You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Phytochemicals from Sugarcane Bagasse and Maize Residues: Comparison
Please note this is a comparison between Version 1 by Marta Oleszek and Version 2 by Conner Chen.

Billions of tons of agro-industrial residues are produced worldwide. This is associated with the risk of pollution as well as management and economic problems. Simultaneously, non-edible portions of many crops are rich in bioactive compounds with valuable properties. For this reason, developing various methods for utilizing agro-industrial residues (such as sugarcane bagasse and maize residues) as a source of high-value by-products is very important.

  • bioactive compounds
  • antioxidants
  • agricultural residues

1. Introduction

The agricultural industry generates billions of tonnes of waste from the tillage and processing of various crops. The crops with the largest amounts of produced residues are rice, maize, soybean, sugarcane, potato, tomato, and cucumber, as well as some fruits, mainly bananas, oranges, grapes, and apples [1][2][1,2]. It has been estimated that European food processing companies generate annually approximately 100 Mt of waste and by-products, mostly during the production of drinks (26%), dairy and ice cream (21.3%), and fruits and vegetables (14.8%) [3].
In Table 1, the amounts of particular wastes generated worldwide are presented. Many of them are rich in biologically active compounds and have the potential to become important raw materials for obtaining valuable phytochemicals. Vegetable and fruit processing by-products are promising sources of valuable phytochemicals having antioxidant, antimicrobial, anti-inflammatory, anti-cancer, and cardiovascular protection activities [4]. The applications of these agro-industrial residues and their bioactive compounds in functional food and cosmetics production were presented in many studies [5][6][7][5,6,7]. Moreover, due to the potential health risk of some synthetic antioxidants such as BHA, the identification and isolation of natural antioxidants from waste has become increasingly attractive. Important criteria to decide if a product or by-product can be of interest to recover phytochemicals are the absolute concentration and preconcentration factor, as well as the total amount of product or by-product per batch [8].
Table 1.
Amount of residues from some crops produced in the world in 2020.
Table 3.
Biological activities and potential applications of phytochemicals obtained from sugarcane bagasse.
22][23][24][25][20,21,22,23,24,25].
Phenolic compounds are a very important group of natural substances identified in sugarcane waste. Nonetheless, steam explosion and ultrasound-assisted extraction (UAE) pretreatment was applied for the production of valuable phenolic compounds from the lignin included in this residue. Chromatographic analysis revealed that sugarcane bagasse is a good feedstock for the generation of phenolic acids. The concentration of total phenolics with the Folin-Ciocalteau method was between 2.8 and 3.2 g/L. Zhao et al. [26] have identified many phenolics, mainly flavonoids and phenolic acids, in sugarcane bagasse extract (Table 2). The total polyphenol content was detected as higher than 4 mg/g of dry bagasse, with total flavonoid content of 470 mg quercetin/g of polyphenol. The most abundant phenolic acids identified in the sugarcane bagasse extract were gallic acid (4.36 mg/g extract), ferulic acid (1.87 mg/g extract) and coumaric acid (1.66 mg/g extract). Spectroscopic analysis showed that a predominant amount of p-coumaric acid is ester-linked to the cell wall components, mainly to lignin. On the other hand, about half of the ferulic acid is esterified to the cell wall hemicelluloses. The purified sugarcane bagasse hydrolysate consisted mainly of p-coumaric acid. Besides, the purified products showed the same antioxidant activity, reducing power and free radical scavenging capacity as the standard p-coumaric acid. Al Arni et al. [27] stated that the major natural products contained in the lignin fraction were p-coumaric acid, ferulic acid, syringic acid, and vanillin.
Table 2.
Phytochemicals derived from sugarcane bagasse.
Maize (corn Zea mays L.) bran, husk, cobs, tassel, pollen, silk, and fiber are residues of corn production. They contain substantial amounts of phytochemicals, such as phenolic compounds, carotenoid pigments and phytosterols [39] (Table 4).
Table 4.
Phytochemicals identified in corn waste.
Gallic, coumaric, caffeic, chlorogenic, and cinnamic acids were the main phenolic compounds extracted from raw and alkaline pretreated sugarcane bagasse and identified by high-performance liquid chromatography (HPLC) [28]. The aromatic phenolic compounds (p-coumaric acid, ferulic acid, p-hydroxybenzaldehyde, vanillin, and vanillic acid) were reported in sugarcane bagasse pith. Five phenolic compounds (tricin 4-O-guaiacylglyceryl ether-7-O-glucopyranoside, genistin, p-coumaric acid, quercetin, and genistein) in 30% hydroalcoholic fraction of sugarcane bagasse were identified using ultra-high performance liquid chromatography/high-resolution time of flight mass spectrometry (UHPLC-HR-TOF-MS); (Table 2). The total phenolic content was 170.68 mg gallic acid/g dry extract [19].
Phenolic compounds derived from sugarcane bagasse exhibited many biological activities, which were used in various applications. The most important biological activities and the newest and most interesting applications have been summarized in Table 3.

