Imaging-Based Biomarkers in Renal Cell Carcinoma: Comparison
Please note this is a comparison between Version 1 by Abraham Ari Hakimi and Version 2 by Rita Xu.

Cross-sectional imaging is the standard diagnostic tool to determine underlying biology in renal masses, which is crucial for subsequent treatment. Standard CT imaging is limited in its ability to differentiate benign from malignant disease. Therefore, various modalities have been investigated to identify imaging-based parameters to improve the noninvasive diagnosis of renal masses and renal cell carcinoma (RCC) subtypes. MRI was reported to predict grading of RCC and to identify RCC subtypes, and has been shown in a small cohort to predict the response to targeted therapy. Dynamic imaging is promising for the staging and diagnosis of RCC. PET/CT radiotracers, such as

18

F-fluorodeoxyglucose (FDG),

124

I-cG250, radiolabeled prostate-specific membrane antigen (PSMA), and

11

C-acetate, have been reported to improve the identification of histology, grading, detection of metastasis, and assessment of response to systemic therapy, and to predict oncological outcomes.

  • imaging
  • renal cell carcinoma
  • biomarker

1. Introduction

Renal cell carcinoma (RCC) has an incidence of 12 per 100,000 in North America, and a peak incidence at the age of 60–70 years [1]. RCC incidence continues to rise, with an estimated 79,000 new cases and 13,920 deaths from RCC in 2022 in the United States alone [2]. The most common histologic subtype of renal cell carcinoma is clear-cell renal cell carcinoma (ccRCC), with five-year survival rates declining by stage of the disease. In the industrial world, the incidence of localized RCC continues to rise, with almost 70% of tumors being detected incidentally [3][4][3,4], secondary to increased utilization of abdominal imaging.
Current challenges in the treatment of renal cell carcinoma include diagnostic uncertainty, which leads to both under- and overtreatment of the disease. Conventional cross-sectional imaging techniques do not allow for the discrimination of malignant tumor sub-types, nor can they differentiate between benign lesions. Additionally, current imaging gives researcherus opaque insight into patients with metastatic disease and its response to and progression with therapeutics. In recent years, research has focused on improved imaging techniques to enhance diagnostic precision and prognosis in patients with renal tumors. Advancements in the field have been multi-factorial, from enhancements in current ultrasound and cross-sectional imaging technologies, nuclear medicine studies, and the field of radiomics, which infers renal mass insights from radiologic data.

