Soil Constraints in an Arid Environment: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 1 by Anandkumar Naorem.

Arid environments are characterized by a higher evaporation than precipitation, as well as persistent water shortages, frequent droughts, high climate variability, and high wind velocity. These soil constraints can be ameliorated and the crop yields increased through case-specific optimization of irrigation and drainage management, enhancing the native beneficial soil microbes, and combinations of soil amendments, conditioners, and residue management.

  • aridity
  • calcareous
  • drylands
  • gypsic
  • plant growth promoting bacteria

1. Introduction

Rapid population growth puts tremendous pressure on natural resources, and the demand for increased and high-quality food is the most important concern for fulfilling food and nutritional security today. People in low-income countries are highly prone to risk owing to unprecedented land degradation. The objective is thus to achieve a state of land degradation neutrality for sustainable agriculture [1]. To achieve land degradation neutrality, land must be maintained in such a way that it can support biological activities and produce enough food for human consumption [2]. In accordance with one of the United Nations’ Sustainable Development Goals (Target 15.3 for 2030), which specifies the need to fight desertification, it is important to rehabilitate degraded land and soil, particularly land affected by desertification and drought, in order to establish a land degradation-neutral world [1]. This indicates the need for developing and utilizing the land, especially previously overlooked areas. In this respect, the large soil resources of arid regions provide a potential agricultural habitat and comprise around 16% of the planet’s land surface [3]. Most developing nations with rapid population expansion are located in arid and semi-arid regions. However, since 1950, aridity has risen across the majority of the Earth’s surface, a trend that has been exacerbated by the ongoing effects of current global warming [4]. Because of limited natural water resources, arid areas are extremely susceptible to climate variability and extreme occurrences such as droughts and heatwaves, and as a result they experience rapid environmental and land degradation. Insidious land degradation, whether induced by natural forces or human mismanagement, has the potential to challenge the resilience of natural ecosystems, produce permanent alterations in their states, and in the worst situations, bring about permanent desertification [5]. Expanding and intensively using agricultural lands, improper irrigation methods, forest clearing, and overgrazing are all human activities that lead to desertification. These unsustainable practices place a heavy burden on the land by influencing its soil chemistry and hydrology in undesirable ways. The expected drier and warmer climate will have significant effects on biomass accumulation, decomposition, and C storage in a variety of ways, and eventually disturb the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in a reduction in the provision of important services provided by arid ecosystems [6].

2. Concept and Distribution of Arid Zone

There are several classifications of arid zones, as shown in Figure 1. Meigs [7] classified arid regions based on whether they have hot or cold winters (Table 1). The Food and Agriculture Organization (FAO) defines arid zones as those having a length of growing period (LGP) of 0–179 days [8], while the United Nations Convention to Combat Desertification (UNCCD) uses the ratio of yearly precipitation to potential evapotranspiration (P/PET) as a criterion for its classifications. Based on the criteria established by UNCCD, arid regions have a P/PET ratio between 0.05 and 0.65. For the purposes of this study, wre usedsearch, the classification from UNCCD was used. The aridity index (AI) was used to categorise and define arid regions as hyper-arid (AI < 0.05), arid (AI = 0.05–0.20), semi-arid (AI = 0.20–0.50), or sub-humid zones (AI = 0.5–0.65) [9]. Arid regions account for 10.6% of the Earth’s land area, but semi-arid regions are much larger, covering 15.2% of the land area, and may be found on all seven continents. Finally, dry sub humid regions account for just 8.7% of the land area [10].
Figure 1. Distribution of arid zones (% of the global land area depicted in the size of the bubbles) according to different classifications (depicted through different colours); modified from [8,13,14,15,16][8][11][12][13][14].
Table 1.
The climates of an arid zone [7].
More than a third of the world’s population lives in dryland regions, which cover 5.36 million km2 (41%) of the Earth’s land area [11][15]. There are extensive arid zones between 15° and 30° latitude in both the Northern and Southern hemispheres, including in North and South America, North Africa, the Sahelian region, Africa south of the Equator, the Near East, Asia, and the Pacific [12][16]. Africa possesses 37% of the world’s arid zones, making it the continent most at risk from land degradation and desertification, given that 66% of its territory is classified as desert or arid. Asia, home to 33% of the world’s arid zones, also experiences these consequences to a great extent.

3. Characteristics of an Arid Ecosystem and Its Soil Constraints

Arid environments are characterized by a higher evaporation than precipitation, as well as persistent water shortages, frequent droughts, high climate variability, and high wind velocity. When desertification occurs and previously non-arid areas become arid, a loss of biodiversity can also occur. The concept of aridity is based on the ratio of available water to the total amount of water used. Because of atmospheric stability, precipitation is often lower than evapotranspiration in arid regions, and frigid winters are typical. Dry, stable air masses that resist convective currents are a common source of aridity. The absence of storm systems, which cause convergence, generate unstable conditions, and supply the upward movement of air required for precipitation, can also lead to aridity. Most of the precipitation in hot deserts occurs in strong convectional showers that do not cover large areas, making widespread rains virtually unheard of in these regions. In low-latitude deserts, the skies are usually clear, allowing for plenty of sunshine. A low latitude desert’s annual temperature range is greater than that of any other tropical climate. Water is commonly lost as runoff in arid regions because the soils cannot absorb all of the rain that falls during heavy storms [17]. In other cases, when rain falls on dry land, much of the precipitation is lost to evaporation. As much as 90% of rainfall in arid settings evaporates back into the atmosphere, leaving only 10% for productive transpiration [18]. Low precipitation and high temperatures result in high evaporation in arid regions, which also leads to aridic and xeric soil moisture regimes.

3.1. Scarcity of Water

Water scarcity is a major limiting factor of agricultural production in arid locations. Because of low precipitation and high evapotranspiration, good quality water is in scarce supply in arid areas. This problem is aggravated by the current state of global climate change, which brings extreme weather events and prolonged dry seasons. Optimizing farming practices for production and water management improves soil, water, and product quality [19]. Because of the scarcity of water, the soils in arid regions have a poor natural primary production and low soil fertility. Arid soils typically have an alkaline pH and accumulate significant amounts of potassium (K), salt, calcium (Ca), and other minerals, which can be detrimental to plant growth. Furthermore, gypsic crusts are also formed in some arid soils that could support specialized species of plants. Therefore, low soil fertility has negatively affected plant growth and biodiversity in arid soils [20]. Because of the existence of subtle environmental conditions, which were not taken into account by the soil fertility assessment systems developed by researchers and scientists for temperate and humid areas, Hag Husein et al. [21] concluded that the conventional systems have a low potential for adoption in arid areas. Therefore, soil fertility assessment tools tailored to arid areas should be developed to ensure widespread adoption and actual application.

