13C solid-state Nuclear Magnetic Resonance (SSNMR) has often been applied to follow the transformation of organic matter during waste composting to produce soil amendments, as well as to assess the quality of the products and the effectiveness of the treatment. Here we present a review of the relevant literature to this topic, highlighting the potential of the 13C SSNMR technique, as well as the critical issues and perspectives.
Chemical shift range |
Assignment |
Conventional region name |
||
0-28 ppm |
CH3 and CH2 in short chain and simple aliphatics |
Alkyl C |
||
28-45 ppm |
CH2 and CH in long aliphatic chains |
|||
45-60 ppm |
O-CH3; CH-N; aliphatic quaternary C |
O-Alkyl C |
||
60-95 ppma |
C2-C6 in cellulose and hemicellulose; alcohols; ethers |
|||
95-110 ppmb |
C1 of cellulose and hemicellulose; anomeric carbon of polysaccharides |
|||
110-145 ppmc |
Unsubstituted or alkyl-substituted aromatic C |
Aromatic C |
||
145-160 ppmd |
O,N-substituted aromatics |
|||
160-190 ppm |
Carboxylic acids; esters; amides |
Carboxyl/carbonyl C |
||
190-220 ppm |
Ketones; aldehydes |
aalso referred to as O-alkyl C region; balso referred to as di-O-alkyl C region; calso referred to as aryl C region; dalso referred to as O-aryl C region.
Although 13C CP-MAS NMR is semiquantitative, the integral values of different spectral regions (expressed as % of total area) have been extensively used as quantitative proxies for the relative C distribution among major OM functional groups in the feedstocks and in the intermediate/final products, thus monitoring the transformation process of the different components. It must be pointed out that, although most authors do not give errors on the integral intensities and some even report integral values with one or two decimal digits, errors on the units digit are to be expected, deriving from sampling and spectral processing. Moreover, normally, relative integral intensities are compared without taking into account the decrease in the absolute amount of carbon in OM due to decomposition.
Different indices are also used to express OM composition, the most common ones being the Alkyl C/O-Alkyl C (A/OA) ratio, the aromaticity index (ARM), and the hydrophobicity index (HB/HI), generally defined as:
13C SSNMR experiments on OM samples in waste management are generally carried out on spectrometers working at 13C Larmor frequencies of 75-125 MHz, although a frequency of 150 MHz is used in more recent studies and frequencies as low as 25 MHz were employed in the older ones. MAS rotors with diameters of 4 mm, containing few tens of milligrams of sample, and MAS frequencies of 8-13 kHz are usually employed. Few cases are also reported where rotors with 7 mm diameter and spinning rates of 3.5-5 kHz were used. As previously said, 13C CP-MAS experiments are usually performed with a contact time of 1 ms, although cases are reported where longer contact times (2-3 ms) are used. In these experiments, the recycle delay ranges from 0.5 to 5 s and few thousands of scans are acquired.
Before 13C SSNMR experiments, OM samples are simply dried (by freeze-drying, oven-drying at 40-110°C, or air-drying), ground, and possibly sieved to obtain a fine powder; the latter operation is not strictly necessary, but it is useful since it ensures stable sample spinning and, consequently, a better spectral resolution. Considering that only few tens of milligrams of powder are necessary for the analysis, accurate sampling and homogenization are critical to obtain a representative sample.