2. Magnetic Resonance Imaging (MRI)

Multiparametric MRI (mpMRI) allows for the evaluation of anatomic as well as functional characteristics of renal masses [5]. Specifically, diffusion MRI and perfusion MRI have been studied as imaging tools to aid in differentiating tumor histology or subtype, and assessing the response to treatment [6]. MRI has been proposed as an alternative to computed tomography (CT), which is limited in its ability to identify benign lesions such as fat-poor angiomyolipomas (AMLs) and oncocytomas [7][8][7,8]. Diffusion-weighted imaging (DWI) quantifies the mobility of protons that are associated with water (Brownian motion). Tissue that is highly cellular, such as tumors, restricts water molecules’ movement, and thus appears as a high-intensity signal on DWI, and has a low apparent diffusion coefficient (ADC) [9]. A systematic review and meta-analysis including four studies that used DWI to differentiate between malignant and non-malignant lesions showed DWI to have 86% sensitivity and 78% specificity. In this meta-analysis, DWI used to differentiate high-grade and low-grade RCCs had an area under the curve (AUC) of 83%, reflecting moderately accurate test performance. However, there were no standardized criteria to compare radiological findings to different imaging modalities or pathological specimens [10]. These values are comparable to those associated with CT scans, where the sensitivity has been reported to be 88% and the specificity 75% [11]. Using diffusion MRI, parenchymal wash index, and ADC ratio were correlated with clear-cell RCC Fuhrman grade, with a pooled sensitivity and specificity of DWI to differentiate between high and low grades of 78% and 86%, respectively [12][13][12,13]. Perfusion MRI, which assesses tissue perfusion at the micropapillary level, offers the possibility of improving performance characteristics. There are three main types of perfusion MRI: dynamic contrast-enhanced (DCE), dynamic susceptibility contrast (DSC), and arterial spin labeling (ASL) [6][14][6,14]. DCE and DSC calculate changes in signal intensity before and after intravenous gadolinium contrast injection, which measures perfusion parameters. ASL does not require intravenous contrast, and measures perfusion by detecting water protons in the blood [14]. Using ASL perfusion MRI, Lanzman et al. compared pre-operative MRI perfusions of 42 patients with various types of renal masses. The RCC histology was associated with different mean perfusion levels, with papillary RCC having lower perfusion levels than all other RCC types, and oncocytomas having significantly higher perfusion levels than RCCs [15]. Differentiating fat-poor AML and RCC based solely on imaging is a known challenge. In a systematic review and meta-analysis by Wilson et al., MRI was found to be 83% sensitive and 90% specific for the detection of fat-poor AMLs, with an AUC of 0.93 [16]. In a retrospective study of 109 renal masses, Kay et al. developed an MRI diagnostic algorithm comprising 11 MR imaging features to determine the most likely histology of a renal mass. They found a sensitivity and specificity of 85% and 76%, respectively, for predicting clear cell histology, and 80% and 94%, respectively, for predicting papillary histology. Their algorithm, however, was weak in predicting chromophobe, oncocytoma, and fat-poor AML histologies [17]. Using this algorithm, Canvasser and colleagues developed a clear cell likelihood scale of 1 (less likely) to 5 (most likely), and found a sensitivity of 78% and a specificity of 90% for scores of 4 and 5 [18]. The clear cell likelihood scale was evaluated in a larger retrospective cohort of 454 renal masses, and the authors found a 93% positive predictive value for a score of 5, and a sensitivity and specificity of predicting clear-cell RCC of 91% and 56%, respectively, for scores of 4 and 5 [19]. Although these scales do not provide insight into tumor aggressiveness, they may be used to help select treatment for small renal masses, and to determine candidates for surveillance [5]. There is a growing interest in using mpMRI, not only to predict renal mass histology and behavior, but also to assess response to therapy. In a prospective mixed cohort of treatment-naïve and exposed patients, Tsai et al. evaluated changes in tumor ASL MRI perfusion as a measure of response to sunitinib and pazopanib treatment for metastatic RCC. Perfusion on MRI imaging, as evaluated by objective response rate, was compared among 6 responders and 11 non-responders at multiple time points during treatment and up to disease progression. Responders had a higher baseline tumor perfusion than non-responders (404 mL/100 g/min vs. 199 mL/100 g/min; p = 0.02), suggesting this could aid in identifying responders to therapy with tyrosine kinase inhibitors [20]. In a prospective, randomized, double-blinded trial that compared sorafenib and placebo, DCE MRI was also evaluated as a pharmacodynamic biomarker of response to sorafenib in metastatic RCC. Of the 44 patients with two available MRIs for comparison, two DCE parameters (area under the contrast concentration versus time curve 90 s after contrast injection [IAUC90], and volume transfer constant of contrast agent [Ktrans]) were evaluated. Although patients with high baseline Ktrans had better progression-free survival (PFS) compared to patients with low baseline Ktrans (log-rank p = 0.027), there was no significant association between change in IAUC90 and Ktrans with PFS [21]. In summary, while multiple studies have evaluated the use of MRI to predict the histology and grade of renal masses, and to assess response to treatment in metastatic RCC, they were generally small studies that used a variety of non-standardized mpMRI metrics [14]. Future studies are needed to validate the use of these metrics and demonstrate their usefulness in clinical scenarios.

