Pseudomonas aeruginosa Infections: Comparison
Please note this is a comparison between Version 2 by Dean Liu and Version 1 by Sasha H. Shafikhani.

Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen which causes many severe acute and chronic infections with high morbidity, and mortality rates as high as 40%. What makes P. aeruginosa a particularly challenging pathogen is its high intrinsic and acquired resistance to many of the available antibiotics. 

  • Pseudomonas aeruginosa
  • infection
  • acute infections

1. Acute and Chronic Pneumonia Infection Models

Animal models have been extremely useful in advancing ourthe understanding of P. aeruginosa pathogenesis and for the development and the therapeutic assessment of new antibiotics or novel biologicals to control this pathogen. Although most studies involving P. aeruginosa infections rely on mouse or rat models due to the cost and availability of reagents, larger animal modeling is also performed usually to fulfill the requirement by organizations—such as Food and Drug Administration (FDA)—to evaluate the efficacy and the safety profiles of new investigative biologics in two animal models that approximate human responses with respect to the condition under investigation [154][1]. As was discussed above, P. aeruginosa is an important bacterial pathogen in acute and chronic pneumonia, including the ventilated-associated pneumonia (VAP) and hospital acquired pneumonia (HAP). The first animal model of chronic pulmonary infection was a rat model in which P. aeruginosa infection was initiated by intratracheal inoculation of P. aeruginosa bacteria enmeshed in agar beads [155][2]. In this chronic model of infection, P. aeruginosa was detected during the 35 days of observation. Importantly, infected lungs in these rats exhibited lesions resembling those seen in lung tissues of humans with acute or chronic P. aeruginosa pneumonia, including the presence of goblet-cell hyperplasia, focal areas of necrosis, and acute and chronic inflammatory infiltrate [155][2]. Since then, various similar animal models (in mouse, rat, rabbit, porcine, dog, cat, etc.) of P. aeruginosa infections for acute and chronic pneumonia (including VAP and HAP) have also been described, albeit with modifications in the P. aeruginosa strain, initial inoculum levels, and in the rout of P. aeruginosa delivery into animal [156,157,158,159,160,161][3][4][5][6][7][8].

2. Urinary Tract and Kidney Infection Models

P. aeruginosa also causes urinary tract and kidney infections as discussed above. The initial animal models to assess UTI caused by P. aeruginosa involved intravenous injection of P. aeruginosa into mice [162,163][9][10]. In these systemic infection models, large doses (close to lethal doses) of P. aeruginosa—were needed to establish infection in the urinary tract and kidney. However, the high rate of mortality, due to systemic infection, made these murine models impractical [162,163][9][10]. To overcome this difficulty, artificial manipulations, (e.g., administration of bromoethylamine hydrobromide or ferric sorbitol citrate), were used to make kidneys in animals more susceptible to P. aeruginosa colonization and growth [164,165][11][12]. However, these artificial means made the interpretation of the data unreliable [166][13]. These limitations then led to the development of methods (e.g., surgical implantation of glass beads laden with P. aeruginosa, or transvesical ureteral catheterization) to directly deliver P. aeruginosa into the rat kidney in order to cause infection in this organ [167,168,169][14][15][16]. At present, urinary tract and kidney infection models frequently instill bacteria into the bladder using a catheter, based on the UTI protocol that was developed for Uropathogenic Escherichia coli (UPEC) by Hung et al. [170,171][17][18].

3. Blood Stream and Systemic Infection Models

Different approaches have been used to cause blood and systemic infection in animals with P. aeruginosa. For example, intravenous (i.v.), intraperitoneal (i.p.), or tail vein injections have been used as technical means to cause systemic infection with P. aeruginosa [172,173,174][19][20][21]. P. aeruginosa has also been delivered retro-orbitally to cause systemic infection and sepsis [175][22]. P. aeruginosa systemic infection has been shown to increase pro-inflammatory cytokines both in the blood and tissues, leading to other morbidities such as septic arthritis and gallbladder damage [172,176,177][19][23][24].