Management to Cope with Water Scarcity

There are two different aspects of arid regions, namely (i) arid regions with a persistent lack of precipitation (absolute deserts) and (ii) arid regions with erratic precipitation (periodic drought of unpredictable severity and duration). The selection of crops, their composition and rotation, and, especially, the quantitative needs of fields and water requirement, schedule of watering, and the combination of watering with atmospheric precipitation all depend on an accurate assessment of the hydrothermal conditions of the region. In general, during the growing season, non-saline soils should not have a relative humidity that falls below 65–70% of the field moisture capacity. When watering non-saline soils, only a deficit level of the field moisture capacity should be applied [22]. In fact, the high potential productivity of irrigated agriculture in arid lands has been realised, and admiring remarks by visitors from temperate lands may be found in the classical literature. In 1800, Napoleon’s savants conducted a survey that included a quantitative analysis of the productivity of traditional irrigated agriculture in Egypt. Based on the relative yields of the wheat crop, they concluded that Egypt’s agricultural output was more than double that of France [23]. In arid areas, it is challenging to meet the agriculture water demand solely by utilising conventional water sources. Fader et al. [24] reported that by implementing more efficient irrigation and conveyance systems, the Mediterranean region could save up to 35% of water used. Wastewater reuse or low-quality water could be a potential option in the region. Recovering and reusing large quantities of low-quality water for irrigation, such as that from urban and industrial wastewater treatment plants, has the potential to reduce the need for groundwater. However, there are potential drawbacks associated with their usage in irrigation, including pollutants and crop toxicity, soil quality decline, parasite transmission, and system flaws [25,26][25][26]. The toxicity, solubility, and concentration of the chemicals will determine the severity of the potential effects. The rate and frequency of wastewater application, the type of crop and the desired yields, the inherent soil properties and condition, the prevailing weather patterns, the farmers’ level of technological capabilities, and their socioeconomic standing are also significant. In the arid western United States, sites irrigated with recycled wastewater have shown 187% higher electrical conductivity and 481% higher sodium adsorption ratio (SAR) compared with the sites irrigated with fresh water [27]. Poor irrigation management and inadequate soil drainage systems are the primary causes of persistent soil salinity and/or sodicity issues caused by the use of saline irrigation water [28], which is more prevalent in arid areas. However, the proper choice of crops is necessary in this regard. For example, in the arid Mediterranean region, the yield of maize grown using drip irrigation is around 25% higher than that of maize grown with surface irrigation [29]. Using a drip irrigation system with salt water with an electrical conductivity of 12 dS/m, the maize produced yields that were comparable to those obtained using fresh water. Compared wih barley, which has a yield threshold of 8 dS/m, bread wheat (Triticum aestivum L.) is only moderately salt tolerant, with a threshold of 6 dS/m; durum wheat (Triticum durum Desf.) is even less salt tolerant than bread wheat [30]. When compared with other legume species in the arid Mediterranean region, faba beans score the highest in their ability to thrive in dry conditions due to their rapid growth, early flowering, and maturity, which allow them to avoid drying up and dying [31]. However, lentils (Lens culinaris Medicus) also have osmotic adjustment, can escape drought through being tolerant to a low temperature, have rapidly filling seed, and mature early, while chickpeas (Cicer arietinum L.) have deep roots, osmotic adjustment, and a generally high level of drought resistance and cold tolerance. One of the crops chosen to ensure food security in the 21st century is quinoa (Chenopodium quinoa Willdenow) [32]. The intrinsic low osmotic potential and the plant’s capacity for growth plasticity and tissue elasticity [33] allow quinoa to survive in dry environments [34]. As a result of the plant’s deep root system, reduced leaf area, vesicular bladders, small and thick-walled cells suited to losses of water without loss of turgor, and stomatal closure, the crop is protected against the detrimental effects of drought [34]. Moreover, there is an addition of excessive nitrogen through wastewater irrigation, causing eutrophication in arid areas [35]. Selecting crops that can take advantage of high concentrations of nutrients, such as fodder grass [36], or employing the method of crop rotation to permit the removal of any excess nutrients, could help to reduce the need for the excessive supply of nutrients, especially nitrogen. According to Hamilton et al. [35], the possibility of nitrate leaching into groundwater can be significantly lowered through careful adaptation of crop and plant production systems in alignment with local weather patterns and effluent characteristics. When it comes to reducing nitrate leaching, for instance in arid regions, high yielding crops with substantial concentrations of nitrogen in their biomass (such as leafy vegetable and fodder grass) are likely to be more beneficial than tree plantations [35,36][35][36]. A strong need exists for the development of regional decision tools to determine the most appropriate agricultural management strategies (i.e., crop choice, sowing time, management of soil cover, timings, and rates of fertilizer application, etc.) according to the amount of water held in the soil, especially given the inconsistency of rainfall in most arid areas. In order to boost biomass production and, as a consequence, both above- and below-ground inputs of C to the soil, it is necessary to increase the amount of plant-available water. This can be achieved by optimising the amount of precipitation collected, the amount of water retained by the soil, and the efficiency with which crops use available water. Capturing rainwater is highly dependent on the soil structure, as well as the presence and connectivity of macropores at the soil surface; however, improvement in the soil structure in the arid region is quite a challenging task, amidst less crop biomass and low organic input addition. Understanding the complex ecological processes associated with vegetation on soil moisture is vital for vegetation restoration in arid environments, even though the impacts of vegetation on soil moisture are multifarious. Vegetation growth and succession are influenced by soil moisture at the root zone [37], and vegetation in turn influences the soil capacity for storing, transferring, and evaporating water at the canopy level [38]. Canopy interception and stem flow are two ways in which vegetation re-distributes precipitation and hence alters post-rainfall infiltration processes [39,40][39][40]. Recent years have seen an increase in the usage of highly hydrophilic superabsorbent polymers (SAPs) in agriculture, where they are believed to function as a reservoir for both nutrients and water [41]. Some researchers have indicated that after being applied to farms, these SAPs can maintain soil moisture and store some nutrients for up to five years [42]. These polymers have been shown to enhance the physical properties of soil and especially soil aggregation, hence enhancing the quality and quantity of many agricultural products (Table 2) [43]. The benefits to the soil have been well documented, and include increased water penetration into the soil, decreased soil erosion, decreased soil bulk density [44], improved nutrient intake efficiency [45], reduced evaporation rate from the soil surface [46], better weathering, reduced leaching of soil nutrients, and increased activity and proliferation of mycorrhizal fungi and other soil microorganisms [47]. Jahan and Nassiri Mahallati [41] conducted a meta-analysis to understand whether the application of SAPs has been effective at enhancing the crop production in arid soils of Iran. It was found that the average seed yield for cereals increased by 15.2% after being treated with 83 kg ha−1 of SAPs in arid soils compared with untreated seeds.
Table 2.
Effect of superabsorbent polymers (SAPs) on crop growth in water-limited environments.
Plastic film mulching has been shown to be an invaluable tool for increasing crop yields and adapting farming practices in arid regions [57]. For example, wheat yield and water use efficiency on the arid Loess Plateau of Northwest China were much higher when plastic film mulching was used as opposed to straw mulching [58]. Plastic mulching is an excellent way to prevent soil moisture from being lost through evaporation and to maximize the use of scarce rainfall, which can help drought-stricken areas in arid regions [59]. However, some studies have found that using plastic mulch reduced the crop yields. Plastic mulching, for instance, altered the water and temperature conditions outside the range of crop adaptation in low-lying areas with an abundance of resources, leading to poorer yields [60]. Film mulching can also increase the root growth ability during the early growth stage, which led to an overabundance of soil moisture being used. Inadequate coupled with late-season precipitation and soil moisture led to an imbalance between vegetative and reproductive growth, which resulted in a lower crop production and water use efficiency [59]. However, Gao et al. [57] found that both crop yield and water use efficiency were improved in China’s arid regions when farmers began using transparent plastic and ridge row mulching.

3.2. Soil Organic and Inorganic Carbon

SOC/SOM is a primary component influencing both the composition and structure of soil. SOM also contributes to greater drought resilience in arid regions and higher crop yields. Because of climate constraints, the soils in arid regions have an inherently low stock of organic C (Table 3). However, they also have a lot of inorganic C, mostly in the form of soil carbonates (Table 3) [61]. On average, Lal [62] reported that dryland ecosystems sequestered between 0.1 and 0.2 Mg ha−1 year−1 of soil inorganic C. In addition to acting as a sink for atmospheric CO2, inorganic C in soil may also play a positive function in soil aggregation via the interaction of carbonates with SOM. Moreover, SOM controls the positive effect of carbonates in the soil structure [63]. Water stability of soil macroaggregates is highly associated with the carbonate content at low SOM values [64]. The importance of vegetative coverings in preventing soil erosion and maintaining soil organic C in arid areas has been well recognized. The presence of a sufficient protection of the soil surface is hampered by conventional management practices, including intensive tillage, feed needs for animal production, and excessive grazing [65,66,67][65][66][67]. Soil quality and long-term food security are threatened by the extractive nature of using crop residues as fodder for cattle and animal manure as a cooking fuel in emerging countries of Asia and Africa [68]. The loss of SOC in these nations must be prevented by increasing the quantity of crop residues generated. However, in some emerging regions, such as West Africa, fertilisation is necessary to stimulate sufficient biomass production due to the highly weathered nature of soils [69]. Appropriate crop rotations, which encourage a greater diversity of plants, typically result in an increase in above-ground biomass and a preference for a more diversified root system (i.e., below-ground C allocation), with varying effects on the soil organic C by root-derived products [70]. Soil C stock can be improved with the use of deep rooting plants [71]. The selection of species and cultivars with deeper and better root systems, as well as other measures for optimal use of the complete soil profile, are all important factors to consider when functioning with rain-fed arid agriculture. Improvements in soil productivity, agricultural profitability, and environmental sustainability can be achieved through the rotation of controlled perennial grass or grass–legume mixtures (ley) with annual crops [72]. Adding a perennial grass–legume to a crop and livestock rotation can boost landscape diversity while maintaining or improving yields compared with less varied systems [73]. The fluctuation between soil organic C (Cs) and soil organic N (Ns) is a feature that is characteristic of crop–pasture rotating systems. Carbon and nitrogen levels drop during the annual cropping phase, but swiftly recover during the perennial pasture phase [74]. Perennial plant species contribute three to seven times more C and N to the litter pool than annual species through greater root production [75]; these roots are also placed deeper in the soil profile, which explains the Cs and Ns recovery during the pasture phase [76]. The majority of Ns improvement can be attributed to biological nitrogen fixation. The demand for N fertiliser for non-legume annual crops is reduced, as N stored during the grazing phase is gradually mineralized throughout the annual phase. This slow process of N mineralization is thought to enhance the synchronisation between N supply and N intake, hence decreasing N loss opportunities and allowing for greater productivity. Even when annual crops are maintained with no-till, the yield ceiling might drop and the yield gap can widen when pastures are removed from the rotation, as has been demonstrated for wheat [77].
Table 3.
Elemental stocks (mean ± standard deviation) of the global hyper arid and arid soils in three different soil depths; modified from [78].