Several studies on composts, however, instead of investigating the bulk material, focused on extracts. Different types of extracts were investigated, that is, humic substances (HSs), dissolved organic matter (DOM), or compost tea (CT). Humic substances are stable compounds with a complex and variable composition, mainly containing aromatic rings linked by methylenic chains and/or oxygen atoms, with carboxyl and hydroxyl groups bonded to the rings and the alkyl chains. On the basis of their solubility, two different extractable HS fractions can be obtained, i.e. fulvic acids (FAs, soluble at any pH value) and humic acids (HAs, soluble at pH>2). The extraction of HSs is performed mixing the dry compost in an alkaline solution; HAs can then be separated by acidifying to pH 1.0. HAs have higher molecular weight and degree of aromatization with respect to FAs, which, on the other hand, are richer in carboxyl and hydroxyl groups [35]. Thanks to their highly aromatic structure, HAs are stable compounds and their amount is typically considered as a measure of compost maturity [36]. In fact, during composting HAs tend to increase whereas FAs tend to decrease [37]. Compost DOM is a mixture of low-molecular weight compounds, such as sugars and free amino acids, and high-molecular weight compounds, among which also HSs [38]. DOM is a very small fraction of the total organic matter present in compost, decreasing as feedstock stabilization proceeds, but it is an important component since many biochemical transformations that occur during composting take place in solution. DOM is extracted from compost by shaking the material with ultrapure water; DOM can be further divided in a hydrophobic fraction (HoDOM) and a hydrophylic fraction (HiDOM) using the Amberlite® XAD-8 or Supelite™ DAX-8 resin [38]. Finally, compost tea is an aqueous extract obtained from the fermentation of compost in water either in forced aerated or non-aerated conditions [39].
Ref. a | Feedstock b | Sample c | Alkyl C | O-Alkyl C | Aromatic C | Carboxyl/ Carbonyl C |
||
---|---|---|---|---|---|---|---|---|
Ref. a | Feedstock b | Sample c | Alkyl C | O-Alkyl C | Aromatic C | Carboxyl/ Carbonyl C |
|||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CH | 3O/CHN | O-/Di-O-alkyl C | Aryl C | O-Aryl C | |||||||||||||
CH3O/CHN | O-/Di-O-Alkyl C | Aryl C | O-Aryl C | Carboxyl C | Carbonyl C | ||||||||||||
[41] | Olive mill waste/orchard pruning residues | C 200 d | 17.39 | 11.63 | 45.86 | 12.31 | 5.75 | 7.06 | |||||||||
[72] | SM/poplar sawdust (5:3 w:w) | HA 60 d | 30.3 | 33.9 | 16.8 | 7.1 | 11.9 | ||||||||||
Olive mill waste/animal manure/wool residues | C 200 d | 26.82 | 15.32 | 38.59 | 6.93 | 4.0 | 8.34 | ||||||||||