4. Keratitis and Corneal Ulcers Infection Models

As this was discussed above, keratitis and corneal ulcer infections are relatively rare but they are very serious medical conditions requiring urgent medical care because of the possibility that they can lead to vision loss in the affected eye(s). In the murine models for corneal ulcer, 2–3 parallel scratches (~1 mm) are usually made by sterile 25-gauge needle on the cornea of anesthetized animal prior to bacterial inoculation [178,179,180,181][25][26][27][28]. Animal models have been informative in showing the potency of antimicrobial activities in human tear [178][25]; in establishing the crucial roles for IL-16 pro-inflammatory cytokine and cathelicidin antimicrobial peptide in corneal defenses against P. aeruginosa [179,180][26][27]; and in demonstrating the therapeutic potential of the broad host range bacteriophage KPP12 in P. aeruginosa clearance and corneal healing [181][28].

5. Endocarditis Infection Models

Animal models of S. aureus infective endocarditis (IE) [182,183][29][30], are commonly used to investigate the underlying pathogenesis, disease progression, potential diagnostic approaches, and therapeutic treatment for endocarditis caused by P. aeruginosa [184][31]; Rabbits [185,186][32][33]. These models are based on surgical valve trauma followed by intravenous injection of bacteria within 10–24 h following the surgical valve trauma. In a rabbit model of endocarditis, with sterile right ventricular cardiac vegetations, Archer et al. demonstrated 78% mortality within 3 weeks, following P. aeruginosa infection [185][32]. In a follow-up study, the same group demonstrated that 14-day treatment with high dose gentamycin (7.5 mg/kg) and carbenicillin (400 mg/kg) was significantly more effective than either therapy alone, resulting in 64% sterilization of cardiac vegetations in this rabbit model of P. aeruginosa endocarditis [186][33]. In a rat model of P. aeruginosa endocarditis, Oechslin et al. demonstrated that a combination of systemic vancomycin and phage therapy was highly effective against P. aeruginosa endocarditis [184][31].

6. Wound and Surgical Site Infection Models

Skin is a formidable barrier against invading pathogens, including P. aeruginosa [187][34]. As an opportunistic pathogen, P. aeruginosa cannot colonize or cause infection in the skin of normal animal unless this barrier is breached by injury [4,5,6,10][35][36][37][38]. Therefore, animal wound and surgical site models of infections for P. aeruginosa (and other pathogens) usually involve full or partial thickness excisional wounding, or addition of bacteria directly to implants or stents before or after their insertion into animals [7,9,188,189,190,191,192,193,194,195][39][40][41][42][43][44][45][46][47][48]. In the settings of injury, P. aeruginosa can efficiently colonize and cause infection [11,12,13,14,196][49][50][51][52][53]. In a recent study, P. aeruginosa was shown to thrive in wound environment, (in a mouse model of wound infection), by dampening the host innate immune responses in wound tissue via inhibition of the NLRC4 inflammasome mediated by its most conserved virulence factor, ExoT [7][39].
Chronic wounds are particularly vulnerable to P. aeruginosa infection [100,197,198][54][55][56]. In a recent study involving db/db type 2 diabetic mouse, it was shown that impairment in the formyl peptide chemokine receptors (FPR) in diabetic neutrophils results in a delay in neutrophil response, rendering diabetic wounds vulnerable to colonization and infection by P. aeruginosa [8][57]. Macrophage response has also been shown to be delayed in db/db diabetic wounds, due to dysregulation in IL-10 expression and signaling [199[58][59],200], further dampening innate immune responses and diabetic wound’s ability to prevent P. aeruginosa infection [9][40]. In other studies, P. aeruginosa has been demonstrated to several other virulence factors (e.g., biofilm, type 3 secretion system (T3SS), pyocyanin, extracellular proteases, and Exotoxin A) to prevent wound healing and exacerbate tissue damage [99,103,104,105,106,201,202][60][61][62][63][64][65][66]. In a burn wound model of infection, P. aeruginosa infection was shown to lead to bacteremia in a manner that was dependent on superoxide response regulator (soxR) expression and function in P. aeruginosa [203][67]. In another report, quorum sensing (QS) was shown to be involved in biofilm maturation and P. aeruginosa colonization and pathogenesis a pressure ulcer infection model in rat [204][68].

