You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Phytochemicals from Sugarcane Bagasse and Maize Residues: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Marta Oleszek.

Billions of tons of agro-industrial residues are produced worldwide. This is associated with the risk of pollution as well as management and economic problems. Simultaneously, non-edible portions of many crops are rich in bioactive compounds with valuable properties. For this reason, developing various methods for utilizing agro-industrial residues (such as sugarcane bagasse and maize residues) as a source of high-value by-products is very important.

  • bioactive compounds
  • antioxidants
  • agricultural residues

1. Introduction

The agricultural industry generates billions of tonnes of waste from the tillage and processing of various crops. The crops with the largest amounts of produced residues are rice, maize, soybean, sugarcane, potato, tomato, and cucumber, as well as some fruits, mainly bananas, oranges, grapes, and apples [1,2][1][2]. It has been estimated that European food processing companies generate annually approximately 100 Mt of waste and by-products, mostly during the production of drinks (26%), dairy and ice cream (21.3%), and fruits and vegetables (14.8%) [3].
In Table 1, the amounts of particular wastes generated worldwide are presented. Many of them are rich in biologically active compounds and have the potential to become important raw materials for obtaining valuable phytochemicals. Vegetable and fruit processing by-products are promising sources of valuable phytochemicals having antioxidant, antimicrobial, anti-inflammatory, anti-cancer, and cardiovascular protection activities [4]. The applications of these agro-industrial residues and their bioactive compounds in functional food and cosmetics production were presented in many studies [5,6,7][5][6][7]. Moreover, due to the potential health risk of some synthetic antioxidants such as BHA, the identification and isolation of natural antioxidants from waste has become increasingly attractive. Important criteria to decide if a product or by-product can be of interest to recover phytochemicals are the absolute concentration and preconcentration factor, as well as the total amount of product or by-product per batch [8].
Table 1.
Amount of residues from some crops produced in the world in 2020.
][18][19]. Sugarcane bagasse consists mainly of cellulose (35–50%), hemicellulose (26–41%), lignin (11–25%), but also some amount of plant secondary metabolites (PSM), mainly anthocyanins and mineral substances [20,21,22,23,24,25][20][21][22][23][24][25].
Phenolic compounds are a very important group of natural substances identified in sugarcane waste. Nonetheless, steam explosion and ultrasound-assisted extraction (UAE) pretreatment was applied for the production of valuable phenolic compounds from the lignin included in this residue. Chromatographic analysis revealed that sugarcane bagasse is a good feedstock for the generation of phenolic acids. The concentration of total phenolics with the Folin-Ciocalteau method was between 2.8 and 3.2 g/L. Zhao et al. [26] have identified many phenolics, mainly flavonoids and phenolic acids, in sugarcane bagasse extract (Table 2). The total polyphenol content was detected as higher than 4 mg/g of dry bagasse, with total flavonoid content of 470 mg quercetin/g of polyphenol. The most abundant phenolic acids identified in the sugarcane bagasse extract were gallic acid (4.36 mg/g extract), ferulic acid (1.87 mg/g extract) and coumaric acid (1.66 mg/g extract). Spectroscopic analysis showed that a predominant amount of p-coumaric acid is ester-linked to the cell wall components, mainly to lignin. On the other hand, about half of the ferulic acid is esterified to the cell wall hemicelluloses. The purified sugarcane bagasse hydrolysate consisted mainly of p-coumaric acid. Besides, the purified products showed the same antioxidant activity, reducing power and free radical scavenging capacity as the standard p-coumaric acid. Al Arni et al. [27] stated that the major natural products contained in the lignin fraction were p-coumaric acid, ferulic acid, syringic acid, and vanillin.
Table 2.
Phytochemicals derived from sugarcane bagasse.

3. Maize Residues

Maize (corn Zea mays L.) bran, husk, cobs, tassel, pollen, silk, and fiber are residues of corn production. They contain substantial amounts of phytochemicals, such as phenolic compounds, carotenoid pigments and phytosterols [39] (Table 4).
Table 4.
Phytochemicals identified in corn waste.
