Radiometric Partial Discharge Detection: Comparison
Please note this is a comparison between Version 2 by Sinda Kaziz and Version 1 by Sinda Kaziz.

One of the most common failures or breakdowns that can occur in high-voltage (HV) equipment is due to partial discharges (PDs). This occurs as a result of inadequate insulation, aging, harsh environmental effects, or manufacturing flaws. PD detection and recognition methods have gained growing attention and have seen great progress in the past decades. Radiometric methods are one of the most investigated detection approaches due to their immunity to electromagnetic interference (EMI) and their capabilities to detect and locate PD activities in different applications such as transformers, cables, etc. 

  • partial discharge detection
  • HV equipment diagnosis
  • radiometric detection
  • inductive sensors
  • UHF antennas
  • loop antennas
  • printed antennas
Please wait, diff process is still running!


  1. Liao, Y.; Liu, H.; Yuan, J.; Xu, Y.; Zhou, W.; Zhou, C. A holistic approach to risk-based maintenance scheduling for HV cables. IEEE Access 2019, 7, 118975–118985.
  2. Montanari, G.C.; Mazzanti, G. Ageing of polymeric insulating materials and insulation system design. Polym. Int. 2002, 51, 1151–1158.
  3. Afia, R.S.; Mustafa, E.; Tamus, Z.Á. Aging Assessment of XLPE/CSPE LV Nuclear Power Cables Under Simultaneous Radiation-Mechanical Stresses. Energy Rep. 2022, 8, 1028–1037.
  4. Gjerde, A. Multifactor ageing models-origin and similarities. IEEE Electr. Insul. Mag. 1997, 13, 6–13.
  5. Morshuis, P.H.F. Partial Discharge Mechanisms: Mechanisms Leading to Breakdown, Analyzed by Fast Electrical and Optical Measurements. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1993.
  6. Ardila-Rey, J.A.; Cerda-Luna, M.P.; Rozas-Valderrama, R.A.; De Castro, B.A.; Andreoli, A.L.; Muhammad-Sukki, F. Separation techniques of partial discharges and electrical noise sources: A review of recent progress. IEEE Access 2020, 8, 199449–199461.
  7. Morshuis, P.H. Degradation of solid dielectrics due to internal partial discharge: Some thoughts on progress made and where to go now. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 905–913.
  8. Niemeyer, L. A generalized approach to partial discharge modeling. IEEE Trans. Dielectr. Electr. Insul. 1995, 2, 510–528.
  9. Moradnouri, A.; Vakilian, M.; Hekmati, A.; Fardmanesh, M. HTS transformer’s partial discharges raised by floating particles and nitrogen bubbles. J. Supercond. Nov. Magn. 2020, 33, 3027–3034.
  10. Kreuger, F.; Gulski, E.; Krivda, A. Classification of partial discharges. IEEE Trans. Electr. Insul. 1993, 28, 917–931.
  11. Cavallini, A.; Montanari, G.; Puletti, F.; Contin, A. A new methodology for the identification of PD in electrical apparatus: Properties and applications. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 203–215.
  12. Wu, M.; Cao, H.; Cao, J.; Nguyen, H.-L.; Gomes, J.B.; Krishnaswamy, S.P. An overview of state-of-the-art partial discharge analysis techniques for condition monitoring. IEEE Electr. Insul. Mag. 2015, 31, 22–35.
  13. Lu, S.; Chai, H.; Sahoo, A.; Phung, B. Condition monitoring based on partial discharge diagnostics using machine learning methods: A comprehensive state-of-the-art review. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1861–1888.
  14. Biswas, S.; Koley, C.; Chatterjee, B.; Chakravorti, S. A methodology for identification and localization of partial discharge sources using optical sensors. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 18–28.
  15. Duval, M. A review of faults detectable by gas-in-oil analysis in transformers. IEEE Electr. Insul. Mag. 2002, 18, 8–17.
  16. Descoeudres, A.; Hollenstein, C.; Demellayer, R.; Wälder, G. Optical emission spectroscopy of electrical discharge machining plasma. J. Phys. D Appl. Phys. 2004, 37, 875.
  17. Ilkhechi, H.D.; Samimi, M.H. Applications of the acoustic method in partial discharge measurement: A review. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 42–51.