7. Immunocompromised Infection Models

As was discussed above, immunocompromised people are highly vulnerable to infection with P. aeruginosa. Not surprisingly, animal models have been developed to assess the impact of P. aeruginosa infection in immunocompromised hosts. For example, Takase et al. demonstrated that P. aeruginosa infection in the calf muscle of immunocompromised mice, (generated by cyclophosphamide), caused high mortality in these mice, in a manner that was mediated by pyoverdine and pyochelin siderophore production in P. aeruginosa [205][69]. In another study, P. aeruginosa was shown to induce death within 46 to 59 h in a leukopenic immunosuppressed mouse model [206][70]. Similarly, Mahmoud et al. demonstrated that wounds in the neutropenic immunocompromised C57BL/6 mice are vulnerable to P. aeruginosa enhanced infection [188][41]. In another study, P. aeruginosa infection was proved to be highly lethal in an immunosuppressed guinea pig model of pneumonia [207][71].

8. Cystic Fibrosis Infection Animal Models

Cystic Fibrosis (CF) is a genetic disorder caused by null mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes for the chloride channel [208,209,210][72][73][74]. Not surprisingly, different transgenic animal species, (i.e., mice, rats, rabbits, ferrets, pigs, and sheep), harboring similar mutations in the CFTR gene have been constructed to model various CF pathologies [211,212,213,214,215,216][75][76][77][78][79][80]. In one report, endobronchial infection with a mucoid P. aeruginosa strain was shown to elicit production of TNF-α, MIP-2, and KC/N51 inflammatory cytokines in bronchoalveolar lavage fluid and cause 80% mortality in CF mice (harboring the S489X mutation of the CFTR gene), thus phenocopying some of the CF hallmark pathologies observed in human [217][81]. Corroborating these studies, van Heeckeren et. al., demonstrated that infection with P. aeruginosa resulted in significantly higher mortality rates, weight loss, higher lung pathology scores, and higher inflammatory mediator and neutrophil levels in the lungs of CF mice as compared to wildtype littermates [218][82]. However, murine models do not completely develop human CF disease severity in the pancreas, lung, intestine, liver, and other organs [219,220][83][84], thus necessitating the need for the development of larger animal models for CF, such as newborn pigs and ferrets [214,215,216,219,221][78][79][80][83][85]. For example, CF pigs were demonstrated to develop airway inflammation, mucus accumulation, and impaired bacterial clearance [222][86]. CF pig lungs contained multiple bacterial species, suggesting impaired immune defenses against bacteria [222][86].

