机械响应式智能窗户具有结构简单、成本低、稳定性好等优点。
表面周期性纳米级或微尺度阵列作为一种新型智能窗材料,因其具有柔性光捕获性、宽带抗反射、易于制备、比表面积高等特殊优势而备受关注。迄今为止,已经设计和制造了几种纳米阵列,例如纳米锥[13]、纳米柱[14][15][16],纳米孔[17][18]、纳米球[19].这些结构可以通过动态调制表面几何形状来响应各种外部刺激来改变其光学性能。
近年来,Li等人报道了一种通过简单的表面复制方法自擦除纳米锥体增透膜(图1a)[20].具有恒定高度和周期的纳米锥阵列可以很容易地形成聚乙烯醇(PVA)的形状记忆聚合物膜,并且可以通过热刺激方便地擦除。在初始状态下,具有形状记忆效应的PVA薄膜在可见光谱中表现出0.6%的反射率,通过调节温度(>80°C),自擦PVA薄膜的反射率可以从0.6%切换到4.5%。得益于PVA的形状记忆效应,可以改变自擦抗反射膜在可见光谱范围内的反射率。Lee等人介绍了一种可拉伸智能窗户的简单制造,其表面形态图案由皱巴巴的聚(二甲基硅氧烷)(PDMS)薄膜上的纳米柱阵列组成[21].如图1b所示,在释放状态下,由于光通过周期性微米尺寸的表面结构的广泛散射,PDMS薄膜显示出光学不透明特性,其具有磨砂玻璃状外观。
在30%的机械拉伸下,由于没有皱纹,薄膜变得光学透明,透射率高达95%。受变色龙的启发,可以根据环境调整颜色,赵等人设计了一种表面纳米孔型彩色显示膜。[22].如图1c所示,可拉伸纳米空穴光子晶体采用纳米压印技术制备。利用形状记忆合金(SMA)和PDMS材料制备具有形状记忆功能的复合膜。SMA的功能是使纳米空穴光子晶体在电刺激下变形,PDMS的功能是使SMA在脱落电刺激后恢复其初始形状。在1.0-1.5 V的电压下,复合膜可以在整个可见光范围内实现变色,所需的总变形仅小于30%。Ji等人报道了一种纳米球形状记忆镜反射结构彩色薄膜,其起源于逆反射和薄膜干涉结合内反射的机制(图1d)。在变形过程中,由于纳米球形状的变化,光学膜的结构颜色逐渐消失[23].此外,该薄膜具有出色的重复和重写能力,其结构颜色可以通过加热恢复。总之,基于微/纳米阵列的机械响应智能窗口可以简单地调整颜色或透明度,因为可调阵列形状或数组编号。然而,它们的光调制是有限的,因为传统的微/纳米阵列在变形过程中很难完全消失。
作为自然界中的通用图案,起皱是另一种典型的表面纹理,可以通过机械应变动态调整,在光学器件、可拉伸电子器件、储能器件等方面得到了广泛的探索。[24][25][26].根据入射角度,起皱表面将入射光折射到不同的方向,并使起皱的薄层/基板膜后面的物体模糊。然而,当褶皱被横向拉伸应变擦除时,光束可以减少偏转穿过薄膜,使薄膜从不透明变为半透明或高度透明[27][28].