  18. Morsalin, S.; Das, N. Diagnostic aspects of partial discharge measurement at very low frequency: A review. IET Sci. Meas. Technol. 2020, 14, 825–841.
  19. Rostaminia, R.; Saniei, M.; Vakilian, M.; Mortazavi, S.S. Evaluation of transformer core contribution to partial discharge electromagnetic waves propagation. Int. J. Electr. Power Energy Syst. 2016, 83, 40–48.
  20. Upton, D.W.; Mistry, K.K.; Mather, P.J.; Zaharis, Z.D.; Atkinson, R.C.; Tachtatzis, C.; Lazaridis, P.I. A review of techniques for RSS-based radiometric partial discharge localization. Sensors 2021, 21, 909.
  21. Samimi, M.H.; Mahari, A.; Farahnakian, M.A.; Mohseni, H. The Rogowski coil principles and applications: A review. IEEE Sens. J. 2014, 15, 651–658.
  22. Chai, H.; Phung, B.T.; Mitchell, S. Application of UHF sensors in power system equipment for partial discharge detection: A review. Sensors 2019, 19, 1029.
  23. Roslizan, N.; Rohani, M.; Wooi, C.; Isa, M.; Ismail, B.; Rosmi, A.; Mustafa, W. A review: Partial discharge detection using UHF sensor on high voltage equipment. J. Phys. Conf. Ser. 2020, 1432, 012003.
  24. Hikita, M.; Ohtsuka, S.; Matsumoto, S. Recent trend of the partial discharge measurement technique using the UHF electromagnetic wave detection method. IEEJ Trans. Electr. Electron. Eng. 2007, 2, 504–509.
  25. Tenbohlen, S.; Beura, C.P.; Sikorski, W.; Sánchez, R.A.; de Castro, B.A.; Beltle, M.; Fehlmann, P.; Judd, M.; Werner, F.; Siegel, M. Frequency Range of UHF PD Measurements in Power Transformers. Energies 2023, 16, 1395.
  26. Mondal, M.; Kumbhar, G.B. Detection, measurement, and classification of partial discharge in a power transformer: Methods, trends, and future research. IETE Tech. Rev. 2018, 35, 483–493.
  27. Mondal, M.; Kumbhar, G.B. Partial discharge localization in a power transformer: Methods, trends, and future research. IETE Tech. Rev. 2017, 34, 504–513.
  28. Bartnikas, R. Detection of partial discharges (corona) in electrical apparatus. IEEE Trans. Electr. Insul. 1990, 25, 111–124.
  29. Bartnikas, R. Partial discharges. Their mechanism, detection and measurement. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 763–808.
  30. Pan, C.; Wu, K.; Chen, G.; Gao, Y.; Florkowski, M.; Lv, Z.; Tang, J. Understanding partial discharge behavior from the memory effect induced by residual charges: A review. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1951–1965.
  31. Van Brunt, R.J.; Cernyar, E.; Von Glahn, P. Importance of unraveling memory propagation effects in interpreting data on partial discharge statistics. IEEE Trans. Electr. Insul. 1993, 28, 905–916.
  32. Dissado, L.A. Understanding electrical trees in solids: From experiment to theory. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 483–497.
  33. Stone, G.; Boulter, E.A.; Culbert, I.; Dhirani, H. Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair; Wiley-IEEE Press: Hoboken, NJ, USA, 2004.
  34. Kreuger, F.H. Detection and Location of Discharges. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Nederland, 1961.
  35. Gulski, E. Computer-Aided Recognition of Partial Dicharges Using Statistical Tools. Ph.D. Thesis, Delft University Press, Delft, The Netherlands, 1991.
  36. Contin, A.; Montanari, G.; Ferraro, C. PD source recognition by Weibull processing of pulse height distributions. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 48–58.
  37. Basharan, V.; Siluvairaj, W.I.M.; Velayutham, M.R. Recognition of multiple partial discharge patterns by multi-class support vector machine using fractal image processing technique. IET Sci. Meas. Technol. 2018, 12, 1031–1038.
  38. Sahoo, N.; Salama, M.; Bartnikas, R. Trends in partial discharge pattern classification: A survey. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 248–264.
  39. Romano, P.; Imburgia, A.; Ala, G. Partial discharge detection using a spherical electromagnetic sensor. Sensors 2019, 19, 1014.