References

  1. Pacheco, F.A.L.; Sanches Fernandes, L.F.; Valle Junior, R.F.; Valera, C.A.; Pissarra, T.C.T. Land Degradation: Multiple Environmental Consequences and Routes to Neutrality. Curr. Opin. Environ. Sci. Health 2018, 5, 79–86.
  2. Akhtar-Schuster, M.; Stringer, L.C.; Erlewein, A.; Metternicht, G.; Minelli, S.; Safriel, U.; Sommer, S. Unpacking the Concept of Land Degradation Neutrality and Addressing Its Operation through the Rio Conventions. J. Environ. Manage. 2017, 195, 4–15.
  3. Husein, H.H.; Mousa, M.; Sahwan, W.; Bäumler, R.; Lucke, B. Spatial Distribution of Soil Organic Matter and Soil Organic Carbon Stocks in Semi-Arid Area of Northeastern Syria. Nat. Resour. 2019, 10, 415–432.
  4. Trenberth, K.E.; Dai, A.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global Warming and Changes in Drought. Nat. Clim. Chang. 2014, 4, 17–22.
  5. Dai, A. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Chang. 2013, 3, 52–58.
  6. Yuan, Z.Y.; Chen, H.Y.H. Decoupling of Nitrogen and Phosphorus in Terrestrial Plants Associated with Global Changes. Nat. Clim. Chang. 2015, 5, 465–469.
  7. Meigs, P. World Distribution of Arid and Semi-Arid Homoclimates. In Reviews of Research on Arid Zone Hydrology; UNESCO, Ed.; UNESCO: Paris, France, 1953; pp. 203–210.
  8. FAO World Soil Resource Report: Land Resource Potential and Constraints at Regional and Country Levels. Available online: https://www.fao.org/documents/card/ru/c/15bf7a55-18ba-4c0b-95a3-fb63cb4849cb/ (accessed on 17 November 2022).
  9. Rossi, F. Beneficial Biofilms for Land Rehabilitation and Fertilization. FEMS Microbiol. Lett. 2020, 367, fnaa184.
  10. UN Decade for Deserts and the Fight against Desertification. Available online: http://www.un.org/en/events/desertification_decade/whynow.shtml (accessed on 17 November 2022).
  11. Köppen, W. Die Klimate Der Erde. W. de Gruyter: Berlin, Germany, 1931.
  12. Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Soil Sci. 1948, 66, 77.
  13. Shantz, H.L. History and Problems of Arid Lands Development. In The Future of Arid Lands; White, G.F., Ed.; American Association for the Advancement of Science: Washington, DC, USA, 1956; pp. 3–25.
  14. UN Map of the World Distribution of Arid Soil. Available online: https://catalogue.unccd.int/1060_1977_unesco_mab_technicalnotes_arid_lands_map.pdf (accessed on 17 November 2022).
  15. Mortimore, M.; Anderson, S.; Cotula, L.; Davies, J.; Faccer, K.; Hesse, C.; Morton, J.; Nyangena, W.; Skinner, J.; Wolfangel, C. Dryland Opportunities. A New Paradigm for People, Ecosystems and Development. Available online: https://www.cbd.int/doc/case-studies/inc/cs-inc-iucn-dryland-en.pdf (accessed on 11 October 2022).
  16. United Nations Environment Management Group Global Drylands: A UN System-Wide Response. Available online: https://www.unccd.int/sites/default/files/sessions/documents/ICCD_CRIC9_1/CRP1eng.pdf (accessed on 11 October 2022).
  17. Brooks, K.N.; Ffolliott, P.F.; Magner, J.A. Hydrology and the Management of Watersheds: Brooks/Hydrology and the Management of Watersheds, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; ISBN 9780470963050.
  18. Molden, D.; Oweis, T.Y.O. Pathways for Increasing Agricultural Water Productivity. In Water for Food, Water for Life; Molden, D., Ed.; Earthscan, Lsondon and International Water Management Institute: Colombo, Sri Lanka, 2007; pp. 279–310.
  19. Morison, J.I.L.; Baker, N.R.; Mullineaux, P.M.; Davies, W.J. Improving Water Use in Crop Production. Adv. Water Res. 2007, 34, 272–281.
  20. Dlamini, P.; Chivenge, P.; Manson, A.; Chaplot, V. Land Degradation Impact on Soil Organic Carbon and Nitrogen Stocks of Sub-Tropical Humid Grasslands in South Africa. Geoderma 2014, 235–236, 372–381.
  21. Hag Husein, H.; Lucke, B.; Bäumler, R.; Sahwan, W. A Contribution to Soil Fertility Assessment for Arid and Semi-Arid Lands. Soil Syst. 2021, 5, 42.
  22. Kovda, V.A. Arid land irrigation and soil fertility: Problems of salinity, alkalinity, compaction. In Arid Land Irrigation in Developing Countries; Elsevier: Amsterdam, The Netherlands, 1977; pp. 211–235. ISBN 978-0-08-021588-4.
  23. Girard, M.P.S. Memoire Sur l’agriculture, l’industrie et Le Commerce de l’Egypte. In Description de VEgypte, Etat Moderne, Vol. II, Part 1; Imperial Printers: Paris, France, 1812; pp. 491–714.
  24. Fader, M.; Shi, S.; Bloh, W.V.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973.
  25. Rattan, R.K.; Datta, S.P.; Chhonkar, P.K.; Suribabu, K.; Singh, A.K. Long-Term Impact of Irrigation with Sewage Effluents on Heavy Metal Content in Soils, Crops and Groundwater—A Case Study. Agric. Ecosyst. Environ. 2005, 109, 310–322.
  26. Masto, R.E.; Chhonkar, P.K.; Singh, D.; Patra, A.K. Changes in Soil Quality Indicators under Long-Term Sewage Irrigation in a Sub-Tropical Environment. Environ. Geol. 2009, 56, 1237–1243.
  27. Qian, Y.L.; Mecham, B. Long-term Effects of Recycled Wastewater Irrigation on Soil Chemical Properties on Golf Course Fairways. Agron. J. 2005, 97, 717–721.
  28. Carr, G. Water Reuse for Irrigated Agriculture in Jordan: Soil Sustainability, Perceptions and Management. In Water, Life and Civilisation; Mithen, S., Black, E., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 415–428. ISBN 9780511975219.
  29. Yazar, A.; Sezen, S.M.; Gencel, B. Drip Irrigation of Corn in the Southeast Anatolia Project (GAP) Area in Turkey. Irrig. Drain. 2002, 51, 293–300.
  30. Mass, E.V.; Hoffman, G.J. Crop Salt Tolerance Current Assessment. Am. Soc. Civil Eng. Proc. J. Irrig. Drain. 1977, 103, 115–134.
  31. Siddique, K.H.M.; Loss, S.P.; Thomson, B.D. Cool Season Grain Legumes in Dryland Mediterranean Environments of Western Australia: Significance of Early Flowering. In Management of Agricultural Drought: Agronomic and Genetic Options; Saxena, N.P., Ed.; Science Publishers, Inc.: Enfield, CT, USA, 2003; pp. 151–162. ISBN 9781578081912.
  32. FAO. FAOSTAT data. In FAO Statistical Databases FAOSTAT; FAO: Rome, Italy, 2006; Available online: www.fao.org (accessed on 12 October 2022).
  33. Vacher, J.J. Responses of Two Main Andean Crops, Quinoa (Chenopodium quinoa Willd.) and Papa Amarga (Solanum Juzepczukii Buk.) to Drought on the Bolivian Altiplano: Significance of Local Adaptation. Agric. Ecosyst. Environ. 1998, 68, 99–108.
