Electrical Resistance/Conductivity of CFRP: Comparison
Please note this is a comparison between Version 2 by Peter Tang and Version 1 by Qian Zhao.

This entry provides a comprehensive basis for readers to grasp recent research progresses on electrical behaviors of Carbon fiber reinforced polymer (CFRP), which plays an important role in many fields, especially in aviation and civil industries. The electrical conductivity of CFRP is critical for its electrical behaviors, such as its lightning strike vulnerability, electromagnetic shielding ability, and potential uses for self-sensing. In addition, the electrical conductivity is related to the mechanical integrity. Therefore, electrical properties can be measured as an indication in the detection of delamination and other defects in CFRP. 

  • electrical resistance
  • conductivity
  • carbon fiber reinforced polymer
  • anisotropy
Please wait, diff process is still running!

References

  1. Li, X. Eddy current techniques for non-destructive testing of carbon fibre reinforced plastic (cfrp), University of Manchester, 2012.
  2. W Yin; X Li; P J Withers; A J Peyton; Non-contact characterization of hybrid aluminium/carbon-fibre-reinforced plastic sheets using multi-frequency eddy-current sensors. Measurement Science and Technology 2010, 21, 105708, 10.1088/0957-0233/21/10/105708.
  3. M.E. Ibrahim; Nondestructive evaluation of thick-section composites and sandwich structures: A review. Composites Part A: Applied Science and Manufacturing 2014, 64, 36-48, 10.1016/j.compositesa.2014.04.010.
  4. MInus, M.; Kumar, S; The processing, properties, and structure of carbon fibers. JOM 2005, 57, 52-58.
  5. Glover, B.M.; History of development of commercial aircraft and 7E7 dreamliner. Aviat Eng 2004, 592, 16–21.
  6. George Marsh; Airbus A350 XWB update. Reinforced Plastics 2010, 54, 20-24, 10.1016/s0034-3617(10)70212-5.
  7. L. Scelsi; Potential emissions savings of lightweight composite aircraft components evaluated through life cycle assessment. Express Polymer Letters 2011, 5, 209-217, 10.3144/expresspolymlett.2011.20.
  8. Ömer Soykasap; Sukru Karakaya; Mehmet Colakoglu; Simulation of lightning strike damage in carbon nanotube doped CFRP composites. Journal of Reinforced Plastics and Composites 2015, 35, 504-515, 10.1177/0731684415618458.
  9. W J Cantwell; J Morton; The significance of damage and defects and their detection in composite materials: A review. The Journal of Strain Analysis for Engineering Design 1992, 27, 29-42, 10.1243/03093247v271029.
  10. A K Bhargava Engineering materials: polymers, ceramics and composites | Open University Malaysia Digital Library Portal; Prentice Hall of India: New Delhi, 2004.
  11. Piche, A.; Bennani, A.; Perraud, R.; Abboud, T.; Bereux, F.; Peres, G.; Srithammavanh, V. Electromagnetic modeling of multilayer carbon fibers composites. In Proceedings of the 2009 International Symposium on Electromagnetic Compatibility - EMC Europe; 2009; pp. 1–4.
  12. Atieh Motaghi; Andrew Hrymak; Ghodratollah Hashemi Motlagh; Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. Journal of Applied Polymer Science 2014, 132, 41744(9 pages), 10.1002/app.41744.
  13. Liu, Z.; Xu, Y.; Zhang, X.; Pei, Y.; Cheng, Y.; Yin, W. Simulation study on the characteristics of carbon-fiber-reinforced plastics in electromagnetic tomography nondestructive evaluation systems. In Proceedings of the 2010 International Conference on Measuring Technology and Mechatronics Automation; 2010; Vol. 3, pp. 382–385.
  14. Vernon SN; Single-sided eddy current method to measure electrical resistivity. Material Evaluation 1988, 46, 1581–1587.
  15. Ruediger Schueler; Shiv P. Joshi; Karl Schulte; Damage detection in CFRP by electrical conductivity mapping. Composites Science and Technology 2001, 61, 921-930, 10.1016/s0266-3538(00)00178-0.
  16. Michele Zappalorto; Francesco Panozzo; Paolo Andrea Carraro; Marino Quaresimin; Electrical response of a laminate with a delamination: modelling and experiments. Composites Science and Technology 2017, 143, 31-45, 10.1016/j.compscitech.2017.02.023.
  17. Hocine Menana; M. Feliachi; Electromagnetic characterization of the CFRPs anisotropic conductivity: modeling and measurements. The European Physical Journal Applied Physics 2011, 53, 21101, 10.1051/epjap/2010100255.