References

  1. Prasad, C.B. A review on drug testing in animals. Transl. Biomed. 2016, 7, 1–4.
  2. Cash, H.A.; Woods, D.E.; McCullough, B.; Johanson, W.G.; Bass, J.A. A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am. Rev. Resp. Dis. 1979, 119, 453–459.
  3. Van Heeckeren, A.M.; Schluchter, M. Murine models of chronic Pseudomonas aeruginosa lung infection. Lab. Anim. 2002, 36, 291–312.
  4. Comolli, J.C.; Hauser, A.R.; Waite, L.; Whitchurch, C.B.; Mattick, J.S.; Engel, J.N. Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect. Immun. 1999, 67, 3625–3630.
  5. Gras, E.; Vu, T.; Vu Vi Tran, G.; Quynh Nhu Nguyen, T.; Schneider-Smith, E.; Povoa, N.; Povoa, H.; Delaye, T.; Valour, F.; An Diep, B. 2202. Validation of a Rabbit Model of Pseudomonas aeruginosa Acute Pneumonia. Open Forum Infect. Dis. 2019, 6, S750–S751.
  6. Nguyen, N.T.; Gras, E.; Tran, N.D.; Nguyen, N.N.; Lam, H.T.; Weiss, W.J.; Doan, T.N.; Diep, B.A. Pseudomonas aeruginosa ventilator-associated pneumonia rabbit model for preclinical drug development. Antimicrob. Agents Chemother. 2021, 65, e02724-02720.
  7. Li Bassi, G.; Rigol, M.; Marti, J.-D.; Saucedo, L.; Ranzani, O.T.; Roca, I.; Cabanas, M.; Muñoz, L.; Giunta, V.; Luque, N. A novel porcine model of ventilator-associated pneumonia caused by oropharyngeal challenge with Pseudomonas aeruginosa. Anesthesiology 2014, 120, 1205–1215.
  8. Dear, J.D. Bacterial pneumonia in dogs and cats: An update. Vet. Clin. Small Anim. Pract. 2020, 50, 447–465.
  9. Gorrill, R. The Fate of Pseudontonas aeruginosa, Proteus mirabilis and Escherichia coli in the Mouse Kidney. J. Pathol. Bacteriol. 1965, 89, 81–88.
  10. Gorrill, R. Bacterial localisation in the kidney with particular reference to Pseudomonas pyocyanea. J. Pathol. Bacteriol. 1952, 64, 857–864.
  11. Montgomerie, J.; Guze, L. The renal response to infection. Kidney 1976, 2, 1079–1112.
  12. Comber, K. Pathogenesis of an experimental pyelonephritis model in the mouse and its use in the evaluation of antibiotics. In Laboratory Aspects of Infections; Springer: Berlin/Heidelberg, Germany, 1976; pp. 311–316.
  13. Nishi, T.; Tsuchiya, K. Experimental urinary tract infection with Pseudomonas aeruginosa in mice. Infect. Immun. 1978, 22, 508–515.
  14. Rocha, H.; De Almeida, S.S. Experimental pyelonephritis in rats with a glass bead in the bladder. J. Pathol. Bacteriol. 1965, 90, 668–672.
  15. Rocha, H.; Guze, L.B.; Freedman, L.R.; Beeson, P.B. Experimental pyelonephritis: III. The influence of localized injury in different parts of the kidney on susceptibility to bacillary infection. Yale J. Biol. Med. 1958, 30, 341.
  16. Niijima, T.; Hinman, F. Effect of prior bacterial immunization on the pathogenesis of retrograde pyelonephritis. J. Urol. 1966, 95, 476–484.
  17. Hung, C.-S.; Dodson, K.W.; Hultgren, S.J. A murine model of urinary tract infection. Nat. Protoc. 2009, 4, 1230–1243.
  18. Penaranda, C.; Chumbler, N.M.; Hung, D.T. Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection. PLoS Pathog. 2021, 17, e1009534.
  19. Jin, T.; Mohammad, M.; Hu, Z.; Fei, Y.; Moore, E.R.; Pullerits, R.; Ali, A. A novel mouse model for septic arthritis induced by Pseudomonas aeruginosa. Sci. Rep. 2019, 9, 16868.
  20. Hamilton, J.R.; Overall, J.; Glasgow, L.A. Synergistic effect on mortality in mice with murine cytomegalovirus and Pseudomonas aeruginosa, Staphylococcus aureus, or Candida albicans infections. Infect. Immun. 1976, 14, 982–989.
