yan, B.P.; et al. Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. Nat. Commun. 2017, 8, 14677.
  93. Pedroza-Pacheco, I.; Madrigal, A.; Saudemont, A. Interaction between natural killer cells and regulatory T cells: Perspectives for immunotherapy. Cell Mol. Immunol. 2013, 10, 222–229.
  94. Li, H.; Han, Y.; Guo, Q.; Zhang, M.; Cao, X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane- bound TGF-beta 1. J. Immunol. 2009, 182, 240–249.
  95. Sceneay, J.; Chow, M.T.; Chen, A.; Halse, H.M.; Wong, C.S.; Andrews, D.M.; Sloan, E.K.; Parker, B.S.; Bowtell, D.D.; Smyth, M.J.; et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res. 2012, 72, 3906–3911.
  96. Della Chiesa, M.; Carlomagno, S.; Frumento, G.; Balsamo, M.; Cantoni, C.; Conte, R.; Moretta, L.; Moretta, A.; Vitale, M. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 2006, 108, 4118–4125.
  97. Bidwell, B.N.; Slaney, C.Y.; Withana, N.P.; Forster, S.; Cao, Y.; Loi, S.; Andrews, D.; Mikeska, T.; Mangan, N.E.; Samarajiwa, S.A.; et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat. Med. 2012, 18, 1224–1231.
  98. Mlecnik, B.; Bindea, G.; Angell, H.K.; Sasso, M.S.; Obenauf, A.C.; Fredriksen, T.; Lafontaine, L.; Bilocq, A.M.; Kirilovsky, A.; Tosolini, M.; et al. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci. Transl. Med. 2014, 6, 228ra37.
  99. Whitley, M.J.; Suwanpradid, J.; Lai, C.; Jiang, S.W.; Cook, J.L.; Zelac, D.E.; Rudolph, R.; Corcoran, D.L.; Degan, S.; Spasojevic, I.; et al. ENTPD1 (CD39) expression inhibits UVR-induced DNA damage repair through purinergic signaling and is associated with metastasis in human cutaneous squamous cell carcinoma. J. Investig. Dermatol. 2021, 141, 2509–2520.
  100. Young, A.; Mittal, D.; Stagg, J.; Smyth, M.J. Targeting cancer derived adenosine: New therapeutic approaches. Cancer Discov. 2014, 4, 879–888.
  101. Beavis, P.A.; Divisekera, U.; Paget, C.; Chow, M.T.; John, L.B.; Devaud, C.; Dwyer, K.; Stagg, J.; Smyth, M.J.; Darcy, P.K. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 14711–14716.
  102. Cekic, C.; Day, Y.J.; Sag, D.; Linden, J. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res. 2014, 74, 7250–7259.
  103. Young, A.; Ngiow, S.F.; Barkauskas, D.S.; Sult, E.; Hay, C.; Blake, S.J.; Huang, Q.; Liu, J.; Takeda, K.; Teng, M.W.; et al. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell 2016, 30, 391–403.
  104. Berchem, G.; Noman, M.Z.; Bosseler, M.; Paggetti, J.; Baconnais, S.; Le Cam, E.; Nanbakhsh, A.; Moussay, E.; Mami-Chouaib, F.; Janji, B.; et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-beta and miR23a transfer. Oncoimmunology 2016, 5, e1062968.
  105. Baginska, J.; Viry, E.; Berchem, G.; Poli, A.; Noman, M.Z.; van Moer, K.; Medves, S.; Zimmer, J.A.; Niclou, S.P.; Bleackley, R.C.; et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc. Natl. Acad. Sci. USA 2013, 110, 17450–17455.
  106. Hatfield, S.M.; Kjaergaard, J.; Lukashev, D.; Schreiber, T.H.; Belikoff, B.; Abbott, R.; Sethumadhavan, S.; Philbrook, P.; Ko, K.; Cannici, R.; et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl. Med. 2015, 7, 277ra230.
  107. Sun, X.; Wu, Y.; Gao, W.; Enjyoji, K.; Csizmadia, E.; Muller, C.E.; Murakami, T.; Robson, S.C. CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 2010, 139, 1030–1040.
  108. Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic reprogramming, and cancer progression. Science 2020, 368, eaaw5473.
  109. Sheppard, S.; Santosa, E.K.; Lau, C.M.; Violante, S.; Giovanelli, P.; Kim, H.; Cross, J.R.; Li, M.O.; Sun, J.C. Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Rep. 2021, 35, 109210.
  110. Chow, M.T.; Sceneay, J.; Paget, C.; Wong, C.S.; Duret, H.; Tschopp, J.; Moller, A.; Smyth, M.J. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. Cancer Res. 2012, 72, 5721–5732.
  111. Dupaul-Chicoine, J.; Arabzadeh, A.; Dagenais, M.; Douglas, T.; Champagne, C.; Morizot, A.; Rodrigue-Gervais, I.G.; Breton, V.; Colpitts, S.L.; Beauchemin, N.; et al. The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity 2015, 43, 751–763.
  112. Shabani, N.; Mylonas, I.; Kunert-Keil, C.; Briese, V.; Janni, W.; Gerber, B.; Friese, K.; Jeschke, U. Expression of glycodelin in human breast cancer: Immunohistochemical analysis in mammary carcinoma in situ, invasive carcinomas and their lymph node metastases. Anticancer Res. 2005, 25, 1761–1764.
  113. Okamoto, N.; Uchida, A.; Takakura, K.; Kariya, Y.; Kanzaki, H.; Riittinen, L.; Koistinen, R.; Seppälä, M.; Mori, T. Suppression by human placental protein 14 of natural killer cell activity. Am. J. Reprod. Immunol. 1991, 26, 137–142.
  114. Phan, T.G.; Croucher, P.I. The dormant cancer cell life cycle. Nat. Rev. Cancer 2020, 20, 398–411.
  115. Wang, B.; Wang, Q.; Wang, Z.; Jiang, J.; Yu, S.C.; Ping, Y.F.; Yang, J.; Xu, S.L.; Ye, X.Z.; Xu, C.; et al. Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res. 2014, 74, 5746–5757.
More
Academic Video Service