58,59][41][58][59]. In the corn silk powder, the high phenolic content (94.10 ± 0.26 mg GAE/g) and flavonoid content (163.93 ± 0.83 mg QE/100 g) are responsible for its high antioxidant activity [60]. About 29 flavonoids have been isolated from corn silk. Most of them are C-glycoside compounds and have the same parent nucleus as luteolin [44]. Ren et al. [61] successfully isolated and separated compounds such as 2″-O-α-l-rhamnosyl-6-C-3″-deoxyglucosyl-3′-methoxyluteolin, ax-5′-methane-3′-methoxymaysin, ax-4″-OH-3′-methoxymaysin, 6,4′-dihydroxy-3′-methoxyflavone-7-O-glucoside, and 7,4′-dihydroxy-3′-methoxyflavone-2″-O-α-l-rhamnosyl-6-C fucoside from corn silk. Moreover, among flavonoids, Haslina and Eva [43] determined in corn silk: apigmaysin, maysin, isoorientin-2″-O-α-l-rhamnoside, 3-methoxymaysine, and ax-4-OH maysin.
This richness of biologically active compounds results in advantageous properties and applications. The most important properties and the newest studies on the application are listed in Table 5.
Table 5.
Biological activity and potential applications of phytochemicals obtained from corn wastes.

2. Sugarcane Bagasse

Large amounts of waste are generated during the processing of sugarcane. In fact, one metric ton of sugarcane generates 280 kg of bagasse. Sugarcane bagasse is one of the most abundant agro-food by-products and is a very promising raw material available at low cost for recovering bioactive substances [18,19
Gallic, coumaric, caffeic, chlorogenic, and cinnamic acids were the main phenolic compounds extracted from raw and alkaline pretreated sugarcane bagasse and identified by high-performance liquid chromatography (HPLC) [28]. The aromatic phenolic compounds (p-coumaric acid, ferulic acid, p-hydroxybenzaldehyde, vanillin, and vanillic acid) were reported in sugarcane bagasse pith. Five phenolic compounds (tricin 4-O-guaiacylglyceryl ether-7-O-glucopyranoside, genistin, p-coumaric acid, quercetin, and genistein) in 30% hydroalcoholic fraction of sugarcane bagasse were identified using ultra-high performance liquid chromatography/high-resolution time of flight mass spectrometry (UHPLC-HR-TOF-MS); (Table 2). The total phenolic content was 170.68 mg gallic acid/g dry extract [19].
Phenolic compounds derived from sugarcane bagasse exhibited many biological activities, which were used in various applications. The most important biological activities and the newest and most interesting applications have been summarized in Table 3.
Table 3.
Biological activities and potential applications of phytochemicals obtained from sugarcane bagasse.
Corn bran is produced as a plentiful by-product during the corn dry milling process. Similar to other cereal grains, phenolics in corn bran exist in free insoluble bound and soluble-conjugated forms. Corn bran is a rich source of ferulic acid compared to other cereals, fruits and vegetables. Guo et al. [39] isolated four forms of ferulic acid and its derivates from corn bran. On the other hand, it has been reported that the hexane-derived extract from corn bran contains high levels of ferulate-phytosterol esters, similar in composition and function to oryzanol.
Another corn waste is a husk. It is the outer leafy covering of an ear of Zea mays L. The main constituents of the maize husk extracts determined in various phytochemical studies are phenolic compounds, e.g., flavonoids [41,50][41][50]. Saponins, glycosides, and alkaloids are present mainly in the aqueous and methanolic extracts, while phenols and tannins are numerous in methanolic ones [51]. Moreover, corn husk has high contents of anthocyanins [48,52][48][52]. Simla et al. [53] reported that anthocyanins concentration in corn husks ranges from 0.003 to 4.9 mg/g. The major anthocyanins of corn husk were identified as malonylation products of cyanidin, pelargonidin, and peonidin derivatives [54].
Important by-products of the corn industry are cobs. For every 100 kg of corn grain, approximately 18 kg of corn cobs are produced. Corn cob is one of the food waste-material having a phytochemical component that has a healthy benefit [55]. They contain cyanidin-3-glucoside and cyanidin-3-(6″malonylglucoside) as main anthocyanins, as well as pelargonidin-3-glucoside, peonidin-3-glucoside and their malonyl counterparts [48].
Corn tassel is a by-product from hybrid corn seed production and an excellent source of phytochemicals (the flavonol glycosides of quercetin, isorhamnetin and kaempferol) with beneficial properties [56]. In Thailand, purple waxy corn is considered a special corn type because it is rich in phenolics, anthocyanins, and carotenoids in the tassel [57]. Besides, corn tassels could be considered a great source of valuable products such as volatile oils.