  40. Peng, X.; Yang, F.; Wang, G.; Wu, Y.; Li, L.; Li, Z.; Bhatti, A.A.; Zhou, C.; Hepburn, D.M.; Reid, A.J.; et al. A Convolutional Neural Network-Based Deep Learning Methodology for Recognition of Partial Discharge Patterns from High-Voltage Cables. IEEE Trans. Power Deliv. 2019, 34, 1460–1469.
  41. Barrios, S.; Buldain, D.; Comech, M.P.; Gilbert, I.; Orue, I. Partial discharge classification using deep learning methods—Survey of recent progress. Energies 2019, 12, 2485.
  42. Cavallini, A.; Montanari, G.; Contin, A.; Pulletti, F. A new approach to the diagnosis of solid insulation systems based on PD signal inference. IEEE Electr. Insul. Mag. 2003, 19, 23–30.
  43. Hirata, A.; Nakata, S.; Kawasaki, Z.-I. Toward automatic classification of partial discharge sources with neural networks. IEEE Trans. Power Deliv. 2005, 21, 526–527.
  44. Gulski, E.; Krivda, A. Neural networks as a tool for recognition of partial discharges. IEEE Trans. Electr. Insul. 1993, 28, 984–1001.
  45. IEEE. Guide for Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment; IEEE: New York, NY, USA, 2007.
  46. Hu, Y.; Zeng, Z.; Liu, J.; Wang, J.; Zhang, W. Design of a distributed UHF sensor array system for PD detection and location in substation. IEEE Trans. Instrum. Meas. 2019, 68, 1844–1851.
  47. IEC-60270; High-Voltage Test Techniques: Partial Discharge Measurements. IEC: Geneva, Switzerland, 2000; pp. 13–31.
  48. Cheng, C.; Fan, C.-L.; Hsiao, H.-C.; Wang, W.-M. On-site partial discharge measurement of uderground cable system. In Proceedings of the 2011 7th Asia-Pacific International Conference on Lightning, Chengdu, China, 1–4 November 2011; pp. 575–580.
  49. Bakar, N.A.; Abu-Siada, A.; Islam, S. A review of dissolved gas analysis measurement and interpretation techniques. IEEE Electr. Insul. Mag. 2014, 30, 39–49.
  50. Danouj, B.; Tahan, S.; David, E. Using a new generation of piezoelectric sensors for partial discharge detection. Measurement 2013, 46, 660–666.
  51. Zhang, Y.; Glover, I. Design of an ultrawideband VHF/UHF antenna for partial discharge detection. In Proceedings of the 2014 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Guilin, China, 5–8 August 2014; pp. 487–490.
  52. Mor, A.R.; Heredia, L.C.C.; Muñoz, F.A. A novel approach for partial discharge measurements on GIS using HFCT sensors. Sensors 2018, 18, 4482.
  53. Kaziz, S.; Imburgia, A.; Flandre, D.; Rizzo, G.; Romano, P.; Viola, F.; Ala, G.; Tounsi, F. Performances of a PCB-based Loop Antenna Inductive Sensor for Partial Discharges Detection. In Proceedings of the 2022 IEEE 4th International Conference on Dielectrics (ICD), Palermo, Italy, 3–7 July 2022; pp. 9–12.
  54. Wang, X.; Li, B.; Xiao, Z.; Lee, S.H.; Roman, H.; Russo, O.L.; Chin, K.K.; Farmer, K.R. An ultra-sensitive optical MEMS sensor for partial discharge detection. J. Micromechan. Microeng. 2004, 15, 521.
  55. Salustiano, R.; Capelini, R.; De Abreu, S.; Martinez, M.; Tavares, I.; Ferraz, G.; Romano, M. Development of new methodology for insulators inspections on aerial distribution lines based on partial discharge detection tools. In Proceedings of the 2014 ICHVE International Conference on High Voltage Engineering and Application, Poznan, Poland, 8–11 September 2014; pp. 1–4.
  56. Kanegami, M.; Miyazaki, S.; Miyake, K. Partial Discharge Detection with High-Frequency Band through Resistance-Temperature Sensor of Hydropower Generator Stator Windings. Electr. Eng. Jpn. 2016, 195, 9–15.
  57. Kindl, V.; Skala, B.; Pechanek, R.; Kus, V.; Hornak, J. Low-pass filter for HV partial discharge testing. Sensors 2018, 18, 482.