3. Contrast-Enhanced Ultrasound

Ultrasound is a widely used diagnostic tool, and in many settings is the first modality used to evaluate renal pathologies. Focal lesions, hydronephrosis, and vascular pathologies can be identified, whereas benign lesions cannot be reliably distinguished from malignancies by conventional ultrasound [22]. Therefore, contrast-enhanced ultrasound (CEUS) has been proposed to visualize RCC characteristics. The contrast agent used for ultrasound is based on microbubbles, and amplifies the signal of microvascular structures [23]. CEUS has been shown to highly differentiate RCC from oncocytoma and angiomyolipoma [24][25][24,25]. In one study, combining CEUS parameters showed a 93% sensitivity and 100% specificity for renal malignancies [26]. Furthermore, a study of 85 patients with 93 renal masses showed that peak intensity and time to peak intensity in CEUS differed between clear-cell RCC, chromophobe RC and papillary RCC [27]. Additional studies have shown specific enhancement characteristics compared to clear-cell RCC [28]. CEUS has also been used in the diagnostic setting. For example, Lamuraglia et al., in 2006, showed that CEUS holds predictive value in metastatic RCC patients treated with the multi-kinase inhibitor sorafenib [29]. Similarly, Williams et al. reported significant changes in CEUS along with anti-angiogenic therapy of metastatic RCC, although CEUS parameters did not correlate with progression-free survival or best response rate to therapy [30]. Current research focuses on the assessment of CEUS to predict the response to immunotherapy in metastatic RCC (NCT05206942). In summary, CEUS is a diagnostic modality that offers potential advantages in the characterization of renal masses, including enhanced diagnostic performance, characterization of renal mass histologic subtypes, its low cost, its low barrier to access, and the absence of ionizing radiation. Additional studies are needed in larger settings to validate these findings, including understanding performance characteristics in patients with different habitus.

4. Positron Emission Tomography–Computed Tomography (PET/CT)

Molecular or nuclear imaging studies rely on in vivo visualizations of biological processes at a cellular and molecular level, using radiopharmaceutical compounds that bind to a molecule of interest [5]. In RCC specifically, nuclear imaging allows for the identification of not only anatomic locations, but also for molecular pathways and processes that are associated with specific histologic features and tumor behavior. Multiple positron emission tomography (PET) radiotracers have been developed and studied as both prognostic and predictive biomarkers in RCC [6][31][6,31].

4.1. 18F-Fluorodeoxy-Glucose (FDG) PET/CT

While 18F-fluorodeoxy-glucose (FDG)-PET is the most common and well-known radiotracer used in other cancers, it has limited applicability in RCC due to its variable activity in primary and metastatic tumors, as well as physiologic uptake in normal renal parenchyma [5]. In a meta-analysis of 14 studies that assessed this modality in advanced RCC, the pooled sensitivity and specificity of FDG-PET/CT were 62% and 88%, respectively, for renal lesions, and 79% and 90%, respectively, for extrarenal lesions [32]. Despite variable uptake at the individual lesion level, the maximum standardized uptake value (SUVmax) of lesions in patients with advanced RCC has been independently associated with overall survival (OS) and PFS [33][34][33,34]. FDG-PET/CT activity has been proposed as a surrogate for tumor aggressiveness, as it has also been correlated with higher Fuhrman grade, TNM stage, and sarcomatoid features, and can aid in the prediction of progression and in clinical decision making [35][36][37][38][35,36,37,38]. Additionally, the detection of metastatic or recurrent sites was evaluated in a recent meta-analysis that included 14 studies [39]. The pooled sensitivity was described with 0.86, and specificity with 0.88 [39]. Accordingly, FDG-PET may be a useful re-staging tool for RCC, but current evidence is mostly based on retrospective studies, and lacks prospective investigations [39]. Hou et al. focused on the clinical value of FDG-PET in papillary RCC, and reported a similar sensitivity of 81% in the primary lesion and 100% in recurrent lesions [40]. These preliminary retrospective studies are promising, and need to be confirmed in larger prospective studies. Limitations to the use of FDG-PET/CT include practicality, cost, and variable results across multiple studies [41].

4.2. 124I-cG250 (124I-Girentuximab)