Corn pollen is another corn waste. Significant amounts of phytochemicals, including carotenoids, steroids, terpenes and flavonoids, are present in maize pollen [52]. Bujang et al. (2021) showed that maize pollen contains a high total phenolic content and total flavonoid content of 783.02 mg gallic acid equivalent (GAE)/100 g and 1706.83 mg quercetin equivalent (QE)/100 g, respectively. The flavonoid pattern of maize pollen is characterized by an accumulation of the predominant flavonols, quercetin and traces of isorhamnetin diglycosides and rutin. According to Žilić et al. [58], the quercetin values in maize pollen were 324.16 μg/g and 81.61 to 466.82 μg/g, respectively.
Corn silk, another by-product from corn processing, contains a wide range of bioactive compounds in the form of volatile oils, steroids, saponins, anthocyanins [59], and other natural antioxidants, such as flavonoids [52] and phenolic compounds [41,

References

  1. Santana-Méridas, O.; González-Coloma, A.; Sánchez-Vioque, R. Agricultural residues as a source of bioactive natural products. Phytochem. Rev. 2012, 11, 447–466.
  2. FAOSTAT (Statistics Division of Food and Agriculture Organization of the United Nations). Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 June 2022).
  3. Marić, M.; Grassino, A.N.; Zhu, Z.; Barba, F.J.; Brnčić, M.; Brnčić, S.R. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci. Technol. 2018, 76, 28–37.
  4. Kasapidou, E.; Sossidou, E.; Mitlianga, P. Fruit and vegetable co-products as functional feed ingredients in farm animal nutrition for improved product quality. Agriculture 2018, 5, 1020–1034.
  5. Casas-Godoy, L.; Campos-Valdez, A.R.; Alcázar-Valle, M.; Barrera-Martínez, I. Comparison of Extraction Techniques for the Recovery of Sugars, Antioxidant and Antimicrobial Compounds from Agro-Industrial Wastes. Sustainability 2022, 14, 5956.
  6. Ngwasiri, P.N.; Ambindei, W.A.; Adanmengwi, V.A.; Ngwi, P.; Mah, A.T.; Ngangmou, N.T.; Fonmboh, D.J.; Ngwabie, N.M.; Ngassoum, M.B.; Aba, E.R. Review Paper on Agro-food Waste and Food by-Product Valorization into Value Added Products for Application in the Food Industry: Opportunities and Challenges for Cameroon Bioeconomy. Asian J. Biotechnol. Bioresour. Technol. 2022, 8, 32–61.
  7. Rodrigues, F.; Nunes, M.A.; Alves, R.C.; Oliveira, M.B.P. Applications of recovered bioactive compounds in cosmetics and other products. In Handbook of Coffee Processing By-Products; Academic Press: London, UK, 2017; pp. 195–220.
  8. Pestana-Bauer, V.R.; Zambiazi, R.C.; Mendonça, C.R.; Beneito-Cambra, M.; Ramis-Ramos, G. γ-Oryzanol and tocopherol contents in residues of rice bran oil refining. Food Chem. 2012, 134, 1479–1483.
  9. Jiang, D.; Zhuang, D.; Fu, J.; Huang, Y.; Wen, K. Bioenergy potential from crop residues in China: Availability and distribution. Renew. Sustain. Energy Rev. 2012, 16, 1377–1382.
  10. Searle, S.; Malins, C. Availability of Cellulosic Residues and Wastes in the EU 2013; The International Council on Clean Transportation: Washington, DC, USA, 2013; p. 11.
  11. Ben Taher, I.; Fickers, P.; Chniti, S.; Hassouna, M. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues. Biotechnol. Prog. 2017, 33, 397–406.
  12. Yanli, Y.; Peidong, Z.; Wenlong, Z.; Yongsheng, T.; Yonghong, Z.; Lisheng, W. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China. Renew. Sustain. Energy Rev. 2010, 14, 3050–3058.
  13. Oleszek, M.; Tys, J.; Wiącek, D.; Król, A.; Kuna, J. The possibility of meeting greenhouse energy and CO2 demands through utilisation of cucumber and tomato residues. BioEnergy Res. 2016, 9, 624–632.
  14. Gabhane, J.; William, S.P.; Gadhe, A.; Rath, R.; Vaidya, A.N.; Wate, S. Pretreatment of banana agricultural waste for bio-ethanol production: Individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Manag. 2014, 34, 498–503.
