Antinuclear Antibodies in Systemic Sclerosis: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Sindhu Johnson.

Systemic sclerosis is a systemic autoimmune rheumatic disease characterized by immune abnormalities, leading to vasculopathy and fibrosis. Autoantibody testing has become an increasingly important part of diagnosis and prognostication. Clinicians have been limited to antinuclear antibody (ANA), antitopoisomerase I (also known as anti-Scl-70) antibody, and anticentromere antibody testing. ANA are common in the general population, occurring in up to 20% of women. The presence of an ANA is not necessarily suggestive of a pathologic process, particularly at low titers.

  • systemic sclerosis
  • scleroderma
  • antibodies

1. Antinuclear Antibodies (ANA)

ANA are common in the general population, occurring in up to 20% of women. The presence of an ANA is not necessarily suggestive of a pathologic process, particularly at low titers [14][1]. Rather, low-titer ANA are thought to reflect a state of benign autoimmunity. However, a subset (5–8%) of these individuals will progress to develop a systemic autoimmune rheumatic disease SARD(SARD), such as SScsystemic sclerosis (SSc), Sjogren’s syndrome, or systemic lupus erythematosus [14][1]. ANA-positive individuals that subsequently develop a SARD have significantly increased T and B cell activation and increased LAG3+ T regulatory cells and TGF-ß1 [15,16,17,18][2][3][4][5]. Immunoregulation usually prevents development of rheumatic disease in ANA-positive individuals. In contrast, immunoregulation becomes impaired in individuals who progress to develop a SARD, resulting in an imbalance favoring inflammation and fibrosis.
Since the 1960s, it has been recognized that ANA are common in individuals with SSc [19,20][6][7]. ANA have been reported to occur in 75–95% of patients with SSc, with a sensitivity of 85% and specificity of 54% on immunofluorescence [21][8]. The antigen substrate that is utilized for the assay affects the specificity and sensitivity of ANA differently. An indirect immunofluorescence assay using HEp-2 cells (HEp-2 IFA) is the gold standard technique. The presence of ANA as a result of HEp-2 IFA is reported as a titer and a pattern. A clinically relevant ANA titer is 1:80 or more [22][9].
The staining pattern reported with ANA testing by HEp-2 IFA can also be informative. The presence of anti-Scl-70 and anti-U1-RNP antibodies in the sera creates a speckled pattern, while anti-Th/To, anti-fibrillarin (anti-U3RNP) and anti-PM/Scl antibodies create a nucleolar staining pattern. Anti-RNAP I antibodies result in nucleolar staining, while antibodies against RNAP II and III give a speckled appearance or no fluorescence [21][8]. With the identification of over 30 staining patterns that span many diseases, an international consensus on antinuclear antibody patterns (ICAP) has proposed a classification system to standardize the interpretation and reporting of staining patterns [23][10]. While the presence of ANA and staining patterns is helpful, their absence should be interpreted with caution. For example, the anti-RNAP antibodies demonstrate nucleolar staining only 30–44% of the time [24,25][11][12]. Thus, ANA staining patterns should not be used as the sole screening test for SSc-specific antibodies. ANA-negative SSc patients exist and may reflect a subset of SSc who have delayed progression of nailfold microangiopathy, defined by an early nailfold capillary NVC pattern [10][13].

References

  1. Baglaenko, Y.; Chang, N.-H.; Johnson, S.R.; Hafiz, W.; Manion, K.; Ferri, D.; Noamani, B.; Bonilla, D.; Rusta-Sellehy, S.; Lisnevskaia, L.; et al. The presence of anti-nuclear antibodies alone is associated with changes in B cell activation and T follicular helper cells similar to those in systemic autoimmune rheumatic disease. Arthritis Res. Ther. 2018, 20, 264.
  2. Muñoz-Grajales, C.; Prokopec, S.D.; Johnson, S.R.; Touma, Z.; Ahmad, Z.; Bonilla, D.; Hiraki, L.; Bookman, A.; Boutros, P.C.; Chruscinski, A.; et al. Serological abnormalities that predict progression to systemic autoimmune rheumatic diseases in antinuclear antibody-positive individuals. Rheumatology 2022, 61, 1092–1105.
  3. Gupta, R.; Vanlieshout, E.; Manion, K.; Bonilla, D.; Kim, M.; Muñoz-Grajales, C.; Nassar, C.; Johnson, S.R.; Hiraki, L.T.; Ahmad, Z.; et al. Altered Balance of Pro-Inflammatory Immune Cells to T Regulatory Cells Differentiates Symptomatic From Asymptomatic Individuals With Anti-Nuclear Antibodies. Front. Immunol. 2022, 13, 886442.