2. Sugarcane Bagasse

Large amounts of waste are generated during the processing of sugarcane. In fact, one metric ton of sugarcane generates 280 kg of bagasse. Sugarcane bagasse is one of the most abundant agro-food by-products and is a very promising raw material available at low cost for recovering bioactive substances [18][19][18,19]. Sugarcane bagasse consists mainly of cellulose (35–50%), hemicellulose (26–41%), lignin (11–25%), but also some amount of plant secondary metabolites (PSM), mainly anthocyanins and mineral substances [20][21][

3. Maize Residues

Corn bran is produced as a plentiful by-product during the corn dry milling process. Similar to other cereal grains, phenolics in corn bran exist in free insoluble bound and soluble-conjugated forms. Corn bran is a rich source of ferulic acid compared to other cereals, fruits and vegetables. Guo et al. [39] isolated four forms of ferulic acid and its derivates from corn bran. On the other hand, it has been reported that the hexane-derived extract from corn bran contains high levels of ferulate-phytosterol esters, similar in composition and function to oryzanol.
Another corn waste is a husk. It is the outer leafy covering of an ear of Zea mays L. The main constituents of the maize husk extracts determined in various phytochemical studies are phenolic compounds, e.g., flavonoids [41][50][41,50]. Saponins, glycosides, and alkaloids are present mainly in the aqueous and methanolic extracts, while phenols and tannins are numerous in methanolic ones [51]. Moreover, corn husk has high contents of anthocyanins [48][52][48,52]. Simla et al. [53] reported that anthocyanins concentration in corn husks ranges from 0.003 to 4.9 mg/g. The major anthocyanins of corn husk were identified as malonylation products of cyanidin, pelargonidin, and peonidin derivatives [54].
Important by-products of the corn industry are cobs. For every 100 kg of corn grain, approximately 18 kg of corn cobs are produced. Corn cob is one of the food waste-material having a phytochemical component that has a healthy benefit [55]. They contain cyanidin-3-glucoside and cyanidin-3-(6″malonylglucoside) as main anthocyanins, as well as pelargonidin-3-glucoside, peonidin-3-glucoside and their malonyl counterparts [48].
Corn tassel is a by-product from hybrid corn seed production and an excellent source of phytochemicals (the flavonol glycosides of quercetin, isorhamnetin and kaempferol) with beneficial properties [56]. In Thailand, purple waxy corn is considered a special corn type because it is rich in phenolics, anthocyanins, and carotenoids in the tassel [57]. Besides, corn tassels could be considered a great source of valuable products such as volatile oils.
Corn pollen is another corn waste. Significant amounts of phytochemicals, including carotenoids, steroids, terpenes and flavonoids, are present in maize pollen [52]. Bujang et al. (2021) showed that maize pollen contains a high total phenolic content and total flavonoid content of 783.02 mg gallic acid equivalent (GAE)/100 g and 1706.83 mg quercetin equivalent (QE)/100 g, respectively. The flavonoid pattern of maize pollen is characterized by an accumulation of the predominant flavonols, quercetin and traces of isorhamnetin diglycosides and rutin. According to Žilić et al. [58], the quercetin values in maize pollen were 324.16 μg/g and 81.61 to 466.82 μg/g, respectively.
Corn silk, another by-product from corn processing, contains a wide range of bioactive compounds in the form of volatile oils, steroids, saponins, anthocyanins [59], and other natural antioxidants, such as flavonoids [52] and phenolic compounds [41][58][59][41,58,59]. In the corn silk powder, the high phenolic content (94.10 ± 0.26 mg GAE/g) and flavonoid content (163.93 ± 0.83 mg QE/100 g) are responsible for its high antioxidant activity [60]. About 29 flavonoids have been isolated from corn silk. Most of them are C-glycoside compounds and have the same parent nucleus as luteolin [44]. Ren et al. [61] successfully isolated and separated compounds such as 2″-O-α-l-rhamnosyl-6-C-3″-deoxyglucosyl-3′-methoxyluteolin, ax-5′-methane-3′-methoxymaysin, ax-4″-OH-3′-methoxymaysin, 6,4′-dihydroxy-3′-methoxyflavone-7-O-glucoside, and 7,4′-dihydroxy-3′-methoxyflavone-2″-O-α-l-rhamnosyl-6-C fucoside from corn silk. Moreover, among flavonoids, Haslina and Eva [43] determined in corn silk: apigmaysin, maysin, isoorientin-2″-O-α-l-rhamnoside, 3-methoxymaysine, and ax-4-OH maysin.
This richness of biologically active compounds results in advantageous properties and applications. The most important properties and the newest studies on the application are listed in Table 5.
Table 5.
Biological activity and potential applications of phytochemicals obtained from corn wastes.
Academic Video Service