  15. Cruz, M.G.; Bastos, R.; Pinto, M.; Ferreira, J.M.; Santos, J.F.; Wessel, D.F.; Coelho, E.; Coimbra, M.A. Waste mitigation: From an effluent of apple juice concentrate industry to a valuable ingredient for food and feed applications. J. Clean. Prod. 2018, 193, 652–660.
  16. Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Manag. 2018, 72, 99–118.
  17. Rezzadori, K.; Benedetti, S.; Amante, E.R. Proposals for the residues recovery: Orange waste as raw material for new products. Food Bioprod. Process. 2012, 90, 606–614.
  18. Kusbiantoro, A.; Embong, R.; Aziz, A.A. Strength and microstructural properties of mortar containing soluble silica from sugarcane bagasse ash. Key Eng. Mater. 2018, 765, 269–274.
  19. Zheng, R.; Su, S.; Zhou, H.; Yan, H.; Ye, J.; Zhao, Z.; You, L.; Fu, X. Antioxidant/antihyperglycemic activity of phenolics from sugarcane (Saccharum officinarum L.) bagasse and identification by UHPLC-HR-TOFMS. Ind. Crops Prod. 2017, 101, 104–114.
  20. Ishak NA, I.M.; Kamarudin, S.K.; Timmiati, S.N.; Sauid, S.M.; Karim, N.A.; Basri, S. Green synthesis of platinum nanoparticles as a robust electrocatalyst for methanol oxidation reaction: Metabolite profiling and antioxidant evaluation. J. Clean. Prod. 2023, 382, 135111.
  21. Rocha, G.J.; Nascimento, V.M.; Goncalves, A.R.; Silva, V.F.; Martin, C. Influence of mixed sugarcane bagasse samples evaluated by elemental and physical–chemical composition. Ind. Crops Prod. 2015, 64, 52–58.
  22. Mohan, P.R.; Ramesh, B.; Redyy, O.V. Production and optimization of ethanol from pretreated sugarcane bagasse using Sacchromyces bayanus in simultaneous saccharification and fermentation. Microbiol. J. 2012, 2, 52–63.
  23. Xi, Y.L.; Dai, W.Y.; Xu, R.; Zhang, J.H.; Chen, K.Q.; Jiang, M.; Wei, P.; Ouyang, P.K. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes. Bioprocess Biosyst. Eng. 2013, 36, 1779–1785.
  24. Zhao, Z.; Yan, H.; Zheng, R.; Khan, M.S.; Fu, X.; Tao, Z.; Zhang, Z. Anthocyanins characterization and antioxidant activities of sugarcane (Saccharum officinarum L.) rind extracts. Ind. Crops Prod. 2018, 113, 38–45.
  25. Nieder-Heitmann, M.; Haigh, K.F.; Görgens, J.F. Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses. Bioresour. Technol. 2018, 262, 159–168.
  26. Zhao, Y.; Chen, M.; Zhao, Z.; Yu, S. The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens. Food Chem. 2015, 185, 112–118.
  27. Al Arni, S.; Drake, A.F.; Del Borghi, M.; Converti, A. Study of aromatic compounds derived from sugarcane bagasse. Part I: Effect of pH. Chem. Eng. Technol. 2010, 33, 895–901.
  28. González-Bautista, E.; Santana-Morales, J.C.; Ríos-Fránquez, F.J.; Poggi-Varaldo, H.M.; Ramos-Valdivia, A.C.; Cristiani-Urbina, E.; Ponce-Noyola, T. Phenolic compounds inhibit cellulase and xylanase activities of Cellulomonas flavigena PR-22 during saccharification of sugarcane bagasse. Fuel 2017, 196, 32–35.
  29. Zheng, R.; Su, S.; Li, J.; Zhao, Z.; Wei, J.; Fu, X.; Liu, R.H. Recovery of phenolics from the ethanolic extract of sugarcane (Saccharum officinarum L.) baggase and evaluation of the antioxidant and antiproliferative activities. Ind. Crops Prod. 2017, 107, 360–369.
  30. Van der Pol, E.; Bakker, R.; Van Zeeland, A.; Garcia, D.S.; Punt, A.; Eggink, G. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment. Bioresour. Technol. 2015, 181, 114–123.
  31. Lv, G.; Wu, S.; Lou, R.; Yang, Q. Analytical pyrolysis characteristics of enzymatic/mild acidolysis lignin from sugarcane bagasse. Cellulose Chemistry and Technology 2010, 44, 335–342.