[52] | ChM/saw dust (3:1 w:w) | C 56 d | 28.38 | 32.26 | 16.51 | ||||||||||||
CM/saw dust (3:1 w:w | |||||||||||||||||
+sepiolite 3 wt% | HA 60 d | 26.7 | 29.9 | 18.3 | 8.4 | 16.8 | ) | ||||||||||
+sepiolite 6 wt% | HA 60 d | 34.7 | 22.6 | 17.4 | 7.9 | 17.4 | C 56 d | 22.13 | 32.20 | 10.49 | |||||||
+sepiolite 9 wt% | HA 60 d | 24.3 | 29.4 | 18.3 | 10.4 | 17.6 | SM/saw dust (3:1 w:w) | ||||||||||
+sepiolite 12 wt% | C 56 d | HA 60 d31.62 | 24.0 | 41.36 | 29.917.71 | ||||||||||||
20.8 | 8.7 | 16.5 | Soybean meal/saw dust (3:1 w:w) | C 56 d | 37.94 | 43.16 | 18.40 | ||||||||||
[69] | CYN/corn straw and WC (70:30 w:w) | HS 100 d | 20.93 | 15.98 | 29.78 | 16.26 | 5.51 | 11.54 | Lemon peel/saw dust (3:1 w:w) | C 56 d | 36.23 | 41.10 | 17.43 | ||||
COF/corn straw and WC (70:30 w:w) | HS 100 d | 30.63 | 13.07 | 24.69 | 15.33 | 3.42 | 12.85 | [58] | |||||||||
PEP/corn straw and WC (70:30 w: | Wood chips/vegetable R/aromatic plant R | wC1 | 33.9 | 13.0 | 31.3 | ) | HS 100 d | 20.06 | 14.2212.6 | 2.1 | 7.2 | ||||||
35.75 | 14.40 | 4.49 | 11.08 | C2 | 38.2 | 12.3 | 26.8 | 11.5 | 2.9 | 8.2 | |||||||
[87] | CYN/WC (70:30 w:w) | HA 100 d | 22.2 | 13.8 | 27.5 | 20.0 | 5.7 | 10.9 | C3 | 23.4 | 11.7 | 44.0 | |||||
[ | 12.1 | 3.7 | 5.1 | ||||||||||||||
43] | SM/rice straw 4:1 | HA FS | 46.8 | 19.6 | 18.1 | 15.5 | C4 | 21.0 | 11.8 | 41.1 | |||||||
14.3 | 3.8 | 8.1 | |||||||||||||||
HA 40d | 28.4 | 21.7 | 31.3 | 18.7 | C5 | 19.0 | 11.4 | 42.4 | 15.5 | 3.8 | 7.9 | ||||||
22.2 | |||||||||||||||||
SM/rice straw 8:1 | HA FS | 45.8 | 17.2 | 14.7 | 22.3 | C6 | 24.6 | 10.9 | 38.7 | 15.1 | |||||||
HA 40d | 28.9 | 3.3 | 26.8 | 7.4 | |||||||||||||
31.6 | C7 | 35.7 | 11.8 | 31.0 | 11.8 | 2.5 | 7.2 | ||||||||||
12.7 | |||||||||||||||||
SM/rice straw/biochar 8:1:1 | HA FS | 43.2 | 19.9 | 18.4 | 18.5 | C8 | 37.8 | 12.0 | 30.1 | 11.4 | 2.2 | 6.5 | |||||
HA 40d | 27.9 | 23.4 | 30.5 | 18.3 | C9 | 43.6 | 10.5 | 28.0 | 9.5 | 2.2 | 6.3 | ||||||
[71] | CYN/corn straw (70:30 w:w) | HS 100 d | 16.3 | 13.8 | 24.7 | 28.9 | 5.6 | 10.6 | C10 | 34.7 | 11.5 | 30.7 | 10.4 | 3.1 | 9.5 | ||
[88] | Coffee husks/lettuce residues at (60:40 w:w) | CT 100 d | 26.9 | 11.9 | 26.4 | 16.6 | 4.3 | 14 | C11 | 30.2 | 11.3 | 33.6 | 12.0 | 5.3 | 7.7 | ||
CYN with maize straw/WC (70:30 w:w) | CT 100 d | 27.6 | 12.1 | 27.3 | 15.0 | 4.2 | 13.9 | [43] | SM/ rice straw (4:1 | ||||||||
PEP with maize straw/WC (70:30 w:w | w:w) | FS | 24.6 | 57.9 | 7.7 | 9.8 | |||||||||||
) | CT 100 d | 17.4 | 14.3 | 31.1 | 19.2 | 5.8 | 12.3 | C 40 d | 23.2 | 55.2 | 9.8 | 11.8 | |||||
[68] | Agricultural crop plants/NH4NO3 (66:34 w:w) | HA 90 d | 41.63 | 24.89 | 19.31 | 14.16 | SM/ rice straw (8:1 w:w) | FS | 28.8 | 50.5 | 7.9 | ||||||