  18. Igor Maria De Rosa; Riccardo Mancinelli; Fabrizio Sarasini; Maria Sabrina Sarto; Alessio Tamburrano; Electromagnetic Design and Realization of Innovative Fiber-Reinforced Broad-Band Absorbing Screens. IEEE Transactions on Electromagnetic Compatibility 2009, 51, 700-707, 10.1109/temc.2009.2018125.
  19. Gerhard Mook; Rolf Lange; Ole Koeser; Non-destructive characterisation of carbon-fibre-reinforced plastics by means of eddy-currents. Composites Science and Technology 2001, 61, 865-873, 10.1016/s0266-3538(00)00164-0.
  20. D. Trichet; E. Chauveau; J. Fouladgar; Asymptotic calculation of equivalent electromagnetic and thermal properties for composite materials. IEEE Transactions on Magnetics 2000, 36, 1193-1196, 10.1109/20.877653.
  21. B. Pratap; W.F. Weldon; Eddy currents in anisotropic composites applied to pulsed machinery. IEEE Transactions on Magnetics 1996, 32, 437-444, 10.1109/20.486530.
  22. G. Wasselynck; D. Trichet; B. Ramdane; J. Fouldagar; Interaction Between Electromagnetic Field and CFRP Materials: A New Multiscale Homogenization Approach. IEEE Transactions on Magnetics 2010, 46, 3277-3280, 10.1109/tmag.2010.2045359.
  23. J B Park; T K Hwang; H G Kim; Y D Doh; Experimental and numerical study of the electrical anisotropy in unidirectional carbon-fiber-reinforced polymer composites. Smart Materials and Structures 2006, 16, 57-66, 10.1088/0964-1726/16/1/006.
  24. C. Zeller; A. Denenstein; G. M. T. Foley; Contactless technique for the measurement of electrical resistivity in anisotropic materials. Review of Scientific Instruments 1979, 50, 602, 10.1063/1.1135889.
  25. D.D.L. Chung; Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 2012, 50, 3342-3353, 10.1016/j.carbon.2012.01.031.
  26. D.D.L. Chung; Self-monitoring structural materials. Materials Science and Engineering: R: Reports 1998, 22, 57-78, 10.1016/s0927-796x(97)00021-1.
  27. Jie Wen; Zhenhai Xia; Fred Choy; Damage detection of carbon fiber reinforced polymer composites via electrical resistance measurement. Composites Part B: Engineering 2011, 42, 77-86, 10.1016/j.compositesb.2010.08.005.
  28. D. D. L. Chung; Continuous carbon fiber polymer-matrix composites and their joints, studied by electrical measurements. Polymer Composites 2001, 22, 250-270, 10.1002/pc.10536.
  29. K Schulte; Ch. Baron; Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Composites Science and Technology 1989, 36, 63-76, 10.1016/0266-3538(89)90016-x.
  30. Ihab El Sawi; Philippe A. Olivier; Philippe Demont; Habiba Bougherara; Processing and electrical characterization of a unidirectional CFRP composite filled with double walled carbon nanotubes. Composites Science and Technology 2012, 73, 19-26, 10.1016/j.compscitech.2012.08.016.
  31. Mckenzie, A.B. Characterization of electrical conductivity of carbon fiber/epoxy composites with conductive afm and scanning microwave impedance microscopy, University of Illinois, 2015.
  32. A. Fosbury; Shoukai Wang; Y.F. Pin; D.D.L. Chung; The interlaminar interface of a carbon fiber polymer-matrix composite as a resistance heating element. Composites Part A: Applied Science and Manufacturing 2003, 34, 933-940, 10.1016/s1359-835x(03)00208-2.
  33. M Kupke; K Schulte; R Schüler; Non-destructive testing of FRP by d.c. and a.c. electrical methods. Composites Science and Technology 2001, 61, 837-847, 10.1016/s0266-3538(00)00180-9.
  34. Takuya Yamane; Akira Todoroki; Electric potential function of oblique current in laminated carbon fiber reinforced polymer composite beam. Composite Structures 2016, 148, 74-84, 10.1016/j.compstruct.2016.03.047.
  35. Mohammad Faisal Haider; Prasun K Majumdar; Stephanie Angeloni; Kenneth L Reifsnider; Nonlinear anisotropic electrical response of carbon fiber-reinforced polymer composites. Journal of Composite Materials 2017, 52, 1017-1032, 10.1177/0021998317719999.
  36. Hirohide Kawakami; Paolo Feraboli; Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites. Composites Part A: Applied Science and Manufacturing 2011, 42, 1247-1262, 10.1016/j.compositesa.2011.05.007.
  37. Andrzej Katunin; Katarzyna Krukiewicz; Roman Turczyn; Przemysław Sul; Andrzej Łasica; Marcin Bilewicz; Synthesis and characterization of the electrically conductive polymeric composite for lightning strike protection of aircraft structures. Composite Structures 2017, 159, 773-783, 10.1016/j.compstruct.2016.10.028.
