The anticancer effects of daily consumption of polyphenols. These dietary polyphenols include chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin, and resveratrol. These polyphenols have similar chemical and biological properties in that they can act as antioxidants and exert the anticancer effects via cell signaling pathways involving their reactive oxygen species (ROS)-scavenging activity. These polyphenols may also act as pro-oxidants under certain conditions, especially at high concentrations. Epigenetic modifications, including dysregulation of noncoding RNAs (ncRNAs) such as microRNAs, long noncoding RNAs, and circular RNAs are now known to be involved in the anticancer effects of polyphenols. These polyphenols can modulate the expression/activity of the component molecules in ROS-scavenger-triggered anticancer pathways (RSTAPs) by increasing the expression of tumor-suppressive ncRNAs and decreasing the expression of oncogenic ncRNAs in general. Multiple ncRNAs are similarly modulated by multiple polyphenols. Many of the targets of ncRNAs affected by these polyphenols are components of RSTAPs. Therefore, ncRNA modulation may enhance the anticancer effects of polyphenols via RSTAPs in an additive or synergistic manner, although other mechanisms may be operating as well.

| miRs | miR-16 | miR-22 | miR-34a | miR-141 | miR-145 | miR-146a | miR-200c |
|---|---|---|---|---|---|---|---|
| Polyphenols | CUR Yang et al. [9] EGCG Tsang et al. Tsang et al.[ | ||||||
| ] |
| miRs | miR-20a | miR-21 | miR-25 | miR-27a | miR-93 | miR-106b | miR-155 | miR-221 |
|---|---|---|---|---|---|---|---|---|
| Polyphenols | 10] QUE Sonoki et al. [ |
| CUR | EGCG | GEN | QUE | RES | |
|---|---|---|---|---|---|
| miR-7 SET8↓, Bcl-2↓, p53↑ [80]; Skp2↓, p57↑, p21↑ [81] miR-9 AKT↓, FOXO1↓ [82]; GSK-3β↑, β-catenin↑, Cyclin D1↓ [83] miR-15a Bcl-2↓ [9]; WT1↓ [84] miR-16-1 WT1↓ [84] miR-28-5p BECN1↓ [85] miR-29a DNMT1↓, 3A↓, 3B↓ [86] miR-30c-5p MTA1↓ [87] miR-33b HMGA2↓ [88]; XIAP↓ [89] miR-98 LIN28A↓, MMP2↓, MMP9↓ [90] miR-99a JAK1↓, STAT1↓, STAT3↓ [91] miR-101 EZH2↓, EpCAM↓ [92]; Notch1↓ [93]; EZH2↓ [94] miR-124 Midkine↓ [95] | CGA11]; Zhao et al. [ Huang et al. [46] CUR Gandhy et al. [47]12 EGCG] Mirzaaghaei et al. [RES Hagiwara et al. 48][13]; Azimi et al. QUE [14]Sonoki et al. [11]; Zhao et al. [12] RES Hagiwara et al. [13]; Azimi et al. [14] |
RES Dhar et al. [49]; Dhar et al. |
miR-125a ERRα↓ [96] miR-138 Smad4↓, NF-kB↓, Cyclin D3↓ [97] miR-143 NF-kB↓ [98][50; PGK1↓ [99]; Autophagy via ATG2B↓ [100] miR-181b CXCL1↓ [101] miR-185 DNMT1↓, 3A↓, 3B↓ [86] miR-192-5p XIAP↓ [102]; PI3K↓, AKT↓ [103]; Wnt/β-catenin↓ [104] miR-196b ** BCR-ABL↓ [55] miR-206 mTOR↓, AKT↓ [105] miR-215 XIAP↓ [102] miR-340 XIAP↓ [106] miR-384 circ-PRKCA↓ [107] miR-491 PEG10↓ [108] | Numbl/Notch1↑ [128] |
miR-424-3p Galectin-3↓ [129] |
| CGA | CUR | EGCG | GEN | QUE | RES | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| miR-17 p21↑, G0/G1 arrest↑ [46] | miR-593 MDR1↓ |
miR-19a,b PTEN↑ [131][ miR-125a-5p TP53↑ [132]109] |
miR-130a Nkd2↑ [133] miR-7641 p16↑ [134]CUR Sun et al. [15]; Sreenivasan et al. [16]; Sibbesen et al. [17] EGCG Li et al. [18] QUE Zhang et al. [19] |
] | CGA Wang et al. [51] CUR Mudduluru et al. [52]; Subramaniam et al. [53]; Zhang et al. [54]; Taverna et al. [55]; Yallapu et al. [56] EGCG Fix et al. [57] **; Siddiqui et al. miR-15b STIM2↓, Orai1↓ [110][58] GEN Zaman et al. [ miR-29b KDM2A↓ [111]59] RES Tili et al. [60 miR-485-5p RXRα↓ [112]]; Sheth et al. [61]; Liu et al. [62]; Li et al. [63]; Zhou et al. let-7b HMGA2↓ [113][64]CUR Guo et al. [20 |
miR-98-5p CTR1↑ [135]]; Sun et al. [21]; Toden et al. [22]; Sun et al. [15] EGCG Chakrabarti et al. [23]; Li et al. [18]; Chakrabarti et al. [ |
CUR24]; Toden et al. [25]; Mostafa et al. miR-574-3p RAC1↓, EGFR↓, EP300↓ [114] miR-1469 Mcl1↓ [115][26] GEN Hsieh et al. [ let-7d THBS1↓ [116] |
miR-23b-3p PTEN↑ [136] miR-151a-5p CASZ1↑, IL1RAPL1↑, SOX17↑, N4BP1↑, ARHGDIA↑ [137]27]; Xia et al. [28]; Chiyomaru et al. Sun et al. [15] EGCG Fix et al. [57] **; Gordon et al. [34][29] RES Hagiwara et al. [13]; Otsuka et al. ; Zan et al. [65] RES[30]; Kumazaki et al. Tili et al. miR-155 PTEN↑ [73][60][31 miR-221 miR-222 ARHI↑ [78]]; Yao et al. [32] |
miR-223 Fbw7↑ [138] miR-223 E-cadherin↑ [139] miR-873-5p FOXM1↓ [140] miR-1260b sFRP1↑, Smad4↑, Dkk2↑ [141][142]CUR Toden et al. [33] EGCG Gordon et al. [34] GEN Chiyomaru et al. [ |
CUR35]
|