  4. Hafiz, W.; Nori, R.; Bregasi, A.; Noamani, B.; Bonilla, D.; Lisnevskaia, L.; Silverman, E.; Bookman, A.A.M.; Johnson, S.R.; Landolt-Marticorena, C.; et al. Fatigue severity in anti-nuclear antibody-positive individuals does not correlate with pro-inflammatory cytokine levels or predict imminent progression to symptomatic disease. Arthritis Res. Ther. 2019, 21, 223.
  5. Fennell, R.H., Jr.; Rodnan, G.P.; Vazquez, J.J. Variability of tissue-localizing properties of serum from patients with different disease states. Lab. Investig. 1962, 2, 24–31.
  6. Beck, J.S.; Anderson, J.R.; Gray, K.G.; Rowell, N.R. Antinuclear and precipitating autoantibodies in progressive systemic sclerosis. Lancet 1963, 2, 1188–1190.
  7. Solomon, D.H.; Kavanaugh, A.J.; Schur, P.H. Evidence-based guidelines for the use of immunologic tests: Antinuclear antibody testing. Arthritis Rheum. 2002, 47, 434–444.
  8. Leuchten, N.; Hoyer, A.; Brinks, R.; Schoels, M.; Schneider, M.; Smolen, J.; Johnson, S.R.; Daikh, D.; Dörner, T.; Aringer, M.; et al. Performance of Antinuclear Antibodies for Classifying Systemic Lupus Erythematosus: A Systematic Literature Review and Meta-Regression of Diagnostic Data. Arthritis Care. Res. 2018, 70, 428–438.
  9. Chan, E.K.L.; von Mühlen, C.A.; Fritzler, M.J.; Damoiseaux, J.; Infantino, M.; Klotz, W.; Satoh, M.; Musset, L.; La Torre, I.G.-D.; Carballo, O.G.; et al. The International Consensus on ANA Patterns (ICAP) in 2021-The 6th Workshop and Current Perspectives. J. Appl. Lab. Med. 2022, 7, 322–330.
  10. Yamasaki, Y.; Honkanen-Scott, M.; Hernandez, L.; Ikeda, K.; Barker, T.; Bubb, M.R.; Narain, S.; Richards, H.B.; Chan, E.; Reeves, W.H.; et al. Nucleolar staining cannot be used as a screening test for the scleroderma marker anti-RNA polymerase I/III antibodies. Arthritis Rheum. 2006, 54, 3051–3056.
  11. Parker, J.C.; Burlingame, R.W.; Webb, T.T.; Bunn, C.C. Anti-RNA polymerase III antibodies in patients with systemic sclerosis detected by indirect immunofluorescence and ELISA. Rheumatology 2008, 47, 976–979.
  12. Reveille, J.D.; Solomon, D.H. Evidence-based guidelines for the use of immunologic tests: Anticentromere, Scl-70, and nucleolar antibodies. Arthritis Rheum. 2003, 49, 399–412.
  13. Arnett, F.C. Is scleroderma an autoantibody mediated disease? Curr. Opin. Rheumatol. 2006, 18, 579–581.
  14. Benyamine, A.; Bertin, D.; Resseguier, N.; Heim, X.; Bermudez, J.; Launay, D.; Dubucquoi, S.; Hij, A.; Farge, D.; Lescoat, A.; et al. Quantification of Antifibrillarin (anti-U3 RNP) Antibodies: A New Insight for Patients with Systemic Sclerosis. Diagnostics 2021, 11, 1064.
  15. Villalta, D.; Imbastaro, T.; Di Giovanni, S.; Lauriti, C.; Gabini, M.; Turi, M.C.; Bizzaro, N. Diagnostic accuracy and predictive value of extended autoantibody profile in systemic sclerosis. Autoimmun. Rev. 2012, 12, 114–120.
  16. Gehring, I.; Sjölander, S.; Höpfl, P.; Swiniarski, S.; Iversen, L.V.; Gallo, G. AB0673 Testing for antibodies specific to fibrillarin (U3 RNP) shows added value for diagnosis of systemic sclerosis. Ann. Rheum. Dis. 2017, 76 (Suppl. S2), 1288.
  17. Bairkdar, M.; Rossides, M.; Westerlind, H.; Hesselstrand, R.; Arkema, E.V.; Holmqvist, M. Incidence and prevalence of systemic sclerosis globally: A comprehensive systematic review and meta-analysis. Rheumatology 2021, 60, 3121–3133.