  38. Raúl Muñoz; Sofía Delgado; Carlos González; Bernardo López-Romano; De‐Yi Wang; Javier Llorca; Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials. Applied Composite Materials 2014, 21, 149-164, 10.1007/s10443-013-9377-9.
  39. Liberata Guadagno; U. Vietri; Marialuigia Raimondo; Luigi Vertuccio; Guilherme M O Barra; B. De Vivo; P. Lamberti; Giovanni Spinelli; Vincenzo Tucci; F. De Nicola; et al.R. VolponiSalvatore Russo Correlation between electrical conductivity and manufacturing processes of nanofilled carbon fiber reinforced composites. Composites Part B: Engineering 2015, 80, 7-14, 10.1016/j.compositesb.2015.05.025.
  40. Paolo Feraboli; Mark Miller; Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike. Composites Part A: Applied Science and Manufacturing 2009, 40, 954-967, 10.1016/j.compositesa.2009.04.025.
  41. Paolo Feraboli; Hirohide Kawakami; Damage of Carbon/Epoxy Composite Plates Subjected to Mechanical Impact and Simulated Lightning. Journal of Aircraft 2010, 47, 999-1012, 10.2514/1.46486.
  42. Andrzej Katunin; Katarzyna Krukiewicz; Roman Turczyn; Przemyslaw Sul; Andrzej Lasica; G. Catalanotti; M. Bilewicz; Synthesis and testing of a conducting polymeric composite material for lightning strike protection applications. PROCEEDINGS OF THE 6TH INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS & EXHIBITION: (APMAS 2016) 2017, 1809, 20026, 10.1063/1.4975441.
  43. Toshio Ogasawara; Yoshiyasu Hirano; Akinori Yoshimura; Coupled thermal–electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current. Composites Part A: Applied Science and Manufacturing 2010, 41, 973-981, 10.1016/j.compositesa.2010.04.001.
  44. Yoshiyasu Hirano; Shingo Katsumata; Yutaka Iwahori; Akira Todoroki; Artificial lightning testing on graphite/epoxy composite laminate. Composites Part A: Applied Science and Manufacturing 2010, 41, 1461-1470, 10.1016/j.compositesa.2010.06.008.
  45. Masaki Hojo; Satoshi Matsuda; Mototsugu Tanaka; Shojiro Ochiai; Atsushi Murakami; Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates. Composites Science and Technology 2006, 66, 665-675, 10.1016/j.compscitech.2005.07.038.
  46. Zhongjie Zhao; Xiaosu Yi; Guijun Xian; Fabricating structural adhesive bonds with high electrical conductivity. International Journal of Adhesion and Adhesives 2017, 74, 70-76, 10.1016/j.ijadhadh.2017.01.002.
  47. Donghai Zhang; Lin Ye; Shiqiang Deng; Jianing Zhang; Youhong Tang; Yunfa Chen; CF/EP composite laminates with carbon black and copper chloride for improved electrical conductivity and interlaminar fracture toughness. Composites Science and Technology 2012, 72, 412-420, 10.1016/j.compscitech.2011.12.002.
  48. J Sandler; M.S.P Shaffer; T Prasse; W Bauhofer; K Schulte; A.H Windle; Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999, 40, 5967-5971, 10.1016/s0032-3861(99)00166-4.
  49. Xiangcheng Luo; D.D.L. Chung; Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Composites Part B: Engineering 1999, 30, 227-231, 10.1016/s1359-8368(98)00065-1.
  50. I.W. Nam; H.K. Lee; J.H. Jang; Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites. Composites Part A: Applied Science and Manufacturing 2011, 42, 1110-1118, 10.1016/j.compositesa.2011.04.016.
  51. Jean-Michel Thomassin; Christine Jérôme; Thomas Pardoen; Christian Bailly; Isabelle Huynen; Christophe Detrembleur; Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering: R: Reports 2013, 74, 211-232, 10.1016/j.mser.2013.06.001.
  52. Biplab K. Deka; Kyungil Kong; Jaewoo Seo; Doyoung Kim; Young-Bin Park; Hyung Wook Park; Controlled growth of CuO nanowires on woven carbon fibers and effects on the mechanical properties of woven carbon fiber/polyester composites. Composites Part A: Applied Science and Manufacturing 2015, 69, 56-63, 10.1016/j.compositesa.2014.11.001.
  53. M. Morozov; William Jackson; Gareth Pierce; Capacitive imaging of impact damage in composite material. Composites Part B: Engineering 2017, 113, 65-71, 10.1016/j.compositesb.2017.01.016.
  54. He Xinping; Gao Bo; Wang Guibao; Wei Jiatong; Zhao Chun; A new nanocomposite: Carbon cloth based polyaniline for an electrochemical supercapacitor. Electrochimica Acta 2013, 111, 210-215, 10.1016/j.electacta.2013.07.226.