  34. Jensen, C.R.; Jacobsen, S.E.; Andersen, M.N.; Núñez, N.; Andersen, S.D.; Rasmussen, L.; Mogensen, V.O. Leaf Gas Exchange and Water Relation Characteristics of Field Quinoa (Chenopodium Quinoa Willd.) during Soil Drying. Eur. J. Agron. 2000, 13, 11–25.
  35. Hamilton, A.J.; Boland, A.M.; Stevens, D.; Kelly, J.; Radcliffe, J.; Ziehrl, A.; Dillon, P.; Paulin, B. Position of the Australian Horticultural Industry with Respect to the Use of Reclaimed Water. Agric. Water Manag. 2005, 71, 181–209.
  36. Simmons, R.; Qadir, M.; Drechsel, P. Farm-Based Measures for Reducing Human and Environmental Health Risks from Chemical Constituents in Wastewater. In Wastewater Irrigation and Health; Rechsel, P., Scott, C.A., Raschid-sally, L., Redwood, M., Bahri, A., Eds.; Routledge: London, UK, 2009; pp. 235–264. ISBN 9781849774666.
  37. Vivoni, E.R.; Rinehart, A.J.; Méndez-Barroso, L.A.; Aragón, C.A.; Bisht, G.; Cardenas, M.B.; Engle, E.; Forman, B.A.; Frisbee, M.D.; Gutiérrez-Jurado, H.A.; et al. Vegetation Controls on Soil Moisture Distribution in the Valles Caldera, New Mexico, during the North American Monsoon. Ecohydrology 2008, 1, 225–238.
  38. Zhang, X.; Zhao, W.; Liu, Y.; Fang, X.; Feng, Q. The Relationships between Grasslands and Soil Moisture on the Loess Plateau of China: A Review. Catena 2016, 145, 56–67.
  39. Yuan, C.; Gao, G.; Fu, B. Stemflow of a Xerophytic Shrub (Salix psammophila) in Northern China: Implication for Beneficial Branch Architecture to Produce Stemflow. J. Hydrol. (Amst.) 2016, 539, 577–588.
  40. Zhu, H.D.; Shi, Z.H.; Fang, N.F.; Wu, G.L.; Guo, Z.L.; Zhang, Y. Soil Moisture Response to Environmental Factors Following Precipitation Events in a Small Catchment. Catena 2014, 120, 73–80.
  41. Jahan, M.; Nassiri Mahallati, M. Can Superabsorbent Polymers Improve Plants Production in Arid Regions? Adv. Polym. Technol. 2020, 2020, 7124394.
  42. Trenkel, M.E. Improving Fertilizer Use Efficiency: Controlled-Release and Stabilized Fertilizers in Agriculture; International Fertilizer Industry Association (IFA): Paris, France, 1977; pp. 1–151. Available online: http://www.wnkgroup.com/Controlled-Release%20fertilizer%20in%20Agriculture.pdf (accessed on 17 November 2022).
  43. Islam, M.R.; Eneji, A.E.; Ren, C.; Li, J.; Hu, Y. Impact of Water-Saving Superabsorbent Polymer on Oat (Avena Spp.) Yield and Quality in an Arid Sandy Soil. Sci. Res. Essays 2011, 5, 720–728.
  44. Abedi-Koupai, J.; Sohrab, F.; Swarbrick, G. Evaluation of Hydrogel Application on Soil Water Retention Characteristics. J. Plant Nutr. 2008, 31, 317–331.
  45. Egrinya Eneji, A.; Islam, R.; An, P.; Amalu, U.C. Nitrate Retention and Physiological Adjustment of Maize to Soil Amendment with Superabsorbent Polymers. J. Clean. Prod. 2013, 52, 474–480.
  46. Setter, T.L.; Flannigan, B.A.; Melkonian, J. Loss of Kernel Set Due to Water Deficit and Shade in Maize: Carbohydrate Supplies, Abscisic Acid, and Cytokinins. Crop Sci. 2001, 41, 1530–1540.
  47. Prnyazpour, A.; Habib, D.; Roshan, B. What Is Super Absorbent? J. Agric. Nat. Resourc Eng. 2007, 4, 1–3.
  48. Islam, M.R.; Ren, C.; Zeng, Z.; Jia, P.; Eneji, E.; Hu, Y. Fertilizer Use Efficiency of Drought-Stressed Oat (Avena sativa L.) Following Soil Amendment with a Water-Saving Superabsorbent Polymer. Acta Agric. Scand. B Soil Plant Sci. 2011, 61, 721–729.
  49. AbdAllah, A.M.; Mashaheet, A.M.; Burkey, K.O. Super Absorbent Polymers Mitigate Drought Stress in Corn (Zea mays L.) Grown under Rainfed Conditions. Agric. Water Manag. 2021, 254, 106946.
  50. Khadem, S.A.; Galavi, M.; Ramrodi, M.; Mousavi, S.R.; Rousta, M.J.; Rezvani-moghadam, P. Effect of Animal Manure and Superabsorbent Polymer on Corn Leaf Relative Water Content, Cell Membrane Stability and Leaf Chlorophyll Content under Dry Condition. Aust. J. Crop Sci. 2010, 4, 642–647.
  51. Tao, J.; Zhang, W.; Liang, L.; Lei, Z. Effects of Eco-Friendly Carbohydrate-Based Superabsorbent Polymers on Seed Germination and Seedling Growth of Maize. R. Soc. Open Sci. 2018, 5, 171184.
  52. Abrisham, E.S.; Jafari, M.; Tavili, A.; Rabii, A.; Zare Chahoki, M.A.; Zare, S.; Egan, T.; Yazdanshenas, H.; Ghasemian, D.; Tahmoures, M. Effects of a Super Absorbent Polymer on Soil Properties and Plant Growth for Use in Land Reclamation. Arid Land Res. Manage. 2018, 32, 407–420.
  53. Banedjschafie, S.; Durner, W. Water Retention Properties of a Sandy Soil with Superabsorbent Polymers as Affected by Aging and Water Quality. J. Plant Nutr. Soil Sci. 2015, 178, 798–806.
  54. Keivanfar, S.; Ghazvini, R.F.; Ghasemnezhad, M.; Mousavi, A.; Khaledian, M.R. Effects of Regulated Deficit Irrigation and Superabsorbent Polymer on Fruit Yield and Quality of “Granny Smith” Apple. Agric. Conspec. Sci. 2019, 84, 383–389.
  55. Soubeih, K.A.A. Effect of Fertilizer Packages and Polymers on Onion Yield and Quality under Bahariya Oasis Conditions. Middle East J. Agric. Res. 2018, 7, 1769–1785.
  56. Ahmed, S.S.; Fahmy, A.H. Applications of Natural Polysaccharide Polymers to Overcome Water Scarcity on the Yield and Quality of Tomato Fruits. J. Soil Sci. Agric. Eng. 2019, 10, 199–208.
  57. Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of Plastic Mulching and Plastic Residue on Agricultural Production: A Meta-Analysis. Sci. Total Environ. 2018, 651, 484–492.
  58. Wang, L.F.; Shangguan, Z.-P. Water-Use Efficiency of Dryland Wheat in Response to Mulching and Tillage Practices on the Loess Plateau. Sci. Rep. 2015, 5, 12225.
  59. Li, F.M.; Wang, J.; Xu, J.Z.; Xu, H.L. Productivity and Soil Response to Plastic Film Mulching Durations for Spring Wheat on Entisols in the Semiarid Loess Plateau of China. Soil Tillage Res. 2004, 78, 9–20.
  60. Zhu, J.; Ai, X.R.; Yi, Y.M.; Wang, B.Q. Effect of Plastic Film Mulching at Different Altitudinal Gradient and Different Fertility Levels on Potatoes. J. Hubei Univ. Nat. (Nat. Sci. Ed.) 2012, 30, 330–334.
  61. Naorem, A.; Jayaraman, S.; Dalal, R.C.; Patra, A.; Rao, C.S.; Lal, R. Soil Inorganic Carbon as a Potential Sink in Carbon Storage in Dryland Soils—A Review. Agriculture 2022, 12, 1256.
  62. Lal, R. Carbon Sequestration in Dryland Ecosystems. Environ. Manag. 2004, 33, 528–544.
  63. Bronick, C.J.; Lal, R. Soil Structure and Management: A Review. Geoderma 2005, 124, 3–22.