Date palm fronds/NH4NO3 (66:34 w:w | 12.8 | ||||||||||||||||
) | HA 90 d | 36.39 | 29.05 | 23.85 | C 40 d | 25.6 | 48.9 | 10.6 | 15.0 | ||||||||
10.70 | |||||||||||||||||
Animal waste/NH4NO3 (66:34 w:w) | HA 90 d | 31.39 | 29.0 | SM/rice straw/biochar (8:1:1 w:w) | FS | 24.7 | 40.9 | 24.7 | 9.8 | ||||||||
25.45 | 14.33 | ||||||||||||||||
[89] | Tomato R/escarole R/WC/CS (17.5:20.5:60:2) | CT 105 d | 23.50 | 15.60 | 28.65 | 16.80 | 5.25 | 10.20 | C 40 d | 19.2 | 28.8 | 42.5 | 9.5 | ||||
Tomato R/escarole R/WC/CS (37:11:50:2) | CT 105 d | 22.55 | 14.95 | 26.65 | 18.25 | 5.90 | 11.75 | [10] | COF/fresh grass/mature compost (18:80:2 w:w) | C 6 d | 33.5 | 15.2 | 23.3 | 14.8 | 3.2 | 10 | |
Tomato R/escarole R/WC/CS (50:0:48:2) | CT 105 d | 23.40 | 14.70 | 26.80 | 17.10 | 6.90 | 11.15 | [45] | Solid pig slurry/cotton gin waste (4:3 v:v) | FS | 13.5 | 5.9 | |||||
Commercial compost from biowaste | 74.9 | CT 105 d | 26.95 | 12.85 | 3.7 | 0.9 | 1.1 | ||||||||||
32.70 | 10.35 | 2.90 | 14.25 | BT | 17.5 | 8.2 | 62.7 | 5.3 | 1.8 | 4.5 | |||||||
[83] | DOW/COF/pine needles and WT (1:1:1) | DOM FS | 26.0 | 6.3 | AT | 26.0 | 12.3 | 51.2 | 4.2 | 2.5 | 3.9 | ||||||
EB | 30.1 | 10.5 | 48.1 | 4.4 | 1.9 | 5.0 | |||||||||||
AM | 35.5 | 13.1 | 43.8 | 3.6 | 0.7 | 3.4 | |||||||||||
Solid pig slurry/cotton gin waste (3:4 v:v) | FS | 19.4 | 9.3 | 71.6 | 0.3 | 0.0 | 0.0 | ||||||||||
BT | 13.6 | 7.1 | 71.6 | 5.5 | 1.0 | 1.2 | |||||||||||
AT | 18.7 | 4.7 | 61.9 | 7.4 | 3.2 | 4.1 | |||||||||||
EB | 26.4 | 11.4 | 53.8 | 5.7 | 4.5 | 6.8 | |||||||||||
AM | 34.1 | 12.5 | 44.3 | 3.8 | 1.3 | 4.1 | |||||||||||
Solid pig slurry/cotton gin waste (3:7 v:v) | FS | 22.9 | 7.4 | 63.6 | 2.3 | 1.1 | 2.7 | ||||||||||
BT | 24.9 | 9.3 | 59.1 | 0.9 | 2.0 | 3.9 | |||||||||||
AT | 21.0 | 9.3 | 65.5 | 1.1 | 0.9 | 2.2 | |||||||||||
42.1 | 9.5 | 4.9 | 11.1 | ||||||||||||||
DOM 90 d | 30.8 | 7.4 | 27.1 | 13.4 | EB | 18.4 | 8.1 | 69.7 | 2.1 | 1.4 | 0.3 | ||||||
AM | 21.8 | 9.0 | 58.8 | 2.6 | 2.6 | 5.2 | |||||||||||
[51] | BM/CM/maize straw/PT (70:30 w:w) | FS | 15.4 | 10.5 | 58.4 | 8.6 | 3.0 | 4.1 | |||||||||
C 108 d | 18.5 | 11.4 | 48.0 | 12.0 | 3.4 | 6.7 | |||||||||||
+bioplastic (1 wt%) | C 108 d | 17.6 | 11.1 | 47.9 | 12.3 | 4.0 | 7.1 | ||||||||||
+bioplastic (2 wt%) | C 108 d | 18.9 | 11.0 | 49.2 | 11.6 | 3.6 | 5.7 | ||||||||||
7.3 | [49] | SM/pumice | FS | 34.6 | 48.5 | 7.3 | 9.7 | ||||||||||
C 10 d | 21.5 | 60.4 | 10.5 | 7.7 | |||||||||||||
14.0 | C 20 d | 23.6 | 57.7 | 10.9 | 7.7 | ||||||||||||
C60 d | 26.2 | 48.3 | 12.9 | 12.7 | |||||||||||||
CM/pumice | FS | 14.6 | 23.7 | 64.8 | 12.4 | 8.3 | |||||||||||
28.2 | |||||||||||||||||
C 10 d | 9.0 | 70.4 | 12.9 | 7.7 | |||||||||||||
C 20 d | 10. | 69.2 | 12.7 | 7.7 | |||||||||||||