近年来,研究人员设计了多种表面起皱的智能窗户材料。在图2a中,Li等人通过使用典型的等离子拉伸工艺报告了PDMS薄膜的显着厚度依赖性起皱行为[29].它们通过改变基板厚度,在等离子体处理的PDMS薄膜上显示出明亮的表面结构颜色和预先设计的比色响应。由于褶皱的高有序性和相当小的尺寸,可以在厚PDMS薄膜(>1 mm)上获得均匀,明亮和角度相关的结构颜色。
为了消除结构颜色的角度依赖性,受到一种亮蓝色发光蜘蛛的启发,Lin等报道了一种基于皱纹的新型光子弹性体结构[30].通过起皱可拉伸的一维光子晶体(1D PC),实现了具有全向角度无关的明亮结构颜色的光子弹性体薄膜(图2b)。他们使用可拉伸聚氨酯和纳米级TiO2以原料为原料,采用交替组装的方法制成1D PC作为表面结构色层,PDMS为底部弹性层,使弹性体对皱纹的变色响应具有清晰的边界。基于皱纹的结构颜色和光子结构在1000次拉伸循环后可以保持稳定,机械致变色灵敏度高达3.25 nm/%。更重要的是,通过综合控制光子膜的晶格间距和微皱结构,结构颜色只需单个应变方向即可实现延迟变色和可逆开关性能。如图2c所示,Jing等报道了一种基于PVA/PDMS双层薄膜制备温湿双响应表面褶皱的有效策略,可通过合理设计弹性体薄膜上受潮和温度变化的模量PVA蒙皮层来实现[31].双层薄膜系统在快速响应系统、出色的可逆性、稳定性和高透光率调制方面表现出显著的进步。与形成褶皱的单轴应变示例相比,双轴压缩可以产生更复杂的 2D 表面起皱图案,这些图案可能是有序的或无序的。2D起皱图案与灯光的相互作用更大,透射率较低。在图2d中,Shrestha等人展示了一个扁平的ZnO薄膜,该薄膜可以通过电子束蒸发技术沉积在预拉伸的弹性体膜丙烯酸弹性体膜上[32].这种光学可调窗膜看起来是可逆的,并且在半透明和透明状态之间可调。当不对平坦表面施加压缩时,薄膜是透明的,在 550 nm 波长处具有 93% 的透射率。在 14% 径向压缩时,薄膜表面出现皱纹并具有半透明外观,其在线透射率非常低,仅为 3%。分析表明,透明微皱的大振幅和小波长都有利于漫反射光。
除了通过改变表面的数量和微纳米图案间距等结构参数进行光学性能调制外,通过改变微裂纹的开/闭状态来光路的开/闭或散射光单元的出现/消失也是实现荧光快速激发或透射率快速降低的有效手段[33].由于断裂处的结合力较弱,因此通常具有高度敏感的特性。微尺度和纳米级结构设计都很好地证明了它们在实现出色的动态光学性能方面的机会。通过拉伸/释放和揭示/隐藏图案,微/纳米级裂纹可以调整一系列可逆自适应光学器件,例如透明度、荧光颜色和发光强度。
Mao等人报道了一种基于双层结构的简单有效的机械致变色材料方法。该结构由含有荧光染料的PDMS底部基板上的溅射涂层遮光金属层(Au / Pd)组成[34],在拉伸材料下具有水平和/或垂直微尺度裂纹(图 3a)。在拉伸/释放下,金属遮光层上裂纹的开口宽度赋予了紫外线辐射以刺激荧光染料,荧光染料可以表现出嵌入PDMS基体中的发光颜色。通过在制备过程中施加不同程度的预拉伸应变,可以很好地调整裂纹开口宽度,从而产生可定制的机械致变色响应。还展示了设备的高灵敏度和出色的耐用性,在500次拉伸和释放循环后可以表现出出色的机械致变色性能。Zeng等介绍了一种薄的刚性复合材料薄膜,该薄膜是在乙烯基功能化硅烷蒸气处理后通过滴铸法或在塑料基材上喷涂制备的[35].由于泊松效应产生的压缩力,刚性膜的表面形貌表现出垂直于剥离方向的周期性纵向裂纹和垂直于裂纹的横向褶皱。在释放状态下,该薄膜在 600 nm 处显示出 >88% 的透射率,并且在 40% 应变下薄膜变得高度不透明(透射率< 29%)(图 3b)。
与表面结构类似,界面结构也可以动态调节光的散射和干涉,从而实现光调制。此外,基于界面结构调控的机械响应材料可以克服表面结构易受外界环境(如灰尘、湿气、机械载荷等)破坏的问题,表现出更强的可控性和稳定性。[36][37].基于此,通过动态产生/消失新型界面实现透光调节的材料得到了广泛的研究。
如图4a所示,舒扬课题组和研究小组首先提出了将折射率与弹性体相似的纳米颗粒阵列组合制备智能窗膜的方法。[38].在拉伸过程中,由于软弹性体与刚性纳米颗粒的模量不匹配,产生了大量的微/纳米光学界面,导致薄膜的透光率显着降低。虽然这种薄膜的透光率高达70%,但它仍然提高了机械光学灵敏度。因此,通过机械应变下散射的产生/消失来构建快速响应的界面,是提高灵敏度的一种简单有效的方法。基于这一理论,研究小组报道了一种基于染料诱导弱边界层的超灵敏动态光学膜[39].该样品在非常小的应变(15%)下透射率急剧降低44%。此外,总动态透射率为~75%,而该膜可以可逆调制超过2000个周期,具有稳定的结构完整性和光学性能。
Cho等报道了一种新型的3D纳米级复合薄膜,由超薄Al组成2O3纳米壳[40].无论拉伸方向如何,在Al的界面处都会形成大量的光散射纳米间隙2O3和拉伸下的弹性体(图4b)。这些导致在可见光波长下从高90%到非常低的16%的透射率的显着调制,并且在拉伸/释放超过10,000个周期后不会衰减。
Figure 1a. The strategies of mechanoresponsive smart windows based on nanoarrays: nanocone[20], Li, P.; Han, Y.; Wang, W.; Chen, X.; Jin, P.; Liu, S., Self-Erasable Nanocone Antireflection Films Based on the Shape Memory Effect of Polyvinyl Alcohol (PVA) Polymers. Polymers (Basel) 2018, 10, 756-765.