  64. Boix-Fayos, C.; Calvo-Cases, A.; Imeson, A.C.; Soriano-Soto, M.D. Influence of Soil Properties on the Aggregation of Some Mediterranean Soils and the Use of Aggregate Size and Stability as Land Degradation Indicators. Catena 2001, 44, 47–67.
  65. Álvaro-Fuentes, J.; Arrúe, J.L.; Gracia, R.; López, M.V. Tillage and Cropping Intensification Effects on Soil Aggregation: Temporal Dynamics and Controlling Factors under Semiarid Conditions. Geoderma 2008, 145, 390–396.
  66. López, M.V.; Moret, D.; Gracia, R.; Arrúe, J.L. Tillage Effects on Barley Residue Cover during Fallow in Semiarid Aragon. Soil Tillage Res. 2003, 72, 53–64.
  67. Hoffmann, C.; Funk, R.; Li, Y.; Sommer, M. Effect of Grazing on Wind Driven Carbon and Nitrogen Ratios in the Grasslands of Inner Mongolia. Catena 2008, 75, 182–190.
  68. Lal, R. Enhancing Crop Yields in the Developing Countries through Restoration of the Soil Organic Carbon Pool in Agricultural Lands. Land Degrad. Dev. 2006, 17, 197–209.
  69. Bationo, A.; Wani, S.P.; Bielders, C.L.; Vlek, P.L.G.; Mokwunye, A.U. Crop Residue and Fertilizer Management to Improve Soil Organiccarbon Content, Soil Quality and Productivity in the Desert Marginsof West Africa. In Global Climate Change and Tropical Ecosystems. Advances in Soil Science; Ba, L.R.K.J., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 117–145. ISBN 9781566704854.
  70. West, T.O.; Post, W.M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation: A Global Data Analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946.
  71. Hoyle, F.C.; D’Antuono, M.; Overheu, T.; Murphy, D.V. Capacity for Increasing Soil Organic Carbon Stocks in Dryland Agricultural Systems. Soil Res. 2013, 51, 657.
  72. Wortmann, C.S.; Bilgo, A.; Kaizzi, C.K.; Liben, F.; Garba, M.; Maman, N.; Serme, I.; Stewart, Z.P. Perennial Grass Ley Rotations with Annual Crops in Tropical Africa: A Review. Agron. J. 2021, 113, 4510–4526.
  73. Davis, A.S.; Hill, J.D.; Chase, C.A.; Johanns, A.M.; Liebman, M. Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health. PLoS ONE 2012, 7, e47149.
  74. Díaz-Zorita, M.; Duarte, G.A.; Grove, J.H. A Review of No-till Systems and Soil Management for Sustainable Crop Production in the Subhumid and Semiarid Pampas of Argentina. Soil Tillage Res. 2002, 65, 1–18.
  75. DuPont, S.T.; Beniston, J.; Glover, J.D.; Hodson, A.; Culman, S.W.; Lal, R.; Ferris, H. Root Traits and Soil Properties in Harvested Perennial Grassland, Annual Wheat, and Never-Tilled Annual Wheat. Plant Soil 2014, 381, 405–420.
  76. Monti, A.; Zatta, A. Root Distribution and Soil Moisture Retrieval in Perennial and Annual Energy Crops in Northern Italy. Agric. Ecosyst. Environ. 2009, 132, 252–259.
  77. Ernst, O.R.; Kemanian, A.R.; Mazzilli, S.R.; Cadenazzi, M.; Dogliotti, S. Depressed Attainable Wheat Yields under Continuous Annual No-till Agriculture Suggest Declining Soil Productivity. Field Crops Res. 2016, 186, 107–116.
  78. Plaza, C.; Zaccone, C.; Sawicka, K.; Méndez, A.M.; Tarquis, A.; Gascó, G.; Heuvelink, G.B.M.; Schuur, E.A.G.; Maestre, F.T. Soil Resources and Element Stocks in Drylands to Face Global Issues. Sci. Rep. 2018, 8, 13788.
  79. Cuevas, J.; Daliakopoulos, I.N.; del Moral, F.; Hueso, J.J.; Tsanis, I.K. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy 2019, 9, 295.
  80. Wichelns, D.; Qadir, M. Achieving Sustainable Irrigation Requires Effective Management of Salts, Soil Salinity, and Shallow Groundwater. Agric. Water Manag. 2015, 157, 31–38.
  81. Bridges, E.M.; Oldeman, L.R. Global Assessment of Human-Induced Soil Degradation. Arid Soil Res. Rehabil. 1999, 13, 319–325.
  82. Shabala, S.; Munns, R. Salinity Stress: Physiological Constraints and Adaptive Mechanisms. In Plant Stress Physiology; CABI: Wallingford, UK, 2017; pp. 24–63. ISBN 9781780647296.
  83. Kitamura, Y.; Yano, T.; Honna, T.; Yamamoto, S.; Inosako, K. Causes of Farmland Salinization and Remedial Measures in the Aral Sea Basin—Research on Water Management to Prevent Secondary Salinization in Rice-Based Cropping System in Arid Land. Agric. Water Manag. 2006, 85, 1–14.
  84. Qadir, M.; Schubert, S.; Noble, A.D.; Saqib, M.; Saifullah, S. Amelioration Strategies for Salinity-Induced Land Degradation. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2006, 1, 12.
  85. Matthews, N.; Grové, B.; Barnard, J.H.; Van Rensburg, L.D. Modelling the Economic Tradeoffs between Allocating Water for Crop Production or Leaching for Salinity Management. Water SA 2010, 36, 37–43.
  86. Konukcu, F.; Gowing, J.W.; Rose, D.A. Dry Drainage: A Sustainable Solution to Waterlogging and Salinity Problems in Irrigation Areas? Agric. Water Manag. 2006, 83, 1–12.
  87. Bhutta, M.N.; Chaudhary, M.R. Biological Control of Waterlogging. In Proceedings of the Eighth ICID International Drainage Workshop, New Delhi, India, 31 January–4 February 2000; pp. 33–45.
  88. Connor, D.J. Designing Cropping Systems for Efficient Use of Limited Water in Southern Australia. Eur. J. Agron. 2004, 21, 419–431.
  89. Alcon, F.; Tapsuwan, S.; Brouwer, R.; de Miguel, M.D. Adoption of Irrigation Water Policies to Guarantee Water Supply: A Choice Experiment. Environ. Sci. Policy 2014, 44, 226–236.
  90. Qiao, H.; Liu, X.; Li, W.; Huang, W.; Li, C.; Li, Z. Effect of Deep Straw Mulching on Soil Water and Salt Movement and Wheat Growth. Chin. J. Soil Sci. 2006, 37, 885–889.
  91. Pang, H.C.; Li, Y.Y.; Yang, J.S.; Liang, Y.S. Effect of Brackish Water Irrigation and Straw Mulching on Soil Salinity and Crop Yields under Monsoonal Climatic Conditions. Agric. Water Manag. 2010, 97, 1971–1977.
  92. Khan, M.A.; Ansari, R.; Ali, H.; Gul, B.; Nielsen, B.L. Panicum Turgidum, a Potentially Sustainable Cattle Feed Alternative to Maize for Saline Areas. Agric. Ecosyst. Environ. 2009, 129, 542–546.
  93. Vinod, K.K.; Krishnan, S.G.; Babu, N.N.; Nagarajan, M.; Singh, A.K. Improving Salt Tolerance in Rice: Looking beyond the Conventional. In Salt Stress in Plants; Springer New York: New York, NY, USA, 2013; pp. 219–260. ISBN 9781461461074.
  94. Daliakopoulos, I.N.; Apostolakis, A.; Wagner, K.; Deligianni, A.; Koutskoudis, D.; Stamatakis, A.; Tsanis, I.K. Effectiveness of Trichoderma Harzianum in Soil and Yield Conservation of Tomato Crops under Saline Irrigation. Catena 2019, 175, 144–153.