C60 d | 11.7 | 66.6 | 13.3 | 8.5 | |||||||||||||
ChM/pumice | FS | 29.5 | 52.3 | 8.2 | 10.1 | ||||||||||||
20.3 | 27.8 | ||||||||||||||||
HS 120 d | 25.4 | 34.9 | 16.4 | 23.3 | |||||||||||||
[79] | MSW/vegetal wastes (1:1 v:v) | HA FS | 43.4 | 25.9 | 10.3 | 16.4 | 4.0 | ||||||||||
HA 28 d | 44.7 | 22.1 | 11.0 | 17.9 | 4.3 | ||||||||||||
HA 100 d | 42.9 | 20.3 | 11.4 | 17.9 | 7.5 | ||||||||||||
[61 | C 10 d | 21.5 | ] | MSW | HA FS | 66.0 | 32 | 6.4 | 45 | 6.1 | |||||||
13 | 10 | C 20 d | 21.7 | 61.6 | 9.3 | 7.4 | |||||||||||
HA 49 d | 48 | 26 | 16 | 10 | C60 d | 26.8 | 52.0 | 10.5 | 10.7 | ||||||||
[82] | MSW | HA 6 d | 38 | 31 | 13 | 5 | 11 | 2 | |||||||||
HA 19 d | 45 | 23 | 15 | 5 | 11 | 1 | |||||||||||
HA 33 d | 44 | 23 | 16 | 6 | 11 | 1 | |||||||||||
HA 62 d | 42 | 24 | 15 | 6 | 12 | 2 | |||||||||||
HA 105 d | 39 | 25 | 16 | 6 | 12 | 2 | |||||||||||
HA 187 d | 38 | 26 | 17 | 6 | 12 | 3 | |||||||||||
Core-HA 6 d | 34 | 24 | 21 | 8 | 12 | 2 | |||||||||||
Core-HA 19 d | 33 | 23 | 23 | 9 | 11 | 2 | |||||||||||
Core-HA 33 d | 34 | 23 | 23 | 9 | 11 | 1 | |||||||||||
Core-HA 62 d | 38 | 23 | 19 | 7 | 11 | 3 | |||||||||||
Core-HA 105 d | 43 | 21 | 19 | 7 | 10 | 0 | |||||||||||
Core-HA 187 d | 35 | 22 | 20 | 8 | 13 | 3 | |||||||||||
[ | |||||||||||||||||
62 | |||||||||||||||||
DOW/GT/FR (2:1:1) | DOM FS | 31.8 | 6.2 | 38.5 | 7.9 | 4.3 | 11.4 | ||||||||||
DOM 90 d | 34.6 | 7.3 | 25.9 | 13.1 | 4.9 | 14.2 | |||||||||||
GT/COF/spent yeast (1:1:1) | DOM FS | 30.8 | 5.3 | 41.2 | 6.2 | 2.8 | 13.6 | ||||||||||
DOM 90 d | 35.2 | 8.4 | 22.7 | 11.8 | 5.8 | 16.2 | |||||||||||
GT/COF/FR/sewage sludge (4:2:2.5:0.25) | DOM FS | 30.8 | 6.2 | 38.2 | 8.6 | 4.9 | 11.3 | ||||||||||
DO 90d | 33.9 | 7.8 | 25.0 | 13.2 | 5.4 | 14.7 | |||||||||||
[78] | DOW/GT/vegetal R from tobacco (50:30:20) | HA 60 d | 28.0 | 11.3 | 32.4 | 16.8 | 11.5 | ||||||||||
HA 90 d | 34.9 | 10.8 | 28.6 | 15.7 | 10.0 | ||||||||||||
HA 150 d | 34.5 | 9.3 | 23.1 | 19.8 | 13.4 | ||||||||||||
[85] | OFMSW/GT/foliage R from tobacco (55:30:15) | CT 120 d | 31.0 | 9.0 | 23.1 | 13.3 | 23.6 | ||||||||||
HoDOM 120 d | 34.6 | 12.6 | 19.5 | 19.3 | 14.0 | ||||||||||||
HiDOM 120 d | 30.3 | 9.8 | 36.8 | 9.1 | 14.0 | ||||||||||||
[70] | OvM/straw | HS FS | 18.6 | 49.7 | 8.2 | 23.5 | |||||||||||
HS 120 d | 17.7 | 25.0 | 22.3 | 35.0 | |||||||||||||
Mixture of animal manures | HS FS | 33.7 | 13.8 | 11.8 | 40.7 | [50] | Exhausted grape marc/CM (76:24 w:w) | FS | 30.7 | 17.0 | 39.5 | 3.3 | 3.5 | 6.1 | |||
C 28 d | 36.4 | 15.9 | 31.2 | 5.7 | 3.7 | 7.3 | |||||||||||
C105 d | 37.9 | 16.1 | 28.9 | 6.3 | 3.9 | 6.9 | |||||||||||
C 168 d | 37.3 | 14.3 | 22.4 | 7.1 | 4.8 | 14.2 | |||||||||||
Grape marc/CM (72:28 w:w) | FS | 33.6 | 15.3 | 37.1 | 2.9 | 3.7 | 7.4 | ||||||||||