Figure 1b. The strategies of mechanoresponsive smart windows based on nanoarrays: nanopillar[21], Lee, S. G.; Lee, D. Y.; Lim, H. S.; Lee, D. H.; Lee, S.; Cho, K., Switchable transparency and wetting of elastomeric smart windows. Adv Mater 2010, 22, 5013-5017.
Figure 1c. The strategies of mechanoresponsive smart windows based on nanoarrays: nanoholes[22], Zhao, P.; Chen, H.; Li, B.; Tian, H.; Lai, D.; Gao, Y., Stretchable electrochromic devices enabled via shape memory alloy composites (SMAC) for dynamic camouflage. Optical Materials 2019, 94, 378-386.
图 1d.基于纳米阵列的机械响应智能窗策略:纳米球 [23], 季春;陈敏;Wu,L.,可图案和可重写的逆反射结构颜色形状记忆聚合物。先进光学材料2021,94, 2100739.
Figure 2a. The strategies of mechanoresponsive smart windows based on wrinkling: stretching to form wrinkles[29], Li, Z. W.; Liu, Y.; Marin, M.; Yin, Y. D., Thickness-dependent wrinkling of PDMS films for programmable mechanochromic responses. Nano Res 2020, 13, 1882-1888.
Figure 2b. The strategies of mechanoresponsive smart windows based on wrinkling: wrinkled photonic elastomer structure[30], Lin, R.; Qi, Y.; Kou, D.; Ma, W.; Zhang, S., Bio‐Inspired Wrinkled Photonic Elastomer with Superior Controllable and Mechanically Stable Structure for Multi‐Mode Color Display. Advanced Functional Materials 2022, 32, 2207691.
Figure 2c. The strategies of mechanoresponsive smart windows based on wrinkling: Double-layer film wrinkle[31], Jiang, B.; Liu, L.; Gao, Z.; Feng, Z.; Zheng, Y.; Wang, W., Fast Dual-Stimuli-Responsive Dynamic Surface Wrinkles with High Bistability for Smart Windows and Rewritable Optical Displays. ACS Appl Mater Interfaces 2019, 11, 40406-40415.
Figure 2d. The strategies of mechanoresponsive smart windows based on wrinkling: biaxial compression to form wrinkles[32], Shrestha, M.; Lau, G. K., Tunable window device based on micro-wrinkling of nanometric zinc-oxide thin film on elastomer. Opt Lett 2016, 41, 4433-4436.
Figure 3a. Construction paths of mechanoresponsive smart windows based on surface crack: surface deposition of metal coating[34], Mao, Z.; Zeng, S.; Shen, K.; Chooi, A. P.; Smith, A. T.; Jones, M. D.; Zhou, Y.; Liu, X.; Sun, L., Dynamic Mechanochromic Optics with Tunable Strain Sensitivity for Strain‐Responsive Digit Display. Advanced Optical Materials 2020, 8, 2001472.
