You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Nanotechnology for Neurological Disorders after Long COVID Syndrome: Comparison
Please note this is a comparison between Version 2 by Thelma Akanchise and Version 1 by Thelma Akanchise.

Long-term neurological complications, persisting in patients who cannot fully recover several months after severe SARS-CoV-2 coronavirus infection, are referred to as neurological sequelae of the long COVID syndrome. Among the numerous clinical post-acute COVID-19 symptoms, neurological and psychiatric manifestations comprise prolonged fatigue, “brain fog”, memory deficits, headache, ageusia, anosmia, myalgias, cognitive impairments, anxiety, and depression lasting several months. Considering that neurons are highly vulnerable to inflammatory and oxidative stress damages following the overproduction of reactive oxygen species (ROS), neuroinflammation and oxidative stress have been suggested to dominate the pathophysiological mechanisms of the long COVID syndrome. It is emphasized that mitochondrial dysfunction and oxidative stress damages are crucial for the pathogenesis of neurodegenerative disorders. Importantly, antioxidant therapies have the potential to slow down and prevent disease progression. However, many antioxidant compounds display low bioavailability, instability, and transport to targeted tissues, limiting their clinical applications. Various nanocarrier types, e.g., liposomes, cubosomes, solid lipid nanoparticles, micelles, dendrimers, carbon-based nanostructures, nanoceria, and other inorganic nanoparticles, can be employed to enhance antioxidant bioavailability. Here, we highlight the potential of phytochemical antioxidants and other neuroprotective agents (curcumin, quercetin, vitamins C, E and D, melatonin, rosmarinic acid, N-acetylcysteine, and Ginkgo Biloba derivatives) in therapeutic strategies for neuroregeneration. A particular focus is given to the beneficial role of nanoparticle-mediated drug-delivery systems in addressing the challenges of antioxidants for managing and preventing neurological disorders as factors of long COVID sequelae.

  • antioxidant-delivery nanosystems
  • lipid nanocarriers
  • oxidative stress
  • neuroinflammation
  • neurodegeneration
  • neurological long COVID-19
Please wait, diff process is still running!

References

  1. Nuzzo, D.; Picone, P. Potential Neurological Effects of Severe COVID-19 Infection. Neuroscience Research, 2020, 158, 1–5. https://doi.org/10.1016/j.neures.2020.06.009.
  2. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet, 2020, 395 (10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.
  3. Stefanou, M.-I.; Palaiodimou, L.; Bakola, E.; Smyrnis, N.; Papadopoulou, M.; Paraskevas, G. P.; Rizos, E.; Boutati, E.; Grigoriadis, N.; Krogias, C.; et al. Neurological Manifestations of Long-COVID Syndrome: A Narrative Review. Therapeutic Advances in Chronic Disease, 2022, 13, 204062232210768. https://doi.org/10.1177/20406223221076890.
  4. Dubey, A. K.; Chaudhry, S. K.; Singh, H. B.; Gupta, V. K.; Kaushik, A. Perspectives on Nano-Nutraceuticals to Manage Pre and Post COVID-19 Infections. Biotechnology Reports, 2022, 33, e00712. https://doi.org/10.1016/j.btre.2022.e00712.
  5. Baig, A. M. Deleterious Outcomes in Long-Hauler COVID-19: The Effects of SARS-CoV-2 on the CNS in Chronic COVID Syndrome. ACS Chem. Neurosci., 2020, 11 (24), 4017–4020. https://doi.org/10.1021/acschemneuro.0c00725.
  6. Bratosiewicz-Wąsik, J. Neuro-COVID-19: An Insidious Virus in Action. Neurol Neurochir Pol., 2022, 56 (1), 48–60. https://doi.org/10.5603/PJNNS.a2021.0072.
  7. Satoh, T.; Trudler, D.; Oh, C.-K.; Lipton, S. A. Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alz-heimer’s Disease, Parkinson’s Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome. Antioxidants, 2022, 11 (1), 124. https://doi.org/10.3390/antiox11010124.
  8. Maury, A.; Lyoubi, A.; Peiffer-Smadja, N.; de Broucker, T.; Meppiel, E. Neurological Manifestations Associated with SARS-CoV-2 and Other Coronaviruses: A Narrative Review for Clinicians. Revue Neurologique, 2021, 177 (1–2), 51–64. https://doi.org/10.1016/j.neurol.2020.10.001.