  95. Bertola, M.; Ferrarini, A.; Visioli, G. Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices and Its Evaluation by -Omics Approaches: A Perspective for the Environment, Food Quality and Human Safety. Microorganisms 2021, 9, 1400.
  96. Kakeh, J.; Gorji, M.; Mohammadi, M.H.; Asadi, H.; Khormali, F.; Sohrabi, M.; Cerdà, A. Biological Soil Crusts Determine Soil Properties and Salt Dynamics under Arid Climatic Condition in Qara Qir, Iran. Sci. Total Environ. 2020, 732, 139168.
  97. Kirsch, F.; Klähn, S.; Hagemann, M. Salt-Regulated Accumulation of the Compatible Solutes Sucrose and Glucosylglycerol in Cyanobacteria and Its Biotechnological Potential. Front. Microbiol. 2019, 10, 2139.
  98. Page, K.L.; Dang, Y.P.; Dalal, R.C.; Kopittke, P.M.; Menzies, N.W. The Impact, Identification and Management of Dispersive Soils in Rainfed Cropping Systems. Eur. J. Soil Sci. 2021, 72, 1655–1674.
  99. Yunusa, I.A.M.; Newton, P.J. Plants for Amelioration of Subsoil Constraints and Hydrological Control: The Primer-Plant Concept. Plant Soil 2003, 257, 261–281.
  100. Srivastava, P.K.; Gupta, M.; Shikha; Singh, N.; Tewari, S.K. Amelioration of Sodic Soil for Wheat Cultivation Using Bioaugmented Organic Soil Amendment: Novel Organic Soil Amendment for Sodic Soil. Land Degrad. Dev. 2016, 27, 1245–1254.
  101. Copeman, R.H.; Martin, C.A.; Stutz, J.C. Tomato Growth in Response to Salinity and Mycorrhizal Fungi from Saline or Nonsaline Soils. HortScience 1996, 31, 341–344.
  102. Singh, Y.P.; Nayak, A.K.; Sharma, D.K.; Singh, G.; Mishra, V.K.; Singh, D. Evaluation of Jatropha Curcas Genotypes for Rehabilitation of Degraded Sodic Lands: Rehabilitation of degraded sodic lands through Jatropha curcas. Land Degrad. Dev. 2015, 26, 510–520.
  103. Iannetta, M.; Colonna, N. Salinisation in the Mediterranean Context, Booklet in the Framework of the VI Framework Programma Priorità 1. In The Framework of the Vi Framework Programma Priorità, 1.1.6.3 Global Change and Ecosystems; EU SSA Lucinda Project, Ed.; European Commission Directorate-General for Research: Brussels, Belgium, 2009; p. 20.
  104. Ali, H. Practices of Irrigation & On-Farm Water Management: Volume 2; Springer: New York, NY, USA, 2014; ISBN 9781489981653.
  105. Qadir, M.; Ghafoor, A.; Murtaza, G. Amelioration Strategies for Saline Soils: A Review. Land Degrad. Dev. 2000, 11, 501–521.
  106. Rawat, L.; Singh, Y.; Shukla, N.; Kumar, J. Alleviation of the Adverse Effects of Salinity Stress in Wheat (Triticum aestivum L.) by Seed Biopriming with Salinity Tolerant Isolates of Trichoderma Harzianum. Plant Soil 2011, 347, 387–400.
  107. Mao, W.; Kang, S.; Wan, Y.; Sun, Y.; Li, X.; Wang, Y. Yellow River Sediment as a Soil Amendment for Amelioration of Saline Land in the Yellow River Delta: Yellow River Sediment as a Soil Amendment. Land Degrad. Dev. 2016, 27, 1595–1602.
  108. Flores, P.; Botella, M.Á.; Cerdá, A.; Martínez, V. Influence of Nitrate Level on Nitrate Assimilation in Tomato (Lycopersicon esculentum) Plants under Saline Stress. Can. J. Bot. 2004, 82, 207–213.
  109. Chatzigiannakis, E.; Ilias, A.; Panoras, A. Guide to Address the Loss of Organic Matter, Salinisation, Acidification and the Erosion of Agricultural Soils. In The Scope of Project LIFE So. S; Thessaloniki, Greece, 2012.
  110. Jiao, F.; Shi, X.R.; Han, F.P.; Yuan, Z.Y. Increasing Aridity, Temperature and Soil pH Induce Soil C-N-P Imbalance in Grasslands. Sci. Rep. 2016, 6, 19601.
  111. Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L., 2nd; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global Desertification: Building a Science for Dryland Development. Science 2007, 316, 847–851.
  112. Field, C.B.; Mooney, H.A. The Photosynthesis-Nitrogen Relationship in Wild Plants. In On the Economy of Plant Form and Function; Givnish, T.J., Ed.; Cambridge University Press: Cambridge, UK, 1986; pp. 25–55.
  113. Fageria, N.K.; Gheyi, H.R.; Moreira, A. Nutrient Bioavailability in Salt Affected Soils. J. Plant Nutr. 2011, 34, 945–962.
  114. Feng, K.; Lu, H.M.; Sheng, H.J.; Wang, X.L.; Mao, J. Effect of Organic Ligands on Biological Availability of Inorganic Phosphorus in Soils. Pedosphere 2004, 14, 85–92.
  115. Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017, 8, 971.
  116. Zhu, F.; Qu, L.; Hong, X.; Sun, X. Isolation and Characterization of a Phosphate-Solubilizing Halophilic Bacterium Kushneria Sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China. Evid. Based. Complement. Alternat. Med. 2011, 2011, 615032.
  117. Moreno-Jiménez, E.; Plaza, C.; Saiz, H.; Manzano, R.; Flagmeier, M.; Maestre, F.T. Aridity and Reduced Soil Micronutrient Availability in Global Drylands. Nat. Sustain. 2019, 2, 371–377.
  118. Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–140. ISBN 9780128021378.
  119. Kämpf, N.; Schwertmann, U. Goethite and Hematite in a Climosequence in Southern Brazil and Their Application in Classification of Kaolinitic Soils. Geoderma 1983, 29, 27–39.
  120. Voegelin, A.; Pfister, S.; Scheinost, A.C.; Marcus, M.A.; Kretzschmar, R. Changes in Zinc Speciation in Field Soil after Contamination with Zinc Oxide. Environ. Sci. Technol. 2005, 39, 6616–6623.
  121. Hassink, J. The Capacity of Soils to Preserve Organic C and N by Their Association with Clay and Silt Particles. Plant Soil 1997, 191, 77–87.
  122. Churchman, G.J. Game Changer in Soil Science. Functional Role of Clay Minerals in Soil. J. Plant Nutr. Soil Sci. 2018, 181, 99–103.
  123. Gabarrón-Galeote, M.A.; Trigalet, S.; van Wesemael, B. Effect of Land Abandonment on Soil Organic Carbon Fractions along a Mediterranean Precipitation Gradient. Geoderma 2015, 249–250, 69–78.
  124. Tiessen, H.; Stewart, J.W.B. Particle-Size Fractions and Their Use in Studies of Soil Organic Matter: II. Cultivation Effects on Organic Matter Composition in Size Fractions. Soil Sci. Soc. Am. J. 1983, 47, 509–514.
  125. Yost, J.L.; Hartemink, A.E. Effects of Carbon on Moisture Storage in Soils of the Wisconsin Central Sands, USA. Eur. J. Soil Sci. 2019, 70, 565–577.
  126. van Wambeke, A. Soils of the Tropics: Properties and Appraisals; McGraw-Hill Professional: New York, NY, USA, 1991; ISBN 9780070679467.
  127. Osman, K.T. Sandy Soils. In Sandy Soils; Osman, K.T., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 37–65.