  21. Xu, L.; Wang, F.; Shen, Y.; Hou, H.; Liu, W.; Liu, C.; Jian, C.; Wang, Y.; Sun, M.; Sun, Z. Pseudomonas aeruginosa inhibits the growth of pathogenic fungi: In vitro and in vivo studies. Exp. Ther. Med. 2014, 7, 1516–1520.
  22. Chahin, A.; Opal, S.M.; Zorzopulos, J.; Jobes, D.V.; Migdady, Y.; Yamamoto, M.; Parejo, N.; Palardy, J.E.; Horn, D.L. The novel immunotherapeutic oligodeoxynucleotide IMT504 protects neutropenic animals from fatal Pseudomonas aeruginosa bacteremia and sepsis. Antimicrob. Agents Chemother. 2015, 59, 1225–1229.
  23. Bachta, K.E.; Allen, J.P.; Cheung, B.H.; Chiu, C.-H.; Hauser, A.R. Systemic infection facilitates transmission of Pseudomonas aeruginosa in mice. Nat. Commun. 2020, 11, 543.
  24. Sutterwala, F.S.; Mijares, L.A.; Li, L.; Ogura, Y.; Kazmierczak, B.I.; Flavell, R.A. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 2007, 204, 3235–3245.
  25. Kwong, M.S.; Evans, D.J.; Ni, M.; Cowell, B.A.; Fleiszig, S.M. Human tear fluid protects against Pseudomonas aeruginosa keratitis in a murine experimental model. Infect. Immun. 2007, 75, 2325–2332.
  26. Huang, L.C.; Reins, R.Y.; Gallo, R.L.; McDermott, A.M. Cathelicidin-deficient (Cnlp-/-) mice show increased susceptibility to Pseudomonas aeruginosa keratitis. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4498–4508.
  27. Cole, N.; Bao, S.; Stapleton, F.; Thakur, A.; Husband, A.J.; Beagley, K.W.; Willcox, M.D. Pseudomonas aeruginosa keratitis in IL-6-deficient mice. Int. Arch. Allergy Immunol. 2003, 130, 165–172.
  28. Fukuda, K.; Ishida, W.; Uchiyama, J.; Rashel, M.; Kato, S.-i.; Morita, T.; Muraoka, A.; Sumi, T.; Matsuzaki, S.; Daibata, M. Pseudomonas aeruginosa keratitis in mice: Effects of topical bacteriophage KPP12 administration. PLoS ONE 2012, 77, e47742.
  29. Ring, J.; Hoerr, V.; Tuchscherr, L.; Kuhlmann, M.T.; Löffler, B.; Faber, C. MRI visualization of Staphyloccocus aureus-induced infective endocarditis in mice. PLoS ONE 2014, 9, e107179.
  30. Entenza, J.; Vouillamoz, J.; Glauser, M.; Moreillon, P. Levofloxacin versus ciprofloxacin, flucloxacillin, or vancomycin for treatment of experimental endocarditis due to methicillin-susceptible or-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1997, 41, 1662–1667.
  31. Oechslin, F.; Piccardi, P.; Mancini, S.; Gabard, J.; Moreillon, P.; Entenza, J.M.; Resch, G.; Que, Y.-A. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J. Infect. Dis. 2017, 215, 703–712.
  32. Archer, G.; Fekety, F.R. Experimental endocarditis due to Pseudomonas aeruginosa. I. Description of a model. J. Infect. Dis. 1976, 134, 1–7.
  33. Archer, G.; Fekety, F.R., Jr. Experimental endocarditis due to Pseudomonas aeruginosa. II. Therapy with carbenicillin and gentamicin. J. Infect. Dis. 1977, 136, 327–335.
  34. Coates, M.; Blanchard, S.; MacLeod, A.S. Innate antimicrobial immunity in the skin: A protective barrier against bacteria, viruses, and fungi. PLoS Pathog. 2018, 14, e1007353.
  35. Yamaguchi, T.; Yamada, H. Role of mechanical injury on airway surface in the pathogenesis of Pseudomonas aeruginosa. Am. Rev. Respir. Dis. 1991, 144, 1147–1152.
  36. Zahm, J.M.; Chevillard, M.; Puchelle, E. Wound repair of human surface respiratory epithelium. Am. J. Respir. Cell Mol. Biol. 1991, 5, 242–248.
  37. Tsang, K.W.T.; Rutman, A.; Tanaka, E.; Lundt, V.; Dewar, A.; Cole, P.J.; Wilson, R. Interaction of Pseudomonas aeruginosa with human respiratory mucosa in vitro. Eur. Respir. J. 1994, 7, 1746–1753.
  38. De Bentzmann, S.; Plotkowski, C.; Puchelle, E. Receptors in the Pseudomonas aeruginosa adherence to injured and repairing airway epithelium. Am. J. Respir. Crit. Care Med. 1996, 154, S155–S162.