  9. Edinoff, A. N.; Chappidi, M.; Alpaugh, E. S.; Turbeville, B. C.; Falgoust, E. P.; Cornett, E. M.; Murnane, K. S.; Kaye, A. M.; Kaye, A. D. Neurological and Psychiatric Symptoms of COVID-19: A Narrative Review. Psychiatry International, 2022, 3 (2), 158–168. https://doi.org/10.3390/psychiatryint3020013.
  10. Carfì, A.; Bernabei, R.; Landi, F.; for the Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA, 2020, 324 (6), 603. https://doi.org/10.1001/jama.2020.12603.
  11. Taquet, M.; Dercon, Q.; Luciano, S.; Geddes, J. R.; Husain, M.; Harrison, P. J. Incidence, Co-Occurrence, and Evolution of Long-COVID Features: A 6-Month Retrospective Cohort Study of 273,618 Survivors of COVID-19. PLoS Med, 2021, 18 (9), e1003773. https://doi.org/10.1371/journal.pmed.1003773.
  12. Ahamed, J.; Laurence, J. Long COVID Endotheliopathy: Hypothesized Mechanisms and Potential Therapeutic Approaches. Journal of Clinical Investigation, 2022, 132 (15), e161167. https://doi.org/10.1172/JCI161167.
  13. Phillips, S.; Williams, M. A. Confronting Our Next National Health Disaster — Long-Haul Covid. N Engl J Med, 2021, 385 (7), 577–579. https://doi.org/10.1056/NEJMp2109285.
  14. Gholami, M.; Safari, S.; Ulloa, L.; Motaghinejad, M. Neuropathies and Neurological Dysfunction Induced by Coronaviruses. J. Neurovirol., 2021, 27 (3), 380–396. https://doi.org/10.1007/s13365-021-00977-x.
  15. Cárdenas-Rodríguez, N.; Bandala, C.; Vanoye-Carlo, A.; Ignacio-Mejía, I.; Gómez-Manzo, S.; Hernández-Cruz, E. Y.; Pedraza-Chaverri, J.; Carmona-Aparicio, L.; Hernández-Ochoa, B. Use of Antioxidants for the Neuro-Therapeutic Manage-ment of COVID-19. Antioxidants, 2021, 10 (6), 971. https://doi.org/10.3390/antiox10060971.
  16. Ray, B.; Bisht, S.; Maitra, A.; Maitra, A.; Lahiri, D. K. Neuroprotective and Neurorescue Effects of a Novel Polymeric Nano-particle Formulation of Curcumin (NanoCurcTM) in the Neuronal Cell Culture and Animal Model: Implications for Alzheimer’s Disease. JAD, 2011, 23 (1), 61–77. https://doi.org/10.3233/JAD-2010-101374.
  17. Doggui, S.; Sahni, J. K.; Arseneault, M.; Dao, L.; Ramassamy, C. Neuronal Uptake and Neuroprotective Effect of Curcu-min-Loaded PLGA Nanoparticles on the Human SK-N-SH Cell Line. JAD, 2012, 30 (2), 377–392. https://doi.org/10.3233/JAD-2012-112141.
  18. Serafini, M. M.; Catanzaro, M.; Rosini, M.; Racchi, M.; Lanni, C. Curcumin in Alzheimer’s Disease: Can We Think to New Strategies and Perspectives for This Molecule? Pharmacological Research, 2017, 124, 146–155. https://doi.org/10.1016/j.phrs.2017.08.004.
  19. Feitosa, E. L.; Júnior, F. T. D. S. S.; Nery Neto, J. A. D. O.; Matos, L. F. L.; Moura, M. H. D. S.; Rosales, T. O.; De Freitas, G. B. L. COVID-19: Rational Discovery of the Therapeutic Potential of Melatonin as a SARS-CoV-2 Main Protease Inhibitor. Int. J. Med. Sci., 2020, 17 (14), 2133–2146. https://doi.org/10.7150/ijms.48053.
  20. Shneider, A.; Kudriavtsev, A.; Vakhrusheva, A. Can Melatonin Reduce the Severity of COVID-19 Pandemic? International Reviews of Immunology, 2020, 39 (4), 153–162. https://doi.org/10.1080/08830185.2020.1756284.
  21. Rakotoarisoa, M.; Angelov, B.; Espinoza, S.; Khakurel, K.; Bizien, T.; Drechsler, M.; Angelova, A. Composition-Switchable Liquid Crystalline Nanostructures as Green Formulations of Curcumin and Fish Oil. ACS Sustainable Chem. Eng., 2021, 9 (44), 14821–14835. https://doi.org/10.1021/acssuschemeng.1c04706.