  32. Michelin, M.; Ximenes, E.; Polizeli, M.; Ladisch, M.R. Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresour. Technol. 2016, 199, 275–278.
  33. Juttuporn, W.; Thiengkaew, P.; Rodklongtan, A.; Rodprapakorn, M.; Chitprasert, P. Ultrasound-assisted extraction of antioxidant and antibacterial phenolic compounds from steam-exploded sugarcane bagasse. Sugar Technol. 2018, 20, 599–608.
  34. Treedet, W.; Suntivarakorn, R. Design and operation of a low cost bio-oil fast pyrolysis from sugarcane bagasse on circulating fluidized bed reactor in a pilot plant. Fuel Process. Technol. 2018, 179, 17–31.
  35. Krishnan, C.; Sousa, L.C.; Jin, M.; Chang, L.; Dale, B.E.; Balan, V. Alkalibased AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol. Bioeng. 2010, 107, 441–450.
  36. Zhu, Z.S.; Zhu, M.J.; Xu, W.X.; Liang, L. Production of bioethanol from sugarcane bagasse using NH4OH-H2O2 pretreatment and simultaneous saccharification and co-fermentation. Biotechnol. Bioprocess Eng. 2012, 17, 316–325.
  37. Guilherme, A.A.; Dantas, P.V.; Santos, E.S.; Fernandes, F.A.; Macedo, G.R. Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugarcane bagasse. Braz. J. Chem. Eng. 2015, 32, 23–33.
  38. Chandel, A.K.; da Silva, S.S.; Carvalho, W.; Singh, O.V. Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. J. Chem. Technol. Biotechnol. 2012, 87, 11–20.
  39. Guo, J.; Zhang, J.; Wang, W.; Liu, T.; Xin, Z. Isolation and identification of bound compounds from corn bran and their antioxidant and angiotensin I-converting enzyme inhibitory activities. Eur. Food Res. Technol. 2015, 241, 37–47.
  40. Bujang, J.S.; Zakaria, M.H.; Ramaiya, S.D. Chemical constituents and phytochemical properties of floral maize pollen. PLoS ONE 2021, 16, e0247327.
  41. Dong, J.; Cai, L.; Zhu, X.; Huang, X.; Yin, T.; Fang, H.; Ding, Z. Antioxidant activities and phenolic compounds of cornhusk, corncob and stigma maydis. J. Braz. Chem. Soc. 2014, 25, 1956–1964.
  42. Li, Q.; Somavat, P.; Singh, V.; Chatham, L.; Gonzalez de Mejia, E. A comparative study of anthocyanin distribution in purple and blue corn coproducts from three conventional fractionation processes. Food Chem. 2017, 231, 332–339.
  43. Haslina, H.; Eva, M. Extract corn silk with variation of solvents on yield, total phenolics, total flavonoids and antioxidant activity. Indones. Food Nutr. Prog. 2017, 14, 21–28.
  44. Tian, S.; Sun, Y.; Chen, Z. Extraction of flavonoids from corn silk and biological activities in vitro. J. Food Qual. 2021, 2021, 1–9.
  45. Lao, F.; Giusti, M.M. Extraction of purple corn (Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents. J. Cereal Sci. 2018, 80, 87–93.
  46. Chen, L.; Yang, M.; Mou, H.; Kong, Q. Ultrasound-assisted extraction and characterization of anthocyanins from purple corn bran. J. Food Preserv. 2017, 42, e13377.
  47. Barba, F.J.; Rajha, H.N.; Debs, E.; Abi-Khattar, A.M.; Khabbaz, S.; Dar, B.N.; Simirgiotis, M.J.; Castagnini, J.M.; Maroun, R.G.; Louka, N. Optimization of Polyphenols’ Recovery from Purple Corn Cobs Assisted by Infrared Technology and Use of Extracted Anthocyanins as a Natural Colorant in Pickled Turnip. Molecules 2022, 27, 5222.
  48. Fernandez-Aulis, F.; Hernandez-Vazquez, L.; Aguilar-Osorio, G.; Arrieta-Baez, D.; Navarro-Ocana, A. Extraction and identification of anthocyanins in corn cob and corn husk from Cacahuacintle maize. J. Food Sci. 2019, 84, 954–962.
  49. Wille, J.J.; Berhow, M.A. Bioactives derived from ripe corn tassels: A possible new natural skin whitener, 4-hydroxy-1-oxindole-3-acetic acid. Curr. Bioact. Compd. 2011, 7, 126–134.
