The anticancer effects of daily consumption of polyphenols. These dietary polyphenols include chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin, and resveratrol. These polyphenols have similar chemical and biological properties in that they can act as antioxidants and exert the anticancer effects via cell signaling pathways involving their reactive oxygen species (ROS)-scavenging activity. These polyphenols may also act as pro-oxidants under certain conditions, especially at high concentrations. Epigenetic modifications, including dysregulation of noncoding RNAs (ncRNAs) such as microRNAs, long noncoding RNAs, and circular RNAs are now known to be involved in the anticancer effects of polyphenols. These polyphenols can modulate the expression/activity of the component molecules in ROS-scavenger-triggered anticancer pathways (RSTAPs) by increasing the expression of tumor-suppressive ncRNAs and decreasing the expression of oncogenic ncRNAs in general. Multiple ncRNAs are similarly modulated by multiple polyphenols. Many of the targets of ncRNAs affected by these polyphenols are components of RSTAPs. Therefore, ncRNA modulation may enhance the anticancer effects of polyphenols via RSTAPs in an additive or synergistic manner, although other mechanisms may be operating as well.

| miRs | miR-16 | miR-22 | miR-34a | miR-141 | miR-145 | miR-146a | miRsmiR-200c |
|---|---|---|---|---|---|---|---|
| miR-20a | miR-21 | miR-25 | miR-27a | miR-93 | miR-106b | miR-155 | miR-221 |
| CUR | EGCG | GEN | QUE | RES | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Polyphenols | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| miR-7 SET8↓, Bcl-2↓, p53↑ [80]; Skp2↓, p57↑, p21↑ [81] miR-9 AKT↓, FOXO1↓ [82]; GSK-3β↑, β-catenin↑, Cyclin D1↓ [83] miR-15a Bcl-2↓ [9]; WT1↓ [84] miR-16-1 WT1↓ [84] miR-28-5p BECN1↓ [85] miR-29a DNMT1↓, 3A↓, 3B↓ 92]; Notch1↓ [[93]; EZH2↓ [94] miR-124 Midkine↓ 46][95] | CUR Yang et al. [9] EGCG Tsang et al.[10] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Polyphenols | QUE STsang et al. [10] QUE Sonoki et al. [11]; Zhaonoki et al. [1112]; Zhao et al. |
CGA Huang et al. [46][ CUR Gandhy et al. [47]12]RES RESHagiwara et al. [13 |
miR-125a ERRα↓ [96]]; HagAzimiwara et al. miR-138 Smad4↓, NF-kB↓, Cyclin D3↓ [97][1314]; Azimi et al. EGCG Mirzaaghaei et al. [48][14] |
RES Dhar et al. miR-143 NF-kB↓ [98]; PGK1↓ [[49]; Dhar et al. 99][; Autophagy via ATG2B↓ [100]50 miR-181b CXCL1↓ [101] miR-185 DNMT1↓, 3A↓, 3B↓ [86] miR-192-5p XIAP↓ [102 |
miR-19a,b PTEN↑ [131]]; PI3K↓, AKT↓ [ miR-125a-5p TP53↑ [132]103]; Wnt/β-catenin↓ miR-130a Nkd2↑ [133][ miR-7641 p16↑ [134]104CUR Sun et al. [15]; Sreenivasan et al. [16]; Sibbesen et al. [17] EGCG Li et al. [18] QUE Zhang et al. [19] |
] | CGA Wang et al. [51] CUR Mudduluru et al. [52]; Subramaniam et al. [53]; Zhang et al. [54]; Taverna et al. [55]; Yallapu et al. [56] EGCG Fix et al. [57] **; Siddiqui et al. [58] GEN Zaman et al. [59] RES Tili et al. [60]; Sheth et al. [61]; Liu et al. [62]; Li et al. [63]; Zhou et al. [64 |
miR-98-5p CTR1↑ [135]]CUR Guo et al. [20]; Sun et al. [21]; Toden et al. [22]; Sun et al. RAC1↓, EGFR↓, EP300↓ [114[15] EGCG Chakrabarti et al. ][23]; Li et al. [18]; Chakrabarti et al. miR-1469 Mcl1↓ [115[ |
CUR24]; Toden et al. [25]; Mostafa et al. [26] GEN Hsieh et al. [27]; Xia et al. [28]; Chiyomaru et al. Sun et al. [15] EGCG Fix et al. ][57] **; Gordon et al. [34][29] RES Hagiwara et al. [13]; Otsuka et al. ; Zan et al. [65] RES[30]; Kumazaki et al. Tili et al. [60][31]; Yao et al. [32] |
let-7d THBS1↓ CUR |
miR-23b-3p PTEN↑ [136][116 miR-151a-5p CASZ1↑, IL1RAPL1↑, SOX17↑, N4BP1↑, ARHGDIA↑ [137]] |
miR-155 PTEN↑ [73] Toden et al. [33] EGCG Gordon et al. [34] GEN Chiyomaru et al. [ |
CUR35]
* Upregulation (↑) and downregulation (↓) of miR targets by polyphenols are indicated. ** Downregulation by RES is reported [130]. SET8; SET domain-containing lysine methyltransferase 8, Bcl-2; B-cell lymphoma 2, Skp2; S-phase kinase-associated protein 2, AKT; AKT serine/threonine kinase 1, FOXO1; forkhead Box O1, GSK-3β; glycogen synthase kinase-3 beta, WT1; Wilms’ tumor-1, BECN1; beclin 1, DNMT; DNA methyltransferase, MTA1; metastasis-associated 1, HMGA2; high mobility group A2, XIAP; X-linked inhibitor of apoptosis, LIN28A; Lin-28 homolog A, MMP; matrix metalloproteinase, JAK1; Janus kinase 1; STAT; signal transducer and activator of transcription, EZH2; enhancer of zeste homolog 2, EpCAM; epithelial cell adhesion molecule, Notch1; neurogenic locus notch homolog protein 1, ERRα; estrogen-related receptor alpha, PGK1; phosphoglycerate kinase 1, ATG2B; autophagy-related 2B, CXCL1; chemokine (C-X-C motif) ligand 1, PI3K; phosphoinositide-3 kinase, Wnt; wingless and int-1, BCR-ABL; BCR-ABL fusion gene, mTOR; mammalian target of rapamycin, circ-PRKCA; circ_0007580, PEG10; paternally expressed gene 10, MDR1; multidrug resistance mutation1, STIM2; Stromal interaction molecule 2, Orai1; ORAI calcium release-activated calcium modulator 1, KDM2A; lysine demethylase 2A, RXRα; retinoid X receptor alpha, RAC1; ras-related C3 botulinum toxin substrate 1, EGFR; epidermal growth factor receptor, EP300; E1A-associated protein P300, THBS1; thrombospondin 1, TAGLN2; transgelin 2, WEE1; WEE1 G2 checkpoint kinase, SNHG7; small nucleolar RNA host gene 7, HSP; heat shock protein, IGFBP; insulin-like growth factor binding protein, KRAS; KRAS proto-oncogene, GTPase, Numbl; NUMB like endocytic adaptor protein, Mcl1; myeloid cell leukemia 1, IGF2BP; insulin-like growth factor 2 mRNA binding protein.
Table 4. miRs downregulated by one of six dietary polyphenols and their targets *.
|