  22. Zou, L.; Zheng, B.; Zhang, R.; Zhang, Z.; Liu, W.; Liu, C.; Zhang, G.; Xiao, H.; McClements, D. J. Influence of Lipid Phase Composition of Excipient Emulsions on Curcumin Solubility, Stability, and Bioaccessibility. Food Biophysics, 2016, 11 (3), 213–225. https://doi.org/10.1007/s11483-016-9432-9.
  23. Yaghmur, A.; Mu, H. Recent Advances in Drug Delivery Applications of Cubosomes, Hexosomes, and Solid Lipid Nanoparticles. Acta Pharmaceutica Sinica B, 2021, 11 (4), 871–885. https://doi.org/10.1016/j.apsb.2021.02.013.
  24. Zhai, J.; Fan, B.; Thang, S. H.; Drummond, C. J. Novel Amphiphilic Block Copolymers for the Formation of Stimuli-Responsive Non-Lamellar Lipid Nanoparticles. Molecules, 2021, 26 (12), 3648. https://doi.org/10.3390/molecules26123648.
  25. Rakotoarisoa, M.; Angelov, B.; Drechsler, M.; Nicolas, V.; Bizien, T.; Gorshkova, Y. E.; Deng, Y.; Angelova, A. Liquid Crystalline Lipid Nanoparticles for Combined Delivery of Curcumin, Fish Oil and BDNF: In Vitro Neuroprotective Potential in a Cellular Model of Tunicamycin-Induced Endoplasmic Reticulum Stress. Smart Materials in Medicine, 2022, 3, 274–288. https://doi.org/10.1016/j.smaim.2022.03.001.
  26. Kamal, M. A.; Jabir NR, N.; Tabrez; Ashraf; Shakil; Damanhouri. Nanotechnology-Based Approaches in Anticancer Research. IJN, 2012, 4391. https://doi.org/10.2147/IJN.S33838.
  27. Panzarini, E.; Mariano, S.; Tacconi, S.; Carata, E.; Tata, A. M.; Dini, L. Novel Therapeutic Delivery of Nanocurcumin in Central Nervous System Related Disorders. Nanomaterials, 2020, 11 (1), 2. https://doi.org/10.3390/nano11010002.
  28. Ringman, J. M.; Frautschy, S. A.; Teng, E.; Begum, A. N.; Bardens, J.; Beigi, M.; Gylys, K. H.; Badmaev, V.; Heath, D. D.; Apostolova, L. G.; et al. Oral Curcumin for Alzheimer’s Disease: Tolerability and Efficacy in a 24-Week Randomized, Double Blind, Placebo-Controlled Study. Alzheimers Res Ther, 2012, 4 (5), 43. https://doi.org/10.1186/alzrt146.
  29. Moss, D. M.; Curley, P.; Kinvig, H.; Hoskins, C.; Owen, A. The Biological Challenges and Pharmacological Opportunities of Orally Administered Nanomedicine Delivery. Expert Review of Gastroenterology & Hepatology, 2018, 12 (3), 223–236. https://doi.org/10.1080/17474124.2018.1399794.
  30. Smoliga, J.; Blanchard, O. Enhancing the Delivery of Resveratrol in Humans: If Low Bioavailability Is the Problem, What Is the Solution? Molecules, 2014, 19 (11), 17154–17172. https://doi.org/10.3390/molecules191117154.
  31. DE Flora, S.; Balansky, R.; LA Maestra, S. Antioxidants and COVID-19. J Prev Med Hyg, 2021, 62 (1 Suppl 3), E34–E45. https://doi.org/10.15167/2421-4248/jpmh2021.62.1S3.1895.
  32. Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R.; Suhartati, S.; Soetjipto, S. Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal Plant Compounds by Molecular Docking Study; preprint; MEDICINE & PHARMACOLOGY, 2020. https://doi.org/10.20944/preprints202003.0226.v1.
  33. O, S. In-Silico Identification of Potent Inhibitors of COVID-19 Main Protease (Mpro) from Natural Products. IJBP, 2020, 5 (3). https://doi.org/10.23880/IJBP-16000189.
  34. Utomo, R. Y.; Ikawati, M.; Meiyanto, E. Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection; preprint; MEDICINE & PHARMACOLOGY, 2020. https://doi.org/10.20944/preprints202003.0214.v1.