Figure 3b. Construction paths of mechanoresponsive smart windows based on surface crack: soft substrate/ hard shell[35], Li, Z.; Zhai, Y.; Wang, Y.; Wendland, G. M.; Yin, X.; Xiao, J., Harnessing Surface Wrinkling–Cracking Patterns for Tunable Optical Transmittance. Advanced Optical Materials 2017, 5, 1700425.
Figure 4a. Methods to novel interface dynamic generation: phase separation due to huge elastic modulus difference[38], Ge, D.; Lee, E.; Yang, L.; Cho, Y.; Li, M.; Gianola, D. S.; Yang, S., A robust smart window: reversibly switching from high transparency to angle-independent structural color display. Adv Mater 2015, 27, 2489-95.
Figure 4a. Methods to novel interface dynamic generation: phase separation due to huge elastic modulus difference[39], Liu, Y.; Song, S.; Liu, M.; Hu, Y.; Zhang, L.-w.; Yoon, H.; Yang, L.; Ge, D., Gecko-inspired ultrasensitive multifunctional mechano-optical smart membranes. Chemical Engineering Journal 2022, 429, 132159.
Figure 4b. Methods to novel interface dynamic generation: phase separation due to huge elastic modulus difference[40], Cho, D.; Shim, Y. S.; Jung, J. W.; Nam, S. H.; Min, S.; Lee, S. E.; Ham, Y.; Lee, K.; Park, J.; Shin, J.; Hong, J. W.; Jeon, S., High-Contrast Optical Modulation from Strain-Induced Nanogaps at 3D Heterogeneous Interfaces. Adv Sci (Weinh) 2020, 7, 1903708.
Figure 5a. Mechanoresponsive smart windows with dynamic control of interface parameters: colloidal particle spacing[41], Han, J.; Freyman, M. C.; Feigenbaum, E.; Yong-Jin Han, T., Electro-Optical Device with Tunable Transparency Using Colloidal Core/Shell Nanoparticles. ACS Photonics 2018, 5, 1343-1350.
Figure 5b. Mechanoresponsive smart windows with dynamic control of interface parameters: colloidal particle direction[42], Li, J.; Lu, X.; Zhang, Y.; Ke, X.; Wen, X.; Cheng, F.; Wei, C.; Li, Y.; Yao, K.; Yang, S., Highly Sensitive Mechanoresponsive Smart Windows Driven by Shear Strain. Advanced Functional Materials 2021, 31, 2102350.
Figure 5c. Mechanoresponsive smart windows with dynamic control of interface parameters: spacing and shape of hole[17]. Zhao, P.; Li, B.; Tang, Z.; Gao, Y.; Tian, H.; Chen, H., Stretchable photonic crystals with periodic cylinder shaped air holes for improving mechanochromic performance. Smart Materials and Structures 2019, 28, 075037.
Figure 6a. Two strategies of mechanoresponsive smart windows based on surface and interface modulation synergistically: surface wrinkle, novel interface dynamic formation dynamic control of interface parameters[43], Qi, Y.; Zhou, C.; Zhang, S.; Zhang, Z.; Niu, W.; Wu, S.; Ma, W.; Tang, B., Bar-coating programmable mechanochromic bilayer PDMS film with angle-dependent and angle-independent structural colors. Dyes and Pigments 2021, 189, 109264.
Figure 6b. Two strategies of mechanoresponsive smart windows based on surface and interface modulation synergistically: surface wrinkle and novel interface dynamic generation[44], Kim, H. N.; Ge, D.; Lee, E.; Yang, S., Multistate and On-Demand Smart Windows. Adv Mater 2018, 30, e1803847.
Figure 7a. The strategy of pneumatic drive mode mechanoresponsive smart windows: adjust transparency and color by changing film thickness[45], López Jiménez, F.; Kumar, S.; Reis, P. M., Soft Color Composites with Tunable Optical Transmittance. Advanced Optical Materials 2016, 4, 620-626.
Figure 7b. The strategy of pneumatic drive mode mechanoresponsive smart windows: adjust transparency and color by changing film thickness[46], Kim, S. U.; Lee, Y. J.; Liu, J.; Kim, D. S.; Wang, H.; Yang, S., Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers. Nat Mater 2022, 21, 41-46.