  39. Mohamed, M.F.; Gupta, K.; Goldufsky, J.W.; Roy, R.; Kuzel, T.M.; Reiser, J.; Shafikhani, S.H. CrkII/Abl Phosphorylation Cascade Is Critical for NLRC4 Inflammasome Activity and Is Blocked by Pseudomonas ExoT. Nat. Commun. 2022, in press.
  40. Goldufsky, J.; Wood, S.J.; Jayaraman, V.; Majdobeh, O.; Chen, L.; Qin, S.; Zhang, C.; DiPietro, L.A.; Shafikhani, S.H. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing. Wound Repair Regen. 2015, 23, 557–564.
  41. Mahmud, F.; Roy, R.; Mohamed, M.F.; Aboonabi, A.; Moric, M.; Ghoreishi, K.; Bayat, M.; Kuzel, T.M.; Reiser, J.; Shafikhani, S.H. Therapeutic evaluation of immunomodulators in reducing surgical wound infection. FASEB J. 2022, 36, e22090.
  42. Hamilton, J.L.; Mohamed, M.F.; Witt, B.R.; Wimmer, M.A.; Shafikhani, S.H. Therapeutic assessment of N-formyl-methionyl-leucyl-phenylalanine (fMLP) in reducing periprosthetic joint infection. Eur. Cells Mater. 2021, 41, 122–138.
  43. Kroin, J.S.; Buvanendran, A.; Li, J.; Moric, M.; Im, H.-J.; Tuman, K.J.; Shafikhani, S.H. Short-term glycemic control is effective in reducing surgical site infection in diabetic rats. Anesth. Analg. 2015, 120, 1289–1296.
  44. Kroin, J.S.; Li, J.; Goldufsky, J.W.; Gupta, K.H.; Moghtaderi, M.; Buvanendran, A.; Shafikhani, S.H. Perioperative high inspired oxygen fraction therapy reduces surgical site infection with Pseudomonas aeruginosa in rats. J. Med. Microbiol. 2016, 65, 738–744.
  45. Kroin, J.S.; Li, J.; Shafikhani, S.; Gupta, K.H.; Moric, M.; Buvanendran, A. Local vancomycin effectively reduces surgical site infection at implant site in rodents. Reg. Anesth. Pain Med. 2018, 43, 795–804.
  46. Shandley, S.; Matthews, K.P.; Cox, J.; Romano, D.; Abplanalp, A.; Kalns, J. Hyperbaric oxygen therapy in a mouse model of implant-associated osteomyelitis. J. Orthop. Res. 2012, 30, 203–208.
  47. Cirioni, O.; Ghiselli, R.; Silvestri, C.; Minardi, D.; Gabrielli, E.; Orlando, F.; Rimini, M.; Brescini, L.; Muzzonigro, G.; Guerrieri, M. Effect of the combination of clarithromycin and amikacin on Pseudomonas aeruginosa biofilm in an animal model of ureteral stent infection. J. Antimicrob. Chemother. 2011, 66, 1318–1323.
  48. Rahim, M.I.; Szafrański, S.P.; Ingendoh-Tsakmakidis, A.; Stiesch, M.; Mueller, P.P. Evidence for inoculum size and gas interfaces as critical factors in bacterial biofilm formation on magnesium implants in an animal model. Colloids Surf. B Biointerfaces 2020, 186, 110684.
  49. Madsen, S.M.; Westh, H.; Danielsen, L.; Rosdahl, V.T. Bacterial colonization and healing of venous leg ulcers. Acta Pathol. Microbiol. Immunol. Scand. 1996, 104, 895–899.
  50. Halbert, A.R.; Stacey, M.C.; Rohr, J.B.; Jopp-McKay, A. The effect of bacterial colonization on venous ulcer healing. Australas. J. Dermatol. 1992, 33, 75–80.
  51. Gjodsbol, K.; Christensen, J.J.; Karlsmark, T.; Jorgensen, B.; Klein, B.M.; Krogfelt, K.A. Multiple bacterial species reside in chronic wounds: A longitudinal study. Int. Wound J. 2006, 3, 225–231.
  52. Winstanley, C.; Kaye, S.B.; Neal, T.J.; Chilton, H.J.; Miksch, S.; Hart, C.A. Genotypic and phenotypic characteristics of Pseudomonas aeruginosa isolates associated with ulcerative keratitis. J. Med. Microbiol. 2005, 54, 519–526.
  53. Tosh, P.K.; Disbot, M.; Duffy, J.M.; Boom, M.L.; Heseltine, G.; Srinivasan, A.; Gould, C.V.; Berrios-Torres, S.I. Outbreak of Pseudomonas aeruginosa surgical site infections after arthroscopic procedures: Texas, 2009. Infect. Control Hosp. Epidemiol. 2011, 32, 1179–1186.