  128. Jonczak, J. Vertical Distribution of Cu, Ni and Zn in Brunic Arenosols and Gleyic Podzols of the Supra-Flood Terrace of the Słupia River as Affected by Litho-Pedogenic Factors. For. Res. Pap. 2015, 75, 333–341.
  129. Kraft, G.J.; Clancy, K.; Mechenich, D.J.; Haucke, J. Irrigation Effects in the Northern Lake States: Wisconsin Central Sands Revisited. Ground Water 2012, 50, 308–318.
  130. Scott, D.F. Soil Wettability in Forested Catchments in South Africa; as Measured by Different Methods and as Affected by Vegetation Cover and Soil Characteristics. J. Hydrol. (Amst.) 2000, 231–232, 87–104.
  131. Fan, J.; Ding, W.; Xiang, J.; Qin, S.; Zhang, J.; Ziadi, N. Carbon Sequestration in an Intensively Cultivated Sandy Loam Soil in the North China Plain as Affected by Compost and Inorganic Fertilizer Application. Geoderma 2014, 230–231, 22–28.
  132. Kundu, S.; Bhattacharyya, R.; Prakash, V.; Ghosh, B.; Gupta, H. Carbon Sequestration and Relationship between Carbon Addition and Storage under Rainfed Soybean–Wheat Rotation in a Sandy Loam Soil of the Indian Himalayas. Soil Tillage Res. 2007, 92, 87–95.
  133. Mugnai, G.; Rossi, F.; Chamizo, S.; Adessi, A.; De Philippis, R. The Role of Grain Size and Inoculum Amount on Biocrust Formation by Leptolyngbya Ohadii. Catena 2020, 184, 104248.
  134. Román, J.R.; Chamizo, S.; Roncero-Ramos, B.; Adessi, A.; De Philippis, R.; Cantón, Y. Overcoming Field Barriers to Restore Dryland Soils by Cyanobacteria Inoculation. Soil Tillage Res. 2021, 207, 104799.
  135. Bu, C.; Wu, S.; Yang, Y.; Zheng, M. Identification of Factors Influencing the Restoration of Cyanobacteria-Dominated Biological Soil Crusts. PLoS ONE 2014, 9, e90049.
  136. Mugnai, G.; Rossi, F.; Martin Noah Linus Felde, V.J.; Colesie, C.; Büdel, B.; Peth, S.; Kaplan, A.; De Philippis, R. The Potential of the Cyanobacterium Leptolyngbya Ohadii as Inoculum for Stabilizing Bare Sandy Substrates. Soil Biol. Biochem. 2018, 127, 318–328.
  137. Peng, X.; Bruns, M.A. Development of a Nitrogen-Fixing Cyanobacterial Consortium for Surface Stabilization of Agricultural Soils. J. Appl. Phycol. 2019, 31, 1047–1056.
  138. Hall, A.J.; Richards, R.A. Prognosis for Genetic Improvement of Yield Potential and Water-Limited Yield of Major Grain Crops. Field Crops Res. 2013, 143, 18–33.
  139. Miner, G.L.; Hansen, N.C.; Inman, D.; Sherrod, L.A.; Peterson, G.A. Constraints of No-till Dryland Agroecosystems as Bioenergy Production Systems. Agron. J. 2013, 105, 364–376.
  140. Chi, Y.; Li, Z.; Zhang, G.; Zhao, L.; Gao, Y.; Wang, D.; Liu, L.; Cai, D.; Wu, Z. Inhibiting Desertification Using Aquatic Cyanobacteria Assisted by a Nanocomposite. ACS Sustain. Chem. Eng. 2020, 8, 3477–3486.
  141. Zhao, Y.; Wang, J. Mechanical Sand Fixing Is More Beneficial than Chemical Sand Fixing for Artificial Cyanobacteria Crust Colonization and Development in a Sand Desert. Appl. Soil Ecol. 2019, 140, 115–120.
  142. Kheirfam, H.; Asadzadeh, F. Stabilizing Sand from Dried-up Lakebeds against Wind Erosion by Accelerating Biological Soil Crust Development. Eur. J. Soil Biol. 2020, 98, 103189.
  143. Delgado, J.A.; Nearing, M.A.; Rice, C.W. Conservation Practices for Climate Change Adaptation. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2013; pp. 47–115. ISBN 9780124076853.
  144. Wang, X.B.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D. Developments in Conservation Tillage in Rainfed Regions of North China. Soil Tillage Res. 2007, 93, 239–250.
  145. Spokas, L.; Steponavičius, D. Fuel Consumption during Cereal and Rape Harvesting and Methods of Its Reduction. J. Food Agric. Environ. 2011, 9, 257–263.
  146. Plaza-Bonilla, D.; Arrúe, J.L.; Cantero-Martínez, C.; Fanlo, R.; Iglesias, A.; Álvaro-Fuentes, J. Carbon Management in Dryland Agricultural Systems. A Review. Agron. Sustain. Dev. 2015, 35, 1319–1334.
  147. Lahmar, R. Adoption of Conservation Agriculture in Europe. Land Use Policy 2010, 27, 4–10.
  148. Sharma, A.K. Arid Zone Agroforestry: Dimensions and Directions for Sustainable Livelihoods. Available online: http://www.IUFRO-archive.boku.ac.at/iufro/taskforce/tfscipol/chennai-papers/faksharma.pdf (accessed on 12 December 2022).
  149. Sepehr, A.; Hassanzadeh, M.; Rodriguez-Caballero, E. The Protective Role of Cyanobacteria on Soil Stability in Two Aridisols in Northeastern Iran. Geoderma Reg. 2019, 16, e00201.
  150. Fischer, T.; Yair, A.; Veste, M.; Geppert, H. Hydraulic Properties of Biological Soil Crusts on Sand Dunes Studied by 13C-CP/MAS-NMR: A Comparison between an Arid and a Temperate Site. Catena 2013, 110, 155–160.
  151. Drahorad, S.L.; Jehn, F.U.; Ellerbrock, R.H.; Siemens, J.; Felix-Henningsen, P. Soil Organic Matter Content and Its Aliphatic Character Define the Hydrophobicity of Biocrusts in Different Successional Stages. Ecohydrology 2020, 13, e2232.
  152. Lázaro, R.; Mora, J.L. Sediment Content and Chemical Properties of Water Runoff on Biocrusts in Drylands. Biologia 2014, 69, 1539–1554.
  153. Mullins, C.E. Hardsetting. In Methods for Assesment of Soil Degradation. Advances in Soil Science, 19; Lal, R., Blum, W.H., Valentine, C., Stewart, B.A., Eds.; CRC Press: New York, NY, USA, 1997; pp. 109–128.
  154. Lima, H.V.; Silva, A.P.; Santos, M.C.; Cooper, M.; Romero, R.E. Micromorphology and Image Analysis of a Hardsetting Ultisol (Argissolo) in the State of Ceará (Brazil). Geoderma 2006, 132, 416–426.
  155. Hamza, M.A.; Anderson, W.K. Soil Compaction in Cropping Systems. Soil Tillage Res. 2005, 82, 121–145.
  156. Raper, R.L.; Schwab, E.B.; Balkcom, K.S.; Burmester, C.H.; Reeves, D.W. Effect of Annual, Biennial, and Triennial in-Row Subsoiling on Soil Compaction and Cotton Yield in Southeastern u.S. Silt Loam Soils. Appl. Eng. Agric. 2005, 21, 337–343.
  157. Carter, M.R. Soil Quality for Sustainable Land Management: Organic Matter and Aggregation Interactions That Maintain Soil Functions. Agron. J. 2002, 94, 38–47.
  158. Soane, B.D. The Role of Organic Matter in Soil Compactibility: A Review of Some Practical Aspects. Soil Tillage Res. 1990, 16, 179–201.
  159. Williams, S.M.; Weil, R.R. Crop Cover Root Channels May Alleviate Soil Compaction Effects on Soybean Crop. Soil Sci. Soc. Am. J. 2010, 68, 1403.