  35. Tallei, T. E.; Tumilaar, S. G.; Niode, N. J.; Fatimawali; Kepel, B. J.; Idroes, R.; Effendi, Y.; Sakib, S. A.; Emran, T. B. Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study. Scientifica, 2020, 2020, 1–18. https://doi.org/10.1155/2020/6307457.
  36. Adem, Ş.; Eyupoglu, V.; Ibrahim, I. M.; Sarfraz, I.; Rasul, A.; Ali, M.; Elfiky, A. A. Multidimensional in Silico Strategy for Identification of Natural Polyphenols-Based SARS-CoV-2 Main Protease (Mpro) Inhibitors to Unveil a Hope against COVID-19. Comput Biol Med, 2022, 145, 105452. https://doi.org/10.1016/j.compbiomed.2022.105452.
  37. Debnath, K.; Jana, N. R.; Jana, N. R. Quercetin Encapsulated Polymer Nanoparticle for Inhibiting Intracellular Polyglutamine Aggregation. ACS Appl. Bio Mater., 2019, 2 (12), 5298–5305. https://doi.org/10.1021/acsabm.9b00518.
  38. Yang, M.; Jin, L.; Wu, Z.; Xie, Y.; Zhang, P.; Wang, Q.; Yan, S.; Chen, B.; Liang, H.; Naman, C. B.; et al. PLGA-PEG Nanoparticles Facilitate In Vivo Anti-Alzheimer’s Effects of Fucoxanthin, a Marine Carotenoid Derived from Edible Brown Algae. J. Agric. Food Chem., 2021, 69 (34), 9764–9777. https://doi.org/10.1021/acs.jafc.1c00569.
  39. Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R. A.; Aisen, P. S.; Turner, R. S. Resveratrol Regulates Neu-ro-Inflammation and Induces Adaptive Immunity in Alzheimer’s Disease. J Neuroinflammation, 2017, 14 (1), 1. https://doi.org/10.1186/s12974-016-0779-0.
  40. Soni, S.; Ruhela, R. K.; Medhi, B. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective. Adv Pharm Bull, 2016, 6 (3), 319–335. https://doi.org/10.15171/apb.2016.044.
  41. Mu, X.; Wang, J.; Li, Y.; Xu, F.; Long, W.; Ouyang, L.; Liu, H.; Jing, Y.; Wang, J.; Dai, H.; et al. Redox Trimetallic Nanozyme with Neutral Environment Preference for Brain Injury. ACS Nano, 2019, acsnano.8b08045. https://doi.org/10.1021/acsnano.8b08045.
  42. Schubert, D.; Dargusch, R.; Raitano, J.; Chan, S.-W. Cerium and Yttrium Oxide Nanoparticles Are Neuroprotective. Biochemical and Biophysical Research Communications, 2006, 342 (1), 86–91. https://doi.org/10.1016/j.bbrc.2006.01.129.
  43. Bobylev, A. G.; Marsagishvili, L. G.; Podlubnaya, Z. A. Fluorescence Analysis of the Action of Soluble Derivatives of Fullerene C60 on Amyloid Fibrils of the Brain Peptide Aβ(1–42). BIOPHYSICS, 2010, 55 (5), 699–702. https://doi.org/10.1134/S0006350910050027.
  44. Qiu, Y.; Wang, Z.; Owens, A. C. E.; Kulaots, I.; Chen, Y.; Kane, A. B.; Hurt, R. H. Antioxidant Chemistry of Graphene-Based Materials and Its Role in Oxidation Protection Technology. Nanoscale, 2014, 6 (20), 11744–11755. https://doi.org/10.1039/C4NR03275F.
  45. Petro, M.; Jaffer, H.; Yang, J.; Kabu, S.; Morris, V. B.; Labhasetwar, V. Tissue Plasminogen Activator Followed by Antioxi-dant-Loaded Nanoparticle Delivery Promotes Activation/Mobilization of Progenitor Cells in Infarcted Rat Brain. Biomaterials, 2016, 81, 169–180. https://doi.org/10.1016/j.biomaterials.2015.12.009.
  46. Andrabi, S. S.; Yang, J.; Gao, Y.; Kuang, Y.; Labhasetwar, V. Nanoparticles with Antioxidant Enzymes Protect Injured Spinal Cord from Neuronal Cell Apoptosis by Attenuating Mitochondrial Dysfunction. Journal of Controlled Release, 2020, 317, 300–311. https://doi.org/10.1016/j.jconrel.2019.12.001.
More
Academic Video Service