  54. Bjarnsholt, T.; Kirketerp-Moller, K.; Jensen, P.O.; Madsen, K.G.; Phipps, R.; Krogfelt, K.; Hoiby, N.; Givskov, M. Why chronic wounds will not heal: A novel hypothesis. Wound Repair Regen. 2008, 16, 2–10.
  55. Kirketerp-Moller, K.; Jensen, P.O.; Fazli, M.; Madsen, K.G.; Pedersen, J.; Moser, C.; Tolker-Nielsen, T.; Hoiby, N.; Givskov, M.; Bjarnsholt, T. Distribution, organization, and ecology of bacteria in chronic wounds. J. Clin. Microbiol. 2008, 46, 2717–2722.
  56. Serra, R.; Grande, R.; Butrico, L.; Rossi, A.; Settimio, U.F.; Caroleo, B.; Amato, B.; Gallelli, L.; de Franciscis, S. Chronic wound infections: The role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev. Anti. Infect Ther. 2015, 13, 605–613.
  57. Roy, R.; Zayas, J.; Singh, S.K.; Delgado, K.; Wood, S.J.; Mohamed, M.F.; Frausto, D.M.; Estupinian, R.; Giurini, E.F.; Kuzel, T.M.; et al. Overriding impaired FPR chemotaxis signaling in diabetic neutrophil stimulates infection control in murine diabetic wound. eLife 2022, 11.
  58. Wood, S.; Jayaraman, V.; Huelsmann, E.J.; Bonish, B.; Burgad, D.; Sivaramakrishnan, G.; Qin, S.; Dipietro, L.A.; Zloza, A.; Zhang, C.; et al. Pro-inflammatory chemokine CCL2 (MCP-1) promotes healing in diabetic wounds by restoring the macrophage response. PLoS ONE 2014, 9, e91574.
  59. Roy, R.; Zayas, J.; Mohamed, M.F.; Aboonabi, A.; Delgado, K.; Wallace, J.; Bayat, M.; Kuzel, T.M.; Reiser, J.; Shafikhani, S.H. IL-10 Dysregulation Underlies Chemokine Insufficiency, Delayed Macrophage Response, and Impaired Healing in Diabetic Wounds. J. Investig. Dermatol. 2022, 142, 692–704.e41.
  60. Goldufsky, J.; Wood, S.; Hajihossainlou, B.; Rehman, T.; Majdobeh, O.; Kaufman, H.L.; Ruby, C.E.; Shafikhani, S.H. Pseudomonas aeruginosa exotoxin T induces potent cytotoxicity against a variety of murine and human cancer cell lines. J. Med. Microbiol. 2015, 64, 164–173.
  61. Zhao, G.; Hochwalt, P.C.; Usui, M.L.; Underwood, R.A.; Singh, P.K.; James, G.A.; Stewart, P.S.; Fleckman, P.; Olerud, J.E. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: A model for the study of chronic wounds. Wound Repair Regen. 2010, 18, 467–477.
  62. Zhao, G.; Usui, M.L.; Underwood, R.A.; Singh, P.K.; James, G.A.; Stewart, P.S.; Fleckman, P.; Olerud, J.E. Time course study of delayed wound healing in a biofilm-challenged diabetic mouse model. Wound Repair Regen. 2012, 20, 342–352.
  63. Geiser, T.; Kazmierczak, B.; Garrity-Ryan, L.; Matthay, M.; Engel, J. Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cell Microbiol. 2001, 3, 223–236.
  64. Garrity-Ryan, L.; Shafikhani, S.; Balachandran, P.; Nguyen, L.; Oza, J.; Jakobsen, T.; Sargent, J.; Fang, X.; Cordwell, S.; Matthay, M.A.; et al. The ADP ribosyltransferase domain of Pseudomonas aeruginosa ExoT contributes to its biological activities. Infect. Immun. 2004, 72, 546–558.
  65. Muller, M.; Li, Z.; Maitz, P.K. Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: Role for p38 mitogen-activated protein kinase. Burns 2009, 35, 500–508.
  66. Heggers, J.P.; Haydon, S.; Ko, F.; Hayward, P.G.; Carp, S.; Robson, M.C. Pseudomonas aeruginosa Exotoxin A: Its Role in Retardation of Wound Healing The 1992 Lindberg Award. J. Burn Care Rehabil. 1992, 13, 512–518.
  67. Ha, U.; Jin, S. Expression of the soxR gene of Pseudomonas aeruginosa is inducible during infection of burn wounds in mice and is required to cause efficient bacteremia. Infect. Immun. 1999, 67, 5324–5331.
  68. Nakagami, G.; Morohoshi, T.; Ikeda, T.; Ohta, Y.; Sagara, H.; Huang, L.; Nagase, T.; Sugama, J.; Sanada, H. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in pressure ulcer infection in rats. Wound Repair Regen. 2011, 19, 214–222.