Figure 7c. The strategy of pneumatic drive mode mechanoresponsive smart windows: pneumatic stretching to adjust transparency[47]; Rotzetter, A. C. C.; Fuhrer, R.; Grass, R. N.; Schumacher, C. M.; Stoessel, P. R.; Stark, W. J., Micro Mirror Polymer Composite Offers Mechanically Switchable Light Transmittance. Advanced Engineering Materials 2014, 16, 878-883.
Figure 7d. The strategy of pneumatic drive mode mechanoresponsive smart windows: pneumatic drive mode mechanochromic hydrogels[48]. Zhu, Q.; Vliet, K.; Holten‐Andersen, N.; Miserez, A., A Double‐Layer Mechanochromic Hydrogel with Multidirectional Force Sensing and Encryption Capability. Advanced Functional Materials 2019, 29, 1808191.
Figure 8a. The approaches for optical-driving mechanoresponsive smart windows: based on the high photothermal conversion efficiency of CNT[49], Li, F.; Hou, H.; Yin, J.; Jiang, X., Near-infrared light–responsive dynamic wrinkle patterns. Science Advances 4, eaar5762.
Figure 8b. The approaches for optical-driving mechanoresponsive smart windows: based on the high photothermal conversion efficiency of CNT[50], Xie, M.; Lin, G.; Ge, D.; Yang, L.; Zhang, L.; Yin, J.; Jiang, X., Pattern Memory Surface (PMS) with Dynamic Wrinkles for Unclonable Anticounterfeiting. ACS Materials Letters 2019, 1, 77-82.
Figure 8c. The approaches for optical-driving mechanoresponsive smart windows: (c) based on metal nanoparticles[51], Cao, D.; Xu, C.; Lu, W.; Qin, C.; Cheng, S., Sunlight-Driven Photo-Thermochromic Smart Windows. Solar RRL 2018, 2, 1700219.
Figure 8d. The approaches for optical-driving mechanoresponsive smart windows: based on inverse opal scaffold structure[52]. Wang, Y.; Zhang, Z.; Chen, H.; Zhang, H.; Zhang, H.; Zhao, Y., Bio-inspired shape-memory structural color hydrogel film. Science Bulletin 2022, 67, 512-519.
Figure 9a. The strategy of thermal driving mode of mechanoresponsive smart windows: formation of surface wrinkles structure[58], Li, D.; Zhou, C.; Meng, Y.; Chen, C.; Yu, C.; Long, Y.; Li, S., Deformable Thermo-Responsive Smart Windows Based on a Shape Memory Polymer for Adaptive Solar Modulations. ACS Appl Mater Interfaces 2021, 13, 61196-61204.
Figure 9b. The strategy of thermal driving mode of mechanoresponsive smart windows: (a) formation of dynamic network structure[59], Zhao, J.; Zhang, L.; Du, X.; Xu, J.; Lin, T.; Li, Y.; Yang, X.; You, J., Panther chameleon-inspired, continuously-regulated, high-saturation structural color of a reflective grating on the nano-patterned surface of a shape memory polymer. Nanoscale Adv 2022, 4, 2942-2949.
Figure 9c. The strategy of thermal driving mode of mechanoresponsive smart windows: formation of nanostripes structure[60], Xu, Z.-Y.; Li, L.; Du, L.; Wang, L.; Shi, L.-Y.; Yang, K.-K.; Wang, Y.-Z., Multiscale shape-memory effects in a dynamic polymer network for synchronous changes in color and shape. Applied Materials Today 2022, 26, 101276.
Figure 9d. The strategy of thermal driving mode of mechanoresponsive smart windows: formation of dynamic network structure[61], Zhang, W.; Wang, H.; Wang, H.; Chan, J. Y. E.; Liu, H.; Zhang, B.; Zhang, Y. F.; Agarwal, K.; Yang, X.; Ranganath, A. S.; Low, H. Y.; Ge, Q.; Yang, J. K. W., Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nat Commun 2021, 12, (1), 112-120.