  58. Kaziz, S.; Romano, P.; Imburgia, A.; Ala, G.; Sghaier, H.; Flandre, D.; Tounsi, F. PCB-Based Planar Inductive Loops for Partial Discharges Detection in Power Cables. Sensors 2023, 23, 290.
  59. Robles, G.; Martinez-Tarifa, J.M.; Rojas-Moreno, M.V.; Sanz-Feito, J. Inductive sensor for measuring high frequency partial discharges within electrical insulation. IEEE Trans. Instrum. Meas. 2009, 58, 3907–3913.
  60. Rozi, F.; Khayam, U. Development of loop antennas for partial discharge detection. Int. J. Electr. Eng. Inform. 2015, 7, 29.
  61. Azam, S.K.; Othman, M.; Illias, H.A.; Latef, T.A.; Islam, M.T.; Ain, M.F. Ultra-high frequency printable antennas for partial discharge diagnostics in high voltage equipment. Alex. Eng. J. 2023, 64, 709–729.
  62. Schwarz, R.; Muhr, M. Modern technologies in optical partial discharge detection. In Proceedings of the 2007 Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, Vancouver, BC, Canada, 14–17 October 2007; pp. 163–166.
  63. Wang, Z.; Cotton, I. Northcote, and others, Dissolved gas analysis of alternative fluids for power transformers. IEEE Electr. Insul. Mag. 2007, 23, 5–14.
  64. Qian, S.; Chen, H.; Xu, Y.; Su, L. High sensitivity detection of partial discharge acoustic emission within power transformer by sagnac fiber optic sensor. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2313–2320.
  65. Chelmiah, E.T.; Kavanagh, D.F. Acoustic Sensor Array Topologies for Partial Discharge Localisation in Electric Machines. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022; pp. 1582–1588.
  66. BúaNúñez, I.; Posada-Román, J.E.; Rubio-Serrano, J.; Garcia-Souto, J.A. Instrumentation system for location of partial discharges using acoustic detection with piezoelectric transducers and optical fiber sensors. IEEE Trans. Instrum. Meas. 2013, 63, 1002–1013.
  67. Liu, B.; Ma, H.; Ju, P. Partial discharge diagnosis by simultaneous observation of discharge pulses and vibration signal. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 288–295.
  68. Posada-Roman, J.; Garcia-Souto, J.A.; Rubio-Serrano, J. Fiber optic sensor for acoustic detection of partial discharges in oil-paper insulated electrical systems. Sensors 2012, 12, 4793–4802.
  69. Zhou, H.-Y.; Ma, G.-M.; Zhang, M.; Zhang, H.-C.; Li, C.-R. A high sensitivity optical fiber interferometer sensor for acoustic emission detection of partial discharge in power transformer. IEEE Sens. J. 2019, 21, 24–32.
  70. Campbell, S.; Stone, G. Investigations into the use of temperature detectors as stator winding partial discharge detectors. In Proceedings of the Conference Record of the 2006 IEEE International Symposium on Electrical Insulation, Toronto, ON, Canada, 11–14 June 2006; pp. 369–375.
  71. Hampton, B.; Meats, R. Diagnostic measurements at UHF in gas insulated substations. IEE Proc. C Gener. Transm. Distrib. 1988, 135, 137–144.
  72. Ahmed, N.; Srinivas, N. On-line partial discharge detection in cables. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 181–188.
  73. Fritsch, M.; Wolter, M. High-Frequency Current Transformer Design and Construction Guide. IEEE Trans. Instrum. Meas. 2022, 71, 1–9.
  74. Zachariades, C.; Shuttleworth, R.; Giussani, R.; MacKinlay, R. Optimization of a high-frequency current transformer sensor for partial discharge detection using finite-element analysis. IEEE Sens. J. 2016, 16, 7526–7533.
  75. Álvarez, F.; Garnacho, F.; Ortego, J.; Sánchez-Urán, M.Á. Application of HFCT and UHF sensors in on-line partial discharge measurements for insulation diagnosis of high voltage equipment. Sensors 2015, 15, 7360–7387.
  76. Luo, G.; Zhang, D. Study on performance of HFCT and UHF sensors in partial discharge detection. In Proceedings of the 2010 Conference Proceedings IPEC, Singapore, 27–29 October 2010; pp. 630–635.