  69. Takase, H.; Nitanai, H.; Hoshino, K.; Otani, T. Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect. Immun. 2000, 68, 1834–1839.
  70. Cryz, S.J., Jr.; Fürer, E.; Germanier, R. Simple model for the study of Pseudomonas aeruginosa infections in leukopenic mice. Infect. Immun. 1983, 39, 1067–1071.
  71. Pennington, J.E.; Ehrie, M.G. Pathogenesis of Pseudomonas aeruginosa pneumonia during immunosuppression. J. Infect. Dis. 1978, 137, 764–774.
  72. Rommens, J.M.; Iannuzzi, M.C.; Kerem, B.-S.; Drumm, M.L.; Melmer, G.; Dean, M.; Rozmahel, R.; Cole, J.L.; Kennedy, D.; Hidaka, N. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 1989, 245, 1059–1065.
  73. Riordan, J.R.; Rommens, J.M.; Kerem, B.-S.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J.-L. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 1989, 245, 1066–1073.
  74. Welsh, M.J.; Smith, A.E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 1993, 73, 1251–1254.
  75. Gawenis, L.R.; Hodges, C.A.; McHugh, D.R.; Valerio, D.M.; Miron, A.; Cotton, C.U.; Liu, J.; Walker, N.M.; Strubberg, A.M.; Gillen, A.E. A BAC transgene expressing human CFTR under control of its regulatory elements rescues Cftr knockout mice. Sci. Rep. 2019, 9, 11828.
  76. Wilke, M.; Buijs-Offerman, R.M.; Aarbiou, J.; Colledge, W.H.; Sheppard, D.N.; Touqui, L.; Bot, A.; Jorna, H.; De Jonge, H.R.; Scholte, B.J. Mouse models of cystic fibrosis: Phenotypic analysis and research applications. J. Cyst. Fibros. 2011, 10, S152–S171.
  77. Dreano, E.; Bacchetta, M.; Simonin, J.; Galmiche, L.; Usal, C.; Slimani, L.; Sadoine, J.; Tesson, L.; Anegon, I.; Concordet, J.P. Characterization of two rat models of cystic fibrosis—KO and F508del CFTR—Generated by Crispr-Cas9. Anim. Model. Exp. Med. 2019, 2, 297–311.
  78. Sun, X.; Yan, Z.; Yi, Y.; Li, Z.; Lei, D.; Rogers, C.S.; Chen, J.; Zhang, Y.; Welsh, M.J.; Leno, G.H. Adeno-associated virus–targeted disruption of the CFTR gene in cloned ferrets. J. Clin. Investig. 2008, 118, 1578–1583.
  79. Xu, J.; Rajagopolan, C.; Hou, X.; Chen, E.; Boucher, R.C.; Sun, F. Rabbit models for cystic fibrosis. Pediatr. Pulmonol. 2016, 51, 158–159.
  80. Fan, Z.; Perisse, I.V.; Cotton, C.U.; Regouski, M.; Meng, Q.; Domb, C.; Van Wettere, A.J.; Wang, Z.; Harris, A.; White, K.L. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight 2018, 3, e123529.
  81. Heeckeren, A.v.; Walenga, R.; Konstan, M.W.; Bonfield, T.; Davis, P.B.; Ferkol, T. Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J. Clin. Investig. 1997, 100, 2810–2815.
  82. Van Heeckeren, A.M.; Schluchter, M.D.; Xue, W.; Davis, P.B. Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. Am. J. Respir. Crit. Care Med. 2006, 173, 288–296.
  83. Elferink, R.O.; Beuers, U. Are pigs more human than mice? J. Hepatol. 2009, 50, 838–841.
  84. Ng, H.P.; Zhou, Y.; Song, K.; Hodges, C.A.; Drumm, M.L.; Wang, G. Neutrophil-mediated phagocytic host defense defect in myeloid Cftr-inactivated mice. PLoS ONE 2014, 9, e106813.
  85. Rogan, M.P.; Reznikov, L.R.; Pezzulo, A.A.; Gansemer, N.D.; Samuel, M.; Prather, R.S.; Zabner, J.; Fredericks, D.C.; McCray, P.B., Jr.; Welsh, M.J. Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proc. Natl. Acad. Sci. USA 2010, 107, 20571–20575.
  86. Stoltz, D.A.; Meyerholz, D.K.; Pezzulo, A.A.; Ramachandran, S.; Rogan, M.P.; Davis, G.J.; Hanfland, R.A.; Wohlford-Lenane, C.; Dohrn, C.L.; Bartlett, J.A. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci. Transl. Med. 2010, 2, 29ra31.
More
Video Production Service