C 28 d | 34.3 | 13.7 | 37.3 | 3.6 | 3.6 | 7.5 | |||||||||||
C105 d | 33.3 | 14.8 | 38.6 | 3.8 | 3.0 | 6.6 | |||||||||||
C 168 d | 34.9 | 15.2 | 34.4 | 3.3 | 4.0 | 8.2 | |||||||||||
Exhausted grape marc/PM (67:33 w:w) | FS | 30.8 | 14.2 | 41.0 | 3.5 | 3.5 | 7.0 | ||||||||||
C 28 d | 34.4 | 14.6 | 35.4 | 3.2 | 4.0 | 8.5 | |||||||||||
C105 d | 33.9 | 15.5 | 35.7 | 3.7 | 3.9 | 7.5 | |||||||||||
C 168 d | 34.3 | 15.5 | 31.5 | 3.4 | 5.0 | 10.2 | |||||||||||
[42] | CM | CC | |||||||||||||||
HS 120 d | 30.4 | 24.0 | 9.6 | 36.0 | |||||||||||||
Solid olive mill wastes | HS FS | 23.2 | 56.4 | 11.2 | 9.2 | ||||||||||||
HS 120 d | 18.2 | 7.6 | 48.8 | 8.9 | 5.0 | 11.6 | |||||||||||
Broiler litter | CC | 17.9 | 9.1 | 48 | 8.0 | 5.2 | 11.7 | ||||||||||
Green waste | CC | 22.4 | 10.7 | 40.4 | 8.2 | 6.3 | 12.0 | ||||||||||
Nitro-humus | CC | 19.6 | 8.8 | 43 | 9.6 | 6.7 | 12.4 | ||||||||||
MSW | CC | 23.0 | 7.6 | 48.7 | 7.3 | 3.6 | 9.8 | ||||||||||
[56] | Rice husk/rice bran/BEM/molasses | FS | 2.15 | 25.8 | 67.4 | 2.98 | 0.99 | ||||||||||
22.2 | 29.3 | C 13 d | 1.98 | 25.6 | 68.9 | 3.07 | 0.51 | ||||||||||
19.7 | C 34 d | 0.66 | 25.6 | 70.8 | 2.98 | - | |||||||||||
C 53 d | 1.10 | 22.6 | 73.1 | 3.29 | - | ||||||||||||
C 61 d | 1.03 | 24.0 | 71.9 | 3.09 | - | ||||||||||||
C 116 d | 0.88 | 25.7 | 69.9 | 2.63 | 0.88 | ||||||||||||
[55] | DOW/plant trimming/vegetal R (50:40:10 w:w) | C 60 d | 37.6 | 50.8 | 7.2 | 4.3 | |||||||||||
C 90 d | 30.6 | 56.1 | 7.3 | 6.1 | |||||||||||||
C 150 d | 45.3 | 37.6 | 9.6 | 7.4 | |||||||||||||
[46] | CM/rice straw | FS | 14.9 | 54.9 | 20.3 | 10.0 | |||||||||||
28.8 | |||||||||||||||||
Solid wastes of wineries | HS FS | 3.5 | 46.9 | 1.5 | 48.1 | ||||||||||||
HS 120 d | 21.6 | 13.1 | 26.8 | 38.5 | |||||||||||||
Domestic wastes | HS FS | ||||||||||||||||
[81] | OFMSW | HA FS | 37.20 | 34.34 | 16.28 | 12.23 | C 60 d | 17.4 | 57.4 | 20.9 | 10.6 | ||||||
C 120 d | |||||||||||||||||
HA C | 30.07 | 34.71 | 22.67 | 12.58 | 17.4 | 48.6 | 18.6 | 9.9 | |||||||||
C 240 d | 15.2 | 34.1 | 16.1 | 9.2 | |||||||||||||
C 365 d | 13.9 | 25.7 | 12.4 | 6.5 | |||||||||||||
C 548 d | 12.8 | 22.8 | 11.3 | 6.6 | |||||||||||||
FS | 13.5 | 56.7 | 20.1 | 9.7 | |||||||||||||
C 148 d | 15.2 | 39.6 | 18.7 | 10.0 | |||||||||||||
FS | 15.2 | 56.4 | 18.8 | 9.6 | |||||||||||||
C 60 d | 13.4 | 47.5 | 16.5 | 8.4 | |||||||||||||
C 120 d | 12.6 | 42.0 | 17.5 | 8.5 | |||||||||||||
C 240 d | 12.1 | 37.2 | 15.9 | 8.1 | |||||||||||||
C 365 d | 12.6 | 35.6 | 15.3 | 7.7 | |||||||||||||
[44] | SM/wheat straw (95:5 w:w) | FS | 27.2 | 55.6 | 9.2 | 8.0 | |||||||||||
C 7 d | 18.6 | 66.1 | 9.8 | 5.5 | |||||||||||||
C 14 d | 15.2 | 65.3 | 12.2 | 7.3 | |||||||||||||