Girentuximab, formerly known as antibody cG250, is one of the most promising nuclear imaging methodologies in the characterization of solid renal masses [5]. It selectively binds to carbonic anhydrase IX (CA-IX), a protein that is overexpressed in VHL-mutated pathways in response to hypoxic conditions, and is expressed in 95 to 100% of clear-cell RCCs [6][42][43][6,42,43]. A multi-center phase III trial, the REDECT trial, evaluated the diagnostic efficacy of 124I-girentuximab PET/CT and contrast-enhanced CT (CECT) in identifying clear-cell RCC in patients with indeterminate renal masses that were scheduled for surgical resection. Imaging was performed 2–6 days after intravenous administration of girentuximab, and prior to surgical resection. Imaging readings were classified as clear-cell RCC and non-clear-cell RCC, which were then compared to final surgical pathologies. In 195 patients that had imaging and pathology available for analysis, the average sensitivity and specificity were 86.2% and 85.9%, respectively, for girentuximab-PET/CT, and 75.5% and 46.8%, respectively, for CECT. Furthermore, the inter-reader agreement was higher for girentuximab PET/CT [44]. Although the limitations of this study included a bias in patient selection, using only pre-surgical candidates, nevertheless, it provides the most accurate validation of pathology with imaging using PET/CT. Different radiotracers targeting CA-IX are currently being studied to improve clinical practice to reduce the long half-life of girentuximab. The molecule F-VM4-037, which is reported to have an 18-minute plasma half-life, has been studied in a phase II trial to allow same-day imaging [45]. Although the performance characteristics of this approach appear to be promising, logistics and timing remain ongoing barriers and, additionally, advancements in the technology will need to be validated in order for it to be used in clinical practice. There is currently a prospective, open-label, multi-center phase III trial evaluating the performance characteristics of girentuximab (an anti-CAIX monoclonal antibody) labelled with 89Zr, to evaluate indeterminate renal masses to differentiate clear-cell RCC from other renal masses (ZIRCON Trial; NCT03849118). Its preliminary results were reported recently, and exceed the predetermined sensitivity and specificity study targets, with the imaging agent delivering 86% sensitivity and 87% specificity [46]. The phase I study showed in all ten cases a good toxicity profile, and was able to differentiate between clear-cell RCC and non-clear-cell RCC renal mass [47]. This technology is also being examined for diagnostic and therapeutic purposes in the STARLITE 2 Phase II study which evaluates the efficacy of Lu177 conjugated to girentuximab + nivolumab (anti-PD-1) systemic therapy. In a theranostic approach, Girentuximab could be labelled with 177Lu, a beta- emitter, that could induce single-strand DNA breaks into RCC cells. These agents are promising, and future research will focus on their incorporation into clinical practice.

4.3. Prostate-Specific Membrane Antigen (PSMA)–Targeted PET/CT

Prostate-specific membrane antigen (PSMA) is a cell surface protein that is overexpressed in prostate cancer, as well as in the neovasculature of some solid tumors, including RCC. PSMA-targeted imaging was first described in metastatic RCC by Demirci et al. in 2014 [48]. Small studies have reported the sensitivity of F-DCFPyL PSMA PET/CT in detecting distant metastases to range from 88.9% to 94.7%, compared with 66.7% to 78.0% for conventional CT scans [49][50][51][49,50,51]. For localized renal masses, Golan et al. found that the mean SUVmax of 68Ga-PSMA-11 PET/CT was significantly higher in malignant as compared to benign lesions, and its washout coefficient K2 was significantly lower in cancerous tissue [52]. Gao et al. reported that SUVmax of the same tracer could effectively differentiate high vs. low (WHO/SIUP grade I-II vs. III-IV) grade in 36 cases of clear-cell RCC. Furthermore, 68Ga-PSMA-11 PET/CT could predict the presence of adverse histopathological characteristics, such as necrosis and sarcomatoid and rhabdoid features, with an AUC of 0.89 [53]. Both of these studies, however, have small sample sizes, and are not consistent with prior studies that show a high-background signal, limiting the evaluation of primary masses [54][55][54,55]. In general, most studies of PSMA-targeted PET/CT have included mostly clear-cell RCC, but the few non-clear-cell RCC lesions evaluated by this approach have shown lower uptake than surrounding renal parenchyma [55]. In particular, a meta-analysis described that PSMA PET/CT may also be suitable for chromophobe RCC, due to its relevant PSMA expression [56]. In contrast, only 13.6% of papillary RCC demonstrate a PSMA expression and therefore, FDG PET is the preferred dynamic imaging modality [56][57][56,57]. Based on the inconsistency of PSMA uptake in non-clear-cell RCC, PSMA PET is not appropriate for staging RCC subtypes other than clear-cell and chromophobe RCCs [56][58][56,58].
ScholarVision Creations