  18. Al-Sheikh, H.; Ahmad, Z.; Johnson, S.R. Ethnic Variations in Systemic Sclerosis Disease Manifestations, Internal Organ Involvement, and Mortality. J. Rheumatol. 2019, 46, 1103–1108.
  19. Spencer-Green, G.; Alter, D.; Welch, H.G. Test performance in systemic sclerosis: Anti-centromere and anti-Scl-70 antibodies. Am. J. Med. 1997, 103, 242–248.
  20. Satoh, T.; Ishikawa, O.; Ihn, H.; Endo, H.; Kawaguchi, Y.; Sasaki, T.; Goto, D.; Takahashi, K.; Takahashi, H.; Misaki, Y.; et al. Clinical usefulness of anti-RNA polymerase III antibody measurement by enzyme-linked immunosorbent assay. Rheumatology 2009, 48, 1570–1574.
  21. Alharbi, S.; Ahmad, Z.; Bookman, A.A.; Touma, Z.; Sanchez-Guerrero, J.; Mitsakakis, N.; Johnson, S.R. Epidemiology and Survival of Systemic Sclerosis-Systemic Lupus Erythematosus Overlap Syndrome. J. Rheumatol. 2018, 45, 1406–1410.
  22. Nevskaya, T.; Pope, J.E.; Turk, M.A.; Shu, J.; Marquardt, A.; Hoogen, F.V.D.; Khanna, D.; Fransen, J.; Matucci-Cerinic, M.; Baron, M.; et al. Systematic Analysis of the Literature in Search of Defining Systemic Sclerosis Subsets. J. Rheumatol. 2021, 48, 1698–1717.
  23. Johnson, S.R.; Feldman, B.M.; Hawker, G.A. Classification criteria for systemic sclerosis subsets. J. Rheumatol. 2007, 34, 1855–1863.
  24. AlMehmadi, B.A.; To, F.Z.; Anderson, M.A.; Johnson, S.R. Epidemiology and Treatment of Peripheral Neuropathy in Systemic Sclerosis. J. Rheumatol. 2021, 48, 1839–1849.
  25. Sobanski, V.; Dauchet, L.; Lefèvre, G.; Lambert, M.; Morell-Dubois, S.; Sy, T.; Hachulla, E.; Hatron, P.-Y.; Launay, D.; Dubucquoi, S. Prevalence of anti-RNA polymerase III antibodies in systemic sclerosis: New data from a French cohort and a systematic review and meta-analysis. Arthritis Rheumatol. 2014, 66, 407–417.
  26. Tall, F.; Dechomet, M.; Riviere, S.; Cottin, V.; Ballot, E.; Tiev, K.P.; Montin, R.; Morin, C.; Chantran, Y.; Grange, C.; et al. The Clinical Relevance of Antifibrillarin (anti-U3-RNP) Autoantibodies in Systemic Sclerosis. Scand. J. Immunol. 2017, 85, 73–79.
  27. Hamaguchi, Y. Autoantibody profiles in systemic sclerosis: Predictive value for clinical evaluation and prognosis. J. Dermatol. 2010, 37, 42–53.
  28. Steen, V.; Domsic, R.T.; Lucas, M.; Fertig, N.; Medsger, T.A. A clinical and serologic comparison of African American and Caucasian patients with systemic sclerosis. Arthritis Rheum. 2012, 64, 2986–2994.
  29. Cavazzana, I.; Vojinovic, T.; Airo’, P.; Fredi, M.; Ceribelli, A.; Pedretti, E.; Lazzaroni, M.G.; Garrafa, E.; Franceschini, F. Systemic Sclerosis-Specific Antibodies: Novel and Classical Biomarkers. Clin. Rev. Allergy Immunol. 2022, 1–19.
  30. Mitri, G.M.; Lucas, M.; Fertig, N.; Steen, V.D.; Medsger, T.A. A comparison between anti-Th/To- and anticentromere antibody-positive systemic sclerosis patients with limited cutaneous involvement. Arthritis Rheum. 2003, 48, 203–209.
  31. Choi, M.Y.; Fritzler, M.J. Progress in understanding the diagnostic and pathogenic role of autoantibodies associated with systemic sclerosis. Curr. Opin. Rheumatol. 2016, 28, 586–594.
  32. Van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A., Jr.; Carreira, P.E.; et al. 2013 classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 2013, 72, 1747–1755.
  33. Suresh, S.; Charlton, D.; Snell, E.K.; Laffoon, M.; Medsger, T.A., Jr.; Zhu, L.; Domsic, R.T. Development of Pulmonary Hypertension in Over One-Third of Patients With Th/To Antibody-Positive Scleroderma in Long-Term Follow-U. Arthritis Rheumatol. 2022, 74, 1580–1587.