Figure 10a. The strategy of electric driving mode mechanoresponsive smart windows: controlling movement of nanoparticles via the electrophoresis to modulate transmittance and color[64], Wang, J. L.; Liu, J. W.; Sheng, S. Z.; He, Z.; Gao, J.; Yu, S. H., Manipulating Nanowire Assemblies toward Multicolor Transparent Electrochromic Device. Nano Lett 2021, 21, 9203-9209.
Figure 10b. The strategy of electric driving mode mechanoresponsive smart windows: controlling movement of nanoparticles via the electrophoresis to modulate transmittance and color[65], Liu, S.; Zhang, D.; Peng, H.; Jiang, Y.; Gao, X.; Zhou, G.; Liu, J.-M.; Kempa, K.; Gao, J., High-efficient smart windows enabled by self-forming fractal networks and electrophoresis of core-shell TiO2@SiO2 particles. Energy and Buildings 2021, 232, 110657.
Figure 10c. The strategy of electric driving mode mechanoresponsive smart windows: based on carbon nanotube materials to adjust transmittance[66], Zhang, W.; Weng, M.; Zhou, P.; Chen, L.; Huang, Z.; Zhang, L.; Liu, C.; Fan, S., Transparency-switchable actuator based on aligned carbon nanotube and paraffin-polydimethylsiloxane composite. Carbon 2017, 116, 625-632.
Figure 10d. The strategy of electric driving mode mechanoresponsive smart windows: based on surface wrinkle to modulate transmittance[67], Shrestha, M.; Asundi, A.; Lau, G.-K., Smart Window Based on Electric Unfolding of Microwrinkled TiO2 Nanometric Films. ACS Photonics 2018, 5, 3255-3262.
Figure 11a. The strategy of magnetic driving mode mechanoresponsive smart windows: adjusting the ratio of magnetic nanoparticles to change transmittance[70], Yang, J.; Lee, H.; Heo, S. G.; Kang, S.; Lee, H.; Lee, C. H.; Yoon, H., Squid‐Inspired Smart Window by Movement of Magnetic Nanoparticles in Asymmetric Confinement. Advanced Materials Technologies 2019, 4, 1900140.
Figure 11b. The strategy of magnetic driving mode mechanoresponsive smart windows: forming the magnetic nanopillars array to adjust transmittance[71], Luo, Z.; Evans, B. A.; Chang, C. H., Magnetically Actuated Dynamic Iridescence Inspired by the Neon Tetra. ACS Nano 2019, 13, 4657-4666.
Figure 11c. The strategy of magnetic driving mode mechanoresponsive smart windows: forming magnetothermal hydrogel to modulate transmittance[72], Wang, W.; Fan, X.; Li, F.; Qiu, J.; Umair, M. M.; Ren, W.; Ju, B.; Zhang, S.; Tang, B., Magnetochromic Photonic Hydrogel for an Alternating Magnetic Field-Responsive Color Display. Advanced Optical Materials 2018, 6, 1701093.
Figure 12a. The strategy of humidity driving mode mechanoresponsive smart windows: based on thermosensitive hydrogels[73], Wang, M.; Gao, Y.; Cao, C.; Chen, K.; Wen, Y.; Fang, D.; Li, L.; Guo, X., Binary Solvent Colloids of Thermosensitive Poly(N-isopropylacrylamide) Microgel for Smart Windows. Industrial & Engineering Chemistry Research 2014, 53, , 18462-18472.
Figure 12b. The strategy of humidity driving mode mechanoresponsive smart windows: based on the humidity driving mode wrinkles[74] Zeng, S.; Li, R.; Freire, S. G.; Garbellotto, V. M. M.; Huang, E. Y.; Smith, A. T.; Hu, C.; Tait, W. R. T.; Bian, Z.; Zheng, G.; Zhang, D.; Sun, L., Moisture-Responsive Wrinkling Surfaces with Tunable Dynamics. Adv Mater 2017, 29, 1700828.
Figure 12c. The strategy of humidity driving mode mechanoresponsive smart windows: base on humidity sensitive porous structure[75],Castellón, E.; Zayat, M.; Levy, D., Novel Reversible Humidity-Responsive Light Transmission Hybrid Thin-Film Material Based on a Dispersive Porous Structure with Embedded Hygroscopic and Deliquescent Substances. Advanced Functional Materials 2018, 28, 1704717.