  160. Casby-Horton, S.; Herrero, J.; Rolong, N.A. Gypsum Soils—Their Morphology, Classification, Function, and Landscapes. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2015; pp. 231–290. ISBN 9780128021378.
  161. Eswaran, H.; Zi-Tong, G. Properties, Genesis, Classification, and Distribution of Soils with Gypsum. In SSSA Special Publications; Soil Science Society of America: Madison, WI, USA, 2015; pp. 89–119. ISBN 9780891189213.
  162. Herrero, J.; Porta, J.; Fédoroff, N. Hypergypsic Soil Micromorphology and Landscape Relationships in Northeastern Spain. Soil Sci. Soc. Am. J. 1992, 56, 1188–1194.
  163. Boixadera, J.; Poch, R.M.; Herrero, C. Soilscapes of Catalonia and Aragon (NE Spain): Tour Guide of the Annual Excursion of the Belgian Soil Science Society 1999; DARP-UdL-DGA: Lleida, Spain, 2000.
  164. Castañeda, C.; Moret-Fernández, D. Superficial Color Patches as a Visual Diagnostic Criterion for Agricultural Management. Pedosphere 2013, 23, 740–751.
  165. Van Alphen, J.G.; de Los Rios Romero, F. Gypsiferous Soils—Notes on Their Characteristics and Management; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1971.
  166. Laya, D.; Van Ranst, E.; Herrero, J. A Modified Parametric Index to Estimate Yield Potentials for Irrigated Alfalfa on Soils with Gypsum in Quinto (Aragón, Spain). Geoderma 1998, 87, 111–122.
  167. Food and Agriculture Organization of the United Nations. Management of Gypsiferous Soils; Food & Agriculture Organization of the United Nations (FAO): Rome, Italy, 1990; ISBN 9789251029480.
  168. Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 14th ed.; Pearson: Upper Saddle River, NJ, USA, 2007; ISBN 9780132279383.
  169. Monier, M.W.; Fawkia, L.; Alaa, Z. Management of Calcareous Soils in Arid Region. Int. J. Environ. Pollut. Env. Model. 2019, 2, 248–258.
  170. Pearce, R.C.; Li, Y.; Bush, L.P. Calcium and Bicarbonate Effects on the Growth and Nutrient Uptake of Burley Tobacco Seedlings: Float System1. J. Plant Nutr. 1999, 22, 1079–1090.
  171. Ramadan, H.; Koreish, E.; Gaber, H.; El–Fayoumy, M. Assessment and Comparison of Bio and Mineral Fertilization on Farm Profitability in Different Newly Reclaimed Soils. Alex. J. Agric. Res. 2002, 47, 133–146.
  172. He, Z.L.; Calvert, D.V.; Alva, A.K.; Li, Y.C.; Banks, D.J. Clinoptilolite Zeolite and Cellulose Amendments to Reduce Ammonia Volatilization in a Calcareous Sandy Soil. Plant Soil 2002, 247, 253–260.
  173. Badran, M. Effect of Nitrogenous and Phosphatic Fertilization on Some Economical Characters of Soybean Crawford Cultivar under Calcareous Soil Conditions. Egypt. J. Agric. Res. 2003, 81, 433–440.
  174. Attia, K. Effect of Farmyard Manure and Phosphorus Fertilization on Growth, Yield and N, P and Ca Content of Sesame Grown on a Sandy Calcareous Soil. Assiut. J. Agric. Sci 2001, 32, 141–151.
  175. El–Dsouky, M.; Attia, K. Effect of Inoculation with Phosphate Solubilizing Bacteria, Organic Manure and Phosphate Fertilization on Peanuts Grown on Sandy Calcareous Soil. Assiut. J. Agric Sci. 1999, 30, 177–188.
  176. Vásquez-Dean, J.; Maza, F.; Morel, I.; Pulgar, R.; González, M. Microbial Communities from Arid Environments on a Global Scale. A Systematic Review. Biol. Res. 2020, 53, 29.
  177. Ren, C.; Chen, J.; Lu, X.; Doughty, R.; Zhao, F.; Zhong, Z.; Han, X.; Yang, G.; Feng, Y.; Ren, G. Responses of Soil Total Microbial Biomass and Community Compositions to Rainfall Reductions. Soil Biol. Biochem. 2018, 116, 4–10.
  178. Beier, C.; Beierkuhnlein, C.; Wohlgemuth, T.; Penuelas, J.; Emmett, B.; Körner, C.; de Boeck, H.; Christensen, J.H.; Leuzinger, S.; Janssens, I.A.; et al. Precipitation Manipulation Experiments--Challenges and Recommendations for the Future. Ecol. Lett. 2012, 15, 899–911.
  179. Manzoni, S.; Schaeffer, S.M.; Katul, G.; Porporato, A.; Schimel, J.P. A Theoretical Analysis of Microbial Eco-Physiological and Diffusion Limitations to Carbon Cycling in Drying Soils. Soil Biol. Biochem. 2014, 73, 69–83.
  180. Schimel, J.; Balser, T.C.; Wallenstein, M. Microbial Stress-Response Physiology and Its Implications for Ecosystem Function. Ecology 2007, 88, 1386–1394.
  181. Rodriguez-Caballero, E.; Belnap, J.; Büdel, B.; Crutzen, P.J.; Andreae, M.O.; Pöschl, U.; Weber, B. Dryland Photoautotrophic Soil Surface Communities Endangered by Global Change. Nat. Geosci. 2018, 11, 185–189.
  182. Bowker, M.A.; Belnap, J.; Davidson, D.W.; Goldstein, H. Correlates of Biological Soil Crust Abundance across a Continuum of Spatial Scales: Support for a Hierarchical Conceptual Model: Scale-Dependent Soil Crust Distribution. J. Appl. Ecol. 2006, 43, 152–163.
  183. Mueller, R.C.; Belnap, J.; Kuske, C.R. Soil Bacterial and Fungal Community Responses to Nitrogen Addition across Soil Depth and Microhabitat in an Arid Shrubland. Front. Microbiol. 2015, 6, 891.
  184. Weijers, D.; Nemhauser, J.; Yang, Z. Auxin: Small Molecule, Big Impact. J. Exp. Bot. 2018, 69, 133–136.
  185. Gamalero, E.; Bona, E.; Todeschini, V.; Lingua, G. Saline and Arid Soils: Impact on Bacteria, Plants, and Their Interaction. Biology 2020, 9, 116.
  186. Dragoš, A.; Kovács, Á.T. The Peculiar Functions of the Bacterial Extracellular Matrix. Trends Microbiol. 2017, 25, 257–266.
  187. Roberson, E.B.; Firestone, M.K. Relationship between Desiccation and Exopolysaccharide Production in a Soil Pseudomonas Sp. Appl. Environ. Microbiol. 1992, 58, 1284–1291.
  188. Naseem, H.; Ahsan, M.; Shahid, M.A.; Khan, N. Exopolysaccharides Producing Rhizobacteria and Their Role in Plant Growth and Drought Tolerance. J. Basic Microbiol. 2018, 58, 1009–1022.
  189. Costa, O.Y.A.; Raaijmakers, J.M.; Kuramae, E.E. Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front. Microbiol. 2018, 9, 1636.
  190. Mayak, S.; Tirosh, T.; Glick, B.R. Plant Growth-Promoting Bacteria Confer Resistance in Tomato Plants to Salt Stress. Plant Physiol. Biochem. 2004, 42, 565–572.
  191. Upadhyay, S.K.; Singh, D.P. Effect of Salt-Tolerant Plant Growth-Promoting Rhizobacteria on Wheat Plants and Soil Health in a Saline Environment. Plant Biol. (Stuttg.) 2015, 17, 288–293.
  192. Ruben, J.A.; Bennett, A.F. Antiquity of the Vertebrate Pattern of Activity Metabolism and Its Possible Relation to Vertebrate Origins. Nature 1980, 286, 886–888.
More
ScholarVision Creations