  77. Paulus, S.; Kammerer, J.-B.; Pascal, J.; Bona, C.; Hebrard, L. Continuous calibration of Rogowski coil current transducer. Analog. Integr. Circuits Signal Process. 2016, 89, 77–88.
  78. Hashmi, G.M.; Lehtonen, M.; Nordman, M. Modeling and experimental verification of on-line PD detection in MV covered-conductor overhead networks. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 167–180.
  79. Moreno, M.V.R.; Robles, G.; Albarracin, R.; Rey, J.A.; Tarifa, J.M.M. Study on the self-integration of a Rogowski coil used in the measurement of partial discharges pulses. Electr. Eng. 2017, 99, 817–826.
  80. Metwally, I.A. Self-integrating Rogowski coil for high-impulse current measurement. IEEE Trans. Instrum. Meas. 2009, 59, 353–360.
  81. Han, R.-Y.; Wu, J.-W.; Ding, W.-D.; Jing, Y.; Zhou, H.-B.; Liu, Q.-J.; Qiu, A.-C. Hybrid PCB Rogowski coil for measurement of nanosecond-risetime pulsed current. IEEE Trans. Plasma Sci. 2015, 43, 3555–3561.
  82. Kumar, C.L.G.P.; Khalid, N.H.A.; Ahmad, M.H.; Nawawi, Z.; Sidik, M.A.B.; Jambak, M.I.; Kurnia, R.F.; Waldi, E.P. Development and Validation of Rogowski Coil with Commercial High Frequency Current Transformer for Partial Discharge Detection. In Proceedings of the 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal Pinang, Indonesia, 2–4 October 2018; pp. 315–320.
  83. Shafiq, M.; Kutt, L.; Lehtonen, M.; Nieminen, T.; Hashmi, M. Parameters identification and modeling of high-frequency current transducer for partial discharge measurements. IEEE Sens. J. 2012, 13, 1081–1091.
  84. Sharifinia, S.; Allahbakhshi, M.; Ghanbari, T.; Akbari, A.; Mirzaei, H.R. A New Application of Rogowski Coil Sensor for Partial Discharge Localization in Power Transformers. IEEE Sens. J. 2021, 21, 10743–10751.
  85. Waldi, E.P.; Lestari, A.I.; Fernandez, R.; Mulyadi, S.; Murakami, Y.; Hozumi, N. Rogowski coil sensor in the digitization process to detect partial discharge. Telecommun. Comput. Electron. Control. 2020, 18, 1062–1071.
  86. Liu, X.; Huang, H.; Dai, Y. Effect of frequency on the linearity of double-layer and single-layer Rogowski coils. IEEE Sens. J. 2020, 20, 9910–9918.
  87. Ardila-Rey, J.A.; Barrueto, A.; Zerene, A.; de Castro, B.A.; Ulson, J.A.C.; Mas’ud, A.A.; Valdivia, P. Behavior of an inductive loop sensor in the measurement of partial discharge pulses with variations in its separation from the primary conductor. Sensors 2018, 18, 2324.
  88. Rojas-Moreno, M.V.; Robles, G.; Mart’, J.M.; Sanz-Feito, J. Self-integrating inductive loop for measuring high frequency pulses. Rev. Sci. Instrum. 2011, 82, 085102.
  89. Ardila-Rey, J.A.; Montaña, J.; De Castro, B.A.; Schurch, R.; Ulson, J.A.C.; Muhammad-Sukki, F.; Bani, N.A. A comparison of inductive sensors in the characterization of partial discharges and electrical noise using the chromatic technique. Sensors 2018, 18, 1021.
  90. Imburgia, A.; Kaziz, S.; Romano, P.; Flandre, D.; Artale, G.; Rizzo, G.; Viola, F.; Tounsi, F.; Ala, G. Investigation of PCB-based Inductive Sensors Orientation for Corona Partial Discharge Detection. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 14–16 June 2022; pp. 559–563.
  91. Lopez-Roldan, J.; Tang, T.; Gaskin, M. Optimisation of a sensor for onsite detection of partial discharges in power transformers by the UHF method. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1634–1639.
  92. Jin, Z.; Sun, C.; Cheng, C.; Li, J. Two types of compact UHF antennas for partial discharge measurement. In Proceedings of the 2008 International Conference on High Voltage Engineering and Application, Chongqing, China, 19–12 November 2008; pp. 616–620.