  34. Wassarman, K.M.; Steitz, J.A. The low-abundance U11 and U12 small nuclear ribonucleoproteins (snRNPs) interact to form a two-snRNP complex. Mol. Cell. Biol. 1992, 12, 1276–1285.
  35. Fertig, N.; Domsic, R.T.; Rodriguez-Reyna, T.; Kuwana, M.; Lucas, M.; Medsger, T.A., Jr.; Feghali-Bostwick, C.A. Anti-U11/U12 RNP antibodies in systemic sclerosis: A new serologic marker associated with pulmonary fibrosis. Arthritis Rheum. 2009, 61, 958–965.
  36. Callejas-Moraga, E.L.; Guillén-Del-Castillo, A.; Perurena-Prieto, J.; Sanz-Martínez, M.T.; Fonollosa-Pla, V.; Lorite-Gomez, K.; Severino, A.; Bellocchi, C.; Beretta, L.; Mahler, M.; et al. Anti-RNPC-3 antibody predicts poor prognosis in patients with interstitial lung disease associated to systemic sclerosis. Rheumatology 2021, 61, 154–162.
  37. Kayser, C.; Fritzler, M.J. Autoantibodies in systemic sclerosis: Unanswered questions. Front. Immunol. 2015, 6, 167.
  38. Hoogenraad, C.C.; Wulf, P.; Schiefermeier, N.; Stepanova, T.; Galjart, N.; Small, J.V.; Grosveld, F.; De Zeeuw, C.I.; Akhmanova, A. Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. Embo. J. 2003, 22, 6004–6015.
  39. Defendenti, C.; Atzeni, F.; Spina, M.F.; Grosso, S.; Cereda, A.; Guercilena, G.; Bollani, S.; Saibeni, S.; Puttini, P.S. Clinical and laboratory aspects of Ro/SSA-52 autoantibodies. Autoimmun. Rev. 2011, 10, 150–154.
  40. Meridor, K.; Sagy, I.; Molad, Y. Anti-Ro/SS-A antibody is associated with worse pulmonary outcome and reduced overall survival in systemic sclerosis. Mod. Rheumatol. 2022, 32, 1086–1093.
  41. Wodkowski, M.; Hudson, M.; Proudman, S.; Walker, J.; Stevens, W.; Nikpour, M.; Assassi, S.; Mayes, M.D.; Wang, M.; Baron, M.; et al. Monospecific anti-Ro52/TRIM21 antibodies in a tri-nation cohort of 1574 systemic sclerosis subjects: Evidence of an association with interstitial lung disease and worse survival. Clin. Exp. Rheumatol. 2015, 33 (Suppl. S91), S131–S135.
  42. Moinzadeh, P.; Aberer, E.; Ahmadi-Simab, K.; Blank, N.; Distler, J.H.W.; Fierlbeck, G.; Genth, E.; Guenther, C.; Hein, R.; Henes, J.; et al. Disease progression in systemic sclerosis-overlap syndrome is significantly different from limited and diffuse cutaneous systemic sclerosis. Ann. Rheum. Dis. 2015, 74, 730–737.
  43. Breda, S.; Codullo, V.; Fusetti, C.; Caporali, R.; Montecucco, C. SAT0217 Anti- RO/SSA Antibodies in Systemic Sclerosis: Frequency and Clinical Associations in a Monocentric Referral Cohort. Ann. Rheum. Dis. 2013, 72 (Suppl. S3), A654.
  44. Ho, K.T.; Reveille, J.D. The clinical relevance of autoantibodies in scleroderma. Arthritis Res. Ther. 2003, 5, 80–93.
  45. Cavazzana, I.; Fredi, M.; Taraborelli, M.; Quinzanini, M.; Tincani, A.; Franceschini, F. A subset of systemic sclerosis but not of systemic lupus erythematosus is defined by isolated anti-Ku autoantibodies. Clin. Exp. Rheumatol. 2013, 31 (Suppl. S76), 118–121.
  46. Hoa, S.; Hudson, M.; Troyanov, Y.; Proudman, S.; Walker, J.; Stevens, W.; Nikpour, M.; Assassi, S.; Mayes, M.D.; Wang, M.; et al. Single-specificity anti-Ku antibodies in an international cohort of 2140 systemic sclerosis subjects: Clinical associations. Medicine 2016, 95, e4713.
  47. Blüthner, M.; Bautz, F.A. Cloning and characterization of the cDNA coding for a polymyositis-scleroderma overlap syndrome-related nucleolar 100-kD protein. J. Exp. Med. 1992, 176, 973–980.