  50. Khamphasan, P.; Lomthaisong, K.; Harakotr, B.; Ketthaisong, D.; Scott, M.P.; Lertrat, K.; Suriharn, B. Genotypic variation in anthocyanins, phenolic compounds, and antioxidant activity in cob and husk of purple field corn. Agronomy 2018, 8, 271.
  51. Brobbey, A.A.; Somuah-Asante, S.; Asare-Nkansah, S.; Boateng, F.O.; Ayensu, I. Preliminary phytochemical screening and scientific validation of the antidiabetic effect of the dried husk of Zea mays L. (Corn, Poaceae). Int. J. Phytopharm. 2017, 7, 1–5.
  52. Thapphasaraphong, S.; Rimdusit, T.; Priprem, A.; Puthongking, P. Crops of waxy purple corn: A valuable source of antioxidative phytochemicals. Int. J. Adv. Agric. Environ. Eng. 2016, 3, 73–77.
  53. Simla, S.; Boontang, S.; Harakotr, B. Anthocyanin content, total phenolic content, and antiradical capacity in different ear components of purple waxy corn at two maturation stages. Aust. J. Crop Sci. 2016, 10, 675–682.
  54. Deineka, V.I.; Sidorov, A.N.; Deineka, L.A. Determination of purple corn husk anthocyanins. J. Anal. Chem. 2016, 71, 1145–1150.
  55. Suryanto, E.; Momuat, L.I.; Rotinsulu, H.; Mewengkang, D.S. Anti-photooxidant and photoprotective activities of ethanol extract and solvent fractions from corn cob (Zea mays). Int. J. ChemTech Res. 2018, 11, 25–37.
  56. Duangpapeng, P.; Lertrat, K.; Lomthaisong, K.; Scott, M.P.; Suriharn, B. Variability in anthocyanins, phenolic compounds and antioxidant capacity in the tassels of collected waxy corn germplasm. Agronomy 2019, 9, 158.
  57. Duangpapeng, P.; Ketthaisong, D.; Lomthaisong, K.; Lertrat, K.; Scott, M.P.; Suriharn, B. Corn tassel: A new source of phytochemicals and antioxidant potential for value-added product development in the agro-industry. Agronomy 2018, 8, 242.
  58. Žilić, S.; Vančetović, J.; Janković, M.; Maksimović, V. Chemical composition, bioactive compounds, antioxidant capacity and stability of floral maize (Zea mays L.) pollen. J. Funct. Foods 2014, 10, 65–74.
  59. Sarepoua, E.; Tangwongchai, R.; Suriharn, B.; Lertrat, K. Influence of variety and harvest maturity on phytochemical content in corn silk. Food Chem. 2015, 169, 424–429.
  60. Singh, J.; Rasane, P.; Nanda, V.; Kaur, S. Bioactive compounds of corn silk and their role in management of glycaemic response. J. Food Sci. Technol. 2022, 1–16.
  61. Ren, S.C.; Qiao, Q.Q.; Ding, X.L. Antioxidative activity of five flavones glycosides from corn silk (Stigma maydis). Czech J. Food Sci. 2013, 31, 148–155.
  62. Galanakis, C.M. Functionality of food components and emerging technologies. Foods 2021, 10, 128.
  63. Roh, K.B.; Kim, H.; Shin, S.; Kim, Y.S.; Lee, J.A.; Kim, M.O.; Jung, E.; Lee, J.; Park, D. Anti-inflammatory effects of Zea mays L. husk extracts. BMC Complement. Altern. Med. 2016, 16, 298–306.
  64. Boeira, C.P.; Flores, D.C.B.; Lucas, B.N.; Santos, D.; Flores, E.M.M.; Reis, F.L.; Morandini, M.L.B.; Morel, A.F.; Rosa, C.S.D. Extraction of antioxidant and antimicrobial phytochemicals from corn stigma: A promising alternative to valorization of agricultural residues. Ciência Rural. 2022, 52, e20210535.
  65. Wang, L.; Yu, Y.; Fang, M.; Zhan, C.; Pan, H.; Wu, Y.; Gong, Z. Antioxidant and antigenotoxic activity of bioactive extracts from corn tassel. J. Huazhong Univ. Sci. Technol.-Med. Sci. 2014, 34, 131–136.
More
Academic Video Service