C 21 d | 16.8 | 65.2 | 11.5 | 6.5 | |||||||||||||
C 28 d | 14.7 | 63.3 | 13.6 | 8.3 | |||||||||||||
[61] | MSW (composted in spring) | FS | 15.8 | 59.5 | 14.9 | 7.9 | |||||||||||
C 28 d | 17.7 | 59.2 | 13.6 | 7.4 | |||||||||||||
C 42 d | 17.5 | 55.5 | 16.2 | 7.2 | |||||||||||||
C 49 d | 17.3 | 55.5 | 17.7 | 5.4 | |||||||||||||
MSW (composted in summer) | FS | 16.2 | 60.4 | 12.1 | 7.8 | ||||||||||||
C 28 d | 16.8 | 60.2 | 13.9 | 6.9 | |||||||||||||
C 42 d | 18.0 | 56.1 | 15.3 | 6.8 | |||||||||||||
C 49 d | 18.2 | 56.9 | 15.8 | 6.0 | |||||||||||||
[60] | Kitchen waste/garden waste | C1 | 28.4 | 45.6 | 7.4 | 4.6 | 14.0 | ||||||||||
C2 | 25.4 | 48.6 | 9.8 | 4.8 | 11.4 | ||||||||||||
C3 | 30.3 | 32.5 | 11.1 | 6.3 | 19.8 | ||||||||||||
C4 | 32.4 | 38.2 | 7.9 | 4.9 | 16.6 | ||||||||||||
C5 | 19.2 | 53.0 | 12.8 | 8.2 | 6.8 | ||||||||||||
C6 | 25.5 | 40.8 | 12.6 | 6.6 | 14.5 | ||||||||||||
C7 | 27.4 | 42.8 | 11.3 | 6.3 | 12.2 | ||||||||||||
C8 | 26.7 | 42.6 | 9.0 | 7.9 | 13.8 | ||||||||||||
C9 | 14.1 | 43.6 | 8.1 | 12.0 | ] | MSW | FS | 26.9 | 47.9 | 11.6 | 4.3 | 8.3 | |||||
C 34 d | 25.5 | 52.1 | 10.5 | 3.6 | 8.2 | ||||||||||||
C 76 d | 24.7 | 46.5 | 13.6 | 4.9 | 10.3 | ||||||||||||
C 90 d | 23.6 | 42.4 | 19.0 | 6.6 | 11.4 | ||||||||||||
C132 d | 23.6 | 40.4 | 16.9 | 7.6 | 11.4 | ||||||||||||
[59] | Grape skin | FS | 8.7 | 53.4 | 17.5 | 18.7 | |||||||||||
C 160 d | 10.9 | 51.8 | 18.9 | 17.0 | |||||||||||||
Grape seeds | FS | 25.0 | 41.3 | 13.1 | 18.7 | ||||||||||||
C 160 d | 21.7 | 38.4 | 15.7 | 22.3 | |||||||||||||
Grape skin and seeds | FS | 16.2 | 49.7 | 13.2 | 18.8 | ||||||||||||
C 160 d | 18.6 | 43.7 | 15.9 | 20.3 |
13C SSNMR, widely used in the field of materials science, has revealed as a powerful tool also for the investigation of organic natural matter of relevance in agriculture and environmental science. In fact, 13C SSNMR gives access to information on the composition of complex organic materials that cannot be obtained otherwise and which can be of great relevance for the optimization of waste recycling processes and the exploitation of waste materials that presently are directly disposed of in landfills.
13C SSNMR has been applied to investigate the composting of materials of varied nature, from relatively homogeneous garden wastes to widely heterogenous municipal solid wastes. Most studies have shown that the compositional features of compost depend on the starting feedstock and this is important for the application of these materials, which are often intended to be used as fertilizers or amendments in agricultural soils. Nevertheless, 13C SSNMR has highlighted the degradation of labile OM components (mainly carbohydrates) and the preservation of the recalcitrant ones (lipids, waxes, lignin). The relative amounts of the different components obtained from NMR data have been correlated with stability and maturity indices determined by analytical methods. In some cases, the results indicate that waste pretreatments may be required, as for example in the case of municipal solid waste where non-biodegradable plastic materials remain in the compost.