  48. Hanke, K.; Brückner, C.S.; Dähnrich, C.; Huscher, D.; Komorowski, L.; Meyer, W.; Janssen, A.; Backhaus, M.; Becker, M.; Kill, A.; et al. Antibodies against PM/Scl-75 and PM/Scl-100 are independent markers for different subsets of systemic sclerosis patients. Arthritis Res. Ther. 2009, 11, R22.
  49. Wodkowski, M.; Walker, J.; Stevens, W.; Assassi, S.; Mayes, M.D.; Baron, M.; Fritzler, M.J.; Wodkowski, M.; Proudman, S.; Nikpour, M.; et al. Clinical correlates of monospecific anti-PM75 and anti-PM100 antibodies in a tri-nation cohort of 1574 systemic sclerosis subjects. Autoimmunity 2015, 48, 542–551.
  50. Valero, C.; Baldivieso, J.P.; Llorente, I.; Vicente-Rabaneda, E.F.; Pinedo, L.E.; de Vicuna, R.G.; Alfranca, M.A.; Castañeda, S. AB0427 ANTI-NOR90 autoantibodies: Favorable or unfavorable prognosis? Ann. Rheum. Dis. 2021, 80 (Suppl. S1), 1241–1242.
  51. Biglia, A.; Dourado, E.; Palterer, B.; Parronchi, P.; Pellico, M.R.; Zanframundo, G.; Matias, P.A.R.; Martins, P.; Miranda, A.; Da Fonseca, J.E.C.; et al. POS0863 ANTI-NOR90 antibodies in the setting of connective tissue disease: Clinical significance and comparison with a cohort of patients with systemic sclerosis. Ann. Rheum. Dis. 2022, 81 (Suppl. S1), 725–726.
  52. Yamashita, Y.; Yamano, Y.; Muro, Y.; Ogawa-Momohara, M.; Takeichi, T.; Kondoh, Y.; Akiyama, M. Clinical significance of anti-NOR90 antibodies in systemic sclerosis and idiopathic interstitial pneumonia. Rheumatology 2021, 61, 1709–1716.
  53. Koutsianas, C.; Levasseur, K.; Rutter, M.; Webber, C.; Bhole, M.V.; Bell, C.; Douglas, K.M. 204 A lost-to-follow-up autoantibody for the diagnosis of autoimmune disease: Prevalence and clinical characteristics of anti-NOR90/hUBF positive patients. Rheumatology 2018, 57 (Suppl. S3), key075-428.
  54. Zaarur, N.; Xu, X.; Lestienne, P.; Meriin, A.B.; McComb, M.; E Costello, C.; Newnam, G.P.; Ganti, R.; Romanova, N.V.; Shanmugasundaram, M.; et al. RuvbL1 and RuvbL2 enhance aggresome formation and disaggregate amyloid fibrils. Embo. J. 2015, 34, 2363–2382.
  55. Mahler, M.; Satoh, M.; Fritzler, M. Anti-Th/To Antibodies: Association With Lung Disease and Potential Protection From Systemic Sclerosis-Related Cancer? Comment on the Article by Mecoli et al. Arthritis Rheumatol. 2021, 73, 545–546.
  56. Kaji, K.; Fertig, N.; Hoshino, K.; Lucas, M.; Schnure, A.; Ogawa, F.; Medsger, T.A.; Satoh, T.; Hamaguchi, Y.; Hasegawa, M.; et al. Autoantibodies to RuvBL1 and RuvBL2: A novel systemic sclerosis-related antibody associated with diffuse cutaneous and skeletal muscle involvement. Arthritis Care Res. 2014, 66, 575–584.
  57. Betsholtz, C. Biology of platelet-derived growth factors in development. Birth Defects Res. C Embryo Today 2003, 69, 272–285.
  58. Baroni, S.S.; Santillo, M.; Bevilacqua, F.; Luchetti, M.; Spadoni, T.; Mancini, M.; Fraticelli, P.; Sambo, P.; Funaro, A.; Kazlauskas, A.; et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N. Engl. J. Med. 2006, 354, 2667–2676.
  59. Betteridge, Z.; Tansley, S.; Shaddick, G.; Chinoy, H.; Cooper, R.; New, R.; Lilleker, J.; Vencovsky, J.; Chazarain, L.; Danko, K.; et al. Frequency, mutual exclusivity and clinical associations of myositis autoantibodies in a combined European cohort of idiopathic inflammatory myopathy patients. J. Autoimmun. 2019, 101, 48–55.
More
Video Production Service