  93. Widjaja, C.D.; Fahren, A.A.M.; Khayam, U.; Hidayat, S. Design of Loop Antenna as Partial Discharge Sensor on Metal-Enclosed Power Apparatus. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1506–1510.
  94. Ye, H.-F.; Qian, Y.; Dong, Y.; Sheng, G.H.; Jiang, X.C. Development of multi-band ultra-high-frequency sensor for partial discharge monitoring based on the meandering technique. IET Sci. Meas. Technol. 2014, 8, 327–335.
  95. Zeidi, N.; Kaziz, S.; Said, M.H.; Rufer, L.; Cavallini, A.; Tounsi, F. Partial discharge detection with on-chip spiral inductor as a loop antenna. Rev. Sci. Instrum. 2021, 92, 094701.
  96. Mor, A.R.; Heredia, L.C.; Muñoz, F. A magnetic loop antenna for partial discharge measurements on GIS. Int. J. Electr. Power Energy Syst. 2020, 115, 105514.
  97. Rodrigo-Mor, A.; Muñoz, F.A.; Castro-Heredia, L.C. A novel antenna for partial discharge measurements in GIS based on magnetic field detection. Sensors 2019, 19, 858.
  98. Hussain, G.A.; Zaher, A.A.; Hummes, D.; Safdar, M.; Lehtonen, M. Hybrid sensing of internal and surface partial discharges in air-insulated medium voltage switchgear. Energies 2020, 13, 1738.
  99. Chen, G.; Tao, J.; Ma, Y.; Fu, H.; Liu, Y.; Zhou, Z.; Huang, C.; Guo, C. On-site portable partial discharge detection applied to power cables using HFCT and UHF methods. WSEAS Trans. Circuits Syst. 2016, 15, 83–90.
  100. Khan, A.A.; Malik, N.; Al-Arainy, A.; Alghuweinem, S. Investigation of attenuation characteristics of PD pulse during propagation in XLPE cable. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5.
  101. Tang, J.; Zhou, Q.; Tang, M.; Xie, Y. Study on mathematical model for VHF partial discharge of typical insulated defects in GIS. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 30–38.
  102. Thungsook, K.; Pattanadech, N.; Nimsanong, P.; Srinangyam, C. The Bandwidth Verification of VHF Antenna and Apply for Partial Discharge Measurement. In Proceedings of the 2022 9th International Conference on Condition Monitoring and Diagnosis (CMD), Kitakyushu, Japan, 13–18 November 2022; pp. 559–562.
  103. Maneerot, S.; Kando, M.; Pattanadech, N. Applying HF and VHF/UHF Partial Discharge Detection for Distribution Transformer. J. Mob. Multimed. 2019, 15, 357–376.
  104. Saktioto; Soerbakti, Y.; Syahputra, R.F.; Gamal, M.D.H.; Irawan, D.; Putra, E.H.; Darwis, R.S. Improvement of low-profile microstrip antenna performance by hexagonal-shaped SRR structure with DNG metamaterial characteristic as UWB application. Alex. Eng. J. 2022, 61, 4241–4252.
  105. Albarracin, R.; Ardila-Rey, J.A.; Masiud, A.A. On the use of monopole antennas for determining the effect of the enclosure of a power transformer tank in partial discharges electromagnetic propagation. Sensors 2016, 16, 148.
  106. Sikorski, W.; Szymczak, C.; Siod, K.; Polak, F. Hilbert curve fractal antenna for detection and on-line monitoring of partial discharges in power transformers. Eksploat. Niezawodn. 2018, 20, 343–351.
  107. Li, J.; Cheng, C.; Bao, L.; Jiang, T. Resonant frequency calculation and optimal design of peano fractal antenna for partial discharge detection. Int. J. Antennas Propag. 2012, 2012, 361517.
  108. Li, J.; Li, X.; Du, L.; Cao, M.; Qian, G. An intelligent sensor for the ultra-high-frequency partial discharge online monitoring of power transformers. Energies 2016, 9, 383.
  109. Wang, Y.; Wang, Z.; Li, J. UHF Moore fractal antennas for online GIS PD detection. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 852–855.
