Noise-Induced Hearing Loss: Comparison
Please note this is a comparison between Version 1 by Konstantina Stankovic and Version 3 by Konstantina Stankovic.

Noise-induced hearing loss (NIHL) is the second most common cause of sensorineural hearing loss, after age-related hearing loss, and affects approximately 5% of the world’s population. NIHL is associated with substantial physical, mental, social, and economic impacts at the patient and societal levels. Stress and social isolation in patients’ workplace and personal lives contribute to quality-of-life decrements which may often go undetected. 

  • noise-induced hearing loss
  • sensorineural hearing loss
  • cochlear hair cell
  • diagnosis

1. Introduction

Noise-induced hearing loss (NIHL) is a consequence of multifactorial damage to auditory structures following exposure to occupational, environmental, or recreational sources of loud sound. Noise has been recognized as a factor contributing to hearing loss long before rigorous data collection, sophisticated analyses, and careful experimental design became the norm. Although earplugs were patented in 1864, hearing protection devices are mentioned in ancient Greek mythology [1]. NIHL was formally acknowledged as a medical condition in the United States (US) during the Industrial Revolution, first named ‘boilermaker’s disease’ as a reference to the hearing loss suffered by workers building engines that powered transportation and production [2]. Historical data on US women who worked in the factories during World War I and II reveal devastating health effects, including hearing loss, although disorders caused by exposure to chemicals received more attention than those attributable to noise [3]. Noted physician and Nobel Prize winner Robert Koch predicted in 1910 that “one day man will have to fight noise as fiercely as cholera and pest” [4]. Despite this prediction and the long-standing knowledge of the adverse effects of noise on hearing and extensive research in the modern era, hearing loss continues to rank among the most common work-related illnesses both in the US and the world [5].
NIHL may be unilateral (affecting one ear) or bilateral (affecting both ears), and the hearing deficits may be transient or permanent [6]. The duration and severity of NIHL depends on the extent and location of cellular damage, which correlates with intensity and duration of the sound stimulus. Because the mammalian auditory sensory epithelium—the organ of Corti—does not spontaneously regenerate when sensory cells are lost, noise-induced hair cell or neural degeneration can result in permanent hearing loss particularly in the setting of repeated exposure [6][7][6,7]. Furthermore, NIHL is frequently irreversible and can have a profoundly negative impact on an individual’s quality of life and on the economy and society at large. However, NIHL is largely a preventable condition when appropriate precautions, such as the use of hearing protection, can be taken. Therefore, implementing measures to detect and attenuate causative factors, raising awareness of the condition and implementing protective strategies, and developing therapies that protect against or mitigate damage from noise exposure can aid in the prevention of this common condition.

2. Prevention and Management of NIHL

2.1. Prevention

NIHL is mostly preventable, and tangible steps to reduce the burden of the disorder can be taken via the implementation of educational programs, regulation, and legislation to raise awareness and pre-emptively mitigate the damage caused by noise. In the US, the 1972 Noise Control Act established federal noise emission standards for commercial products and required that the public be provided information about noise emission levels and ways of reducing them [8][203]. Two US governmental departments—OSHA and the National Institute for Occupational Safety & Health (NIOSH)—have made recommendations for the permissible noise limit (PEL) of workplace noise exposure based on the average time a worker is exposed [9][10][204,205]. Daily noise dose is expressed as a percentage, per occupational standards, taking duration, sound exposure level, and course of exposure into account. For example, reaching 100% of a worker’s daily noise dose could be expressed as 85 dBA per NIOSH and 90 dBA per OSHA over a shift of 8 h. The course of exposure is cut when there is an increase in noise levels [11][206] (Table 1). Additionally, OSHA regulates that employers must provide hearing protection if employees are exposed to noise over the permissible exposure limit of 90 dB over an eight-hour time-weighted average [12][207]. Arenas et al. compared the occupational noise exposure levels in Latin America, the US, and Canada and found that 81% of the countries have a PEL of 85 dBA and that the majority of the countries limit impulsive noise exposure to a peak unweighted sound pressure level of 140 dB [13][208]. However, there were no established regulations in 27% of the countries, potentially exposing millions of people to NIHL.
Table 1.
Occupational noise exposure limits recommended by NIOSH and OSHA.
Video Production Service