Although not conclusive alone, 13C SSNMR has contributed to the understanding of structure-bioactivity relationship of composts, highlighting the role of hydrophobic and polar chemical functionalities in determining the biostimulation properties of compost of interest in agriculture and the antibacterial, antiflammatory and antioxidant properties of extracts of relevance for their application in pharmacology.
Most of the studies cited relied on the spectral analysis based on the division of the 13C MAS NMR spectra in regions related to specific functional groups. This is certainly useful for understanding organic matter evolution during composting. However, the results of the different studies indicate that not always the standard decomposition pathway is followed and no univocal indices of humification and maturity, as those typically used in soil science, can be defined. This is probably due to the variable and complex composition of waste materials, especially in the case of municipal solid waste. Nonetheless, comparison of 13C MAS NMR spectra before and after the composting process yields detailed information on the transformations that have occurred, which is important for process optimization. To this end, molecular models can be of help, especially for the characterization and quality assessment of the final products, and would certainly deserve more consideration and possibly further refinement. Moreover, given the complex nature of OM in waste transformation, a combined 13C SSNMR investigation of the whole sample and different extracts is advisable for a better comprehension of the degradation processes and the chemical structure of the final products.
As evidenced by the growing literature in the field and by the results therein reported, 13C SSNMR is an important instrument for the investigation of organic waste transformation within a circular economy model. It can be easily foreseen that research in this field will experience a significant growth given the increased public awareness of the importance of waste recycling, and that 13C SSNMR will become even more important in the future in this field thanks to the rapid hardware and software advancements that NMR technology is experiencing, which will extend the information that can be obtained on complex materials as those considered in this review.