  110. Li, M.; Guo, C.; Peng, Z. Design of meander antenna for UHF partial discharge detection of transformers. Sens. Transducers 2014, 171, 232.
  111. Li, J.; Jiang, T.; Cheng, C.; Wang, C. Hilbert fractal antenna for UHF detection of partial discharges in transformers. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2017–2025.
  112. Zahed, A.H.; Harbaji, M.M.; Habboub, S.A.; AlMajidi, M.A.; Assaf, M.J.; El-Hag, A.H.; Qaddoumi, N.N. Design of hilbert fractal antenna for partial discharge detection and classification. In Proceedings of the 2015 4th International Conference on Electric Power and Energy Conversion Systems (EPECS), Sharjah, United Arab Emirates, 24–26 November 2015; pp. 1–4.
  113. Darmawan, M.A.; Khayam, U. Design, simulation, and fabrication of second, third, and forth order Hilbert antennas as ultra high frequency partial discharge sensor. In Proceedings of the Joint International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering (ICEVT\& IMECE), Surakarta, Indonesia, 4–5 November 2015; pp. 319–322.
  114. Salah, W.S.; Gad, A.H.; Attia, M.A.; Eldebeikey, S.M.; Salama, A.R. Design of a compact ultra-high frequency antenna for partial discharge detection in oil immersed power transformers. Ain Shams Eng. J. 2022, 13, 101568.
  115. Wang, F.; Bin, F.; Sun, Q.; Fan, J.; Liang, F.; Xiao, X. A novel uhf m inkowski fractal antenna for partial discharge detection. Microw. Opt. Technol. Lett. 2017, 59, 1812–1819.
  116. Ediriweera, W.; Priyanayana, K.; Rajakaruna, R.; Ranasinghe, R.; Lucas, J.; Samarasinghe, R. Microstrip Patch Antenna for Partial Discharge detection as a condition monitoring tool of power system assets. In Proceedings of the 2017 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 29–31 May 2017; pp. 368–372.
  117. Sarkar, B.; Mishra, D.; Koley, C.; Roy, N. Microstrip patch antenna based UHF sensor for detection of partial discharge in high voltage electrical equipments. In Proceedings of the 2014 Annual IEEE India Conference (INDICON), Pune, India, 11–13 December 2014; pp. 1–6.
  118. Xavier, G.V.; da Costa, E.G.; Serres, A.J.; Nobrega, L.A.; Oliveira, A.C.; Sousa, H.F. Design and application of a circular printed monopole antenna in partial discharge detection. IEEE Sens. J. 2019, 19, 3718–3725.
  119. Cruz, J.N.; Serres, A.J.R.; de Oliveira, A.C.; Xavier, G.V.R.; de Albuquerque, C.C.R.; da Costa, E.G.; Freire, R.C.S. Bio-inspired printed monopole antenna applied to partial discharge detection. Sensors 2019, 19, 628.
  120. Yang, F.; Peng, C.; Yang, Q.; Luo, H.; Ullah, I.; Yang, Y. An UWB printed antenna for partial discharge UHF detection in high voltage switchgears. Prog. Electromagn. Res. C 2016, 69, 105–114.
  121. Luo, H.; Cheng, P.; Liu, H.; Kang, K.; Yang, F.; Liu, K. Research on the UHF microstrip antenna for partial discharge detection in high voltage switchgear. In Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016; pp. 2273–2276.
  122. Uwiringiyimana, J.P.; Khayam, U.; Suwarno; Montanari, G.C. Design and Implementation of Ultra-Wide Band Antenna for Partial Discharge Detection in High Voltage Power Equipment. IEEE Access 2022, 10, 10983–10994.
  123. Lozano-Claros, D.; Custovic, E.; Elton, D. Two planar antennas for detection of partial discharge in gas-insulated switchgear (GIS). In Proceedings of the 2015 IEEE International Conference on Communication, Networks and Satellite (COMNESTAT), Bandung, Indonesia, 10–12 December 2015; pp. 8–15.
  124. Park, S.; Jung, K.-Y. Design of a circularly-polarized UHF antenna for partial discharge detection. IEEE Access 2020, 8, 81644–81650.
  125. Yadam, Y.R.; Sarathi, R.; Arunachalam, K. Planar Ultrawideband Circularly Polarized Cosine Slot Archimedean Spiral Antenna for Partial Discharge Detection. IEEE Access 2022, 10, 35701–35711.
  126. Li, T.; Rong, M.; Zheng, C.; Wang, X. Development simulation and experiment study on UHF partial discharge sensor in GIS. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1421–1430.
  127. Cheng, L.; Wen, H.; Liu, Y.; Jiang, Y.; Zhou, Z.; Zhang, J.; Zhang, G.; Mao, H. Study on Flexible Built-in Miniature Archimedes Spiral Antenna Sensor for High-voltage electrical equipment PD Detection. In Proceedings of the 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE), Hangzhou, China, 15–17 April 2022; pp. 1477–1482.
  128. Andre, H.; Emeraldi, P.; Hazmi, A.; Waldi, E.P.; Khayam, U. Long bowtie antenna for partial discharge sensor in gas-insulated substation. In Proceedings of the 2017 International Conference on High Voltage Engineering and Power Systems (ICHVEPS), Bali, Indonesia, 2–5 October 2017; pp. 175–178.
  129. Rhamdhani, T.; Khayam, U.; Zaeni, A. Improving Antenna Performance by Combining Dipole and Bowtie Antenna for Partial Discharge Measurement in Gas Insulated Switchgear. In Proceedings of the 2022 IEEE International Conference in Power Engineering Application (ICPEA), Shah Alam, Malaysia, 7–8 March 2022; pp. 1–4.
  130. Daulay, M.S.H.; Khayam, U. New Design of Double Layer Bow-tie Antenna with Edge and Middle Sliced Modification for Partial Discharge Measurement. In Proceedings of the 2018 Conference on Power Engineering and Renewable Energy (ICPERE), Surakarta, Indonesia, 29–31 October 2018; pp. 1–5.
  131. Uwiringiyimana, J.P.; Khayam, U. Measurement of partial discharge in air insulation by using UHF double layer bowtie antenna with modified wings edges. In Proceedings of the 2019 International Conference on Electrical Engineering and Informatics (ICEEI), Bandung, Indonesia, 9–10 July 2019; pp. 228–233.
  132. Zhang, J.; Zhang, X.; Xiao, S. Antipodal Vivaldi antenna to detect uhf signals that leaked out of the joint of a transformer. Int. J. Antennas Propag. 2017, 2017, 9627649.
  133. Saleh, S.; Ismail, W.; Abidin, I.S.Z.; Bataineh, M.H.; Alzoubi, A.S. Compact UWB Vivaldi Tapered Slot Antenna. Alex. Eng. J. 2022, 61, 4977–4994.
  134. Albarracin, R.; Robles, G.; Mart’, J.; Ardila-Rey, J. Separation of sources in radiofrequency measurements of partial discharges using time-power ratio maps. ISA Trans. 2015, 58, 389–397.
  135. Harbaji, M.M.; Zahed, A.H.; Habboub, S.A.; AlMajidi, M.A.; Assaf, M.J.; El-Hag, A.H.; Qaddoumi, N.N. Design of Hilbert fractal antenna for partial discharge classification in oil-paper insulated system. IEEE Sens. J. 2016, 17, 1037–1045.
  136. Uwiringiyimana, J.P.; Suwarno; Khayam, U. Design of an Ultra-Wide Band Microstrip Patch Antenna for Partial Discharge Detection on Power Transformer. In Proceedings of the 2021 IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Johor Bahru, Malaysia, 11–15 July 2021; pp. 242–245.
  137. Sinaga, H.H. Detection, Identification and Localization of Partial Discharges in Power Transformers Using UHF Techniques. Ph.D. Thesis, The University of New South Wales Australia, Sydney, Australia, 2012.
  138. Chai, H.; Phung, B.; Zhang, D. Development of UHF sensors for partial discharge detection in power transformer. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, Australia, 23–26 September 2018; pp. 1–5.
  139. Zhang, X.; Cheng, Z.; Gui, Y. Design of a new built-in UHF multi-frequency antenna sensor for partial discharge detection in high-voltage switchgears. Sensors 2016, 16, 1170.
  140. Khosronejad, M.; Gentili, G.G. Design of an Archimedean spiral UHF antenna for pulse monitoring application. In Proceedings of the 2015 Loughborough Antennas Propagation Conference (LAPC), Leicestershire, UK, 2–3 November 2015; pp. 1–4.
Video Production Service