  55. Qu Zhaoming; Shanghe Liu; Qingguo Wang; Yilong Wang; Yisan Lei; Electromagnetic shielding properties of multilayered composites containing multiple inclusions with various spatial distributions. Materials Letters 2013, 109, 42-45, 10.1016/j.matlet.2013.07.050.
  56. Tao Hu; Jun Wang; Julin Wang; Runhua Chen; Electromagnetic interference shielding properties of carbonyl iron powder-carbon fiber felt/epoxy resin composites with different layer angle. Materials Letters 2015, 142, 242-245, 10.1016/j.matlet.2014.12.026.
  57. Tao Hu; Jun Wang; Julin Wang; Electromagnetic interference shielding properties of carbon fiber cloth based composites with different layer orientation. Materials Letters 2015, 158, 163-166, 10.1016/j.matlet.2015.05.152.
  58. Jan-Chan Huang; EMI shielding plastics: A review. Advances in Polymer Technology 1995, 14, 137-150, 10.1002/adv.1995.060140205.
  59. Christopher J. Von Klemperer; Denver Maharaj; Composite electromagnetic interference shielding materials for aerospace applications. Composite Structures 2009, 91, 467-472, 10.1016/j.compstruct.2009.04.013.
  60. Shinn-Shyong Tzeng; Fa-Yen Chang; EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites. Materials Science and Engineering: A 2001, 302, 258-267, 10.1016/s0921-5093(00)01824-4.
  61. Mohammed H. Al-Saleh; Uttandaraman Sundararaj; Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 2009, 47, 1738-1746, 10.1016/j.carbon.2009.02.030.
  62. D. M. Bigg; D. E. Stutz; Plastic composites for electromagnetic interference shielding applications. Polymer Composites 1983, 4, 40-46, 10.1002/pc.750040107.
  63. Shuying Yang; Karen Lozano; Azalia Lomeli; Heinrich D. Foltz; Robert Jones; Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Composites Part A: Applied Science and Manufacturing 2005, 36, 691-697, 10.1016/j.compositesa.2004.07.009.
  64. Junhua Wu; D.D.L Chung; Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers. Carbon 2002, 40, 445-447, 10.1016/s0008-6223(01)00133-6.
  65. Mohammad Arjmand; Mehdi Mahmoodi; Genaro A. Gelves; Simon Park; Uttandaraman Sundararaj; Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate. Carbon 2011, 49, 3430-3440, 10.1016/j.carbon.2011.04.039.
  66. Lakshmi Selvakumaran; Gilles Lubineau; Electrical behavior of laminated composites with intralaminar degradation: A comprehensive micro-meso homogenization procedure. Composite Structures 2014, 109, 178-188, 10.1016/j.compstruct.2013.10.057.
  67. Wuliang Yin; Philip J. Withers; Umesh Sharma; Anthony J. Peyton; Noncontact Characterization of Carbon-Fiber-Reinforced Plastics Using Multifrequency Eddy Current Sensors. IEEE Transactions on Instrumentation and Measurement 2008, 58, 738-743, 10.1109/tim.2008.2005072.
  68. Sun, X.; Zhu, G.; Liu, G.; Yi, X.; Jia, Y.; Experimental and numerical analysis on Mode-I delamination of CFRP laminates toughened by polyamide non-woven fabric layer. Mater Struct 2016 , 49, 1191–1200.
  69. Christian Garnier; Marie-Laetitia Pastor; Florent Eyma; Bernard Lorrain; The detection of aeronautical defects in situ on composite structures using Non Destructive Testing. Composite Structures 2011, 93, 1328-1336, 10.1016/j.compstruct.2010.10.017.
  70. I. Amenabar; A. Mendikute; A. López-Arraiza; M. Lizaranzu; J. Aurrekoetxea; Comparison and analysis of non-destructive testing techniques suitable for delamination inspection in wind turbine blades. Composites Part B: Engineering 2011, 42, 1298-1305, 10.1016/j.compositesb.2011.01.025.
  71. Yunze He; Guiyun Tian; Mengchun Pan; Dixiang Chen; Impact evaluation in carbon fiber reinforced plastic (CFRP) laminates using eddy current pulsed thermography. Composite Structures 2014, 109, 1-7, 10.1016/j.compstruct.2013.10.049.
  72. Burke, S.K.; Cousland, S.M.; Scala, C.M.; Nondestructive characterization of advanced composite materials. Metals forum 1994, 18, 85–109.
  73. M.O.W. Richardson; M.J. Wisheart; Review of low-velocity impact properties of composite materials. Composites Part A: Applied Science and Manufacturing 1996, 27, 1123-1131, 10.1016/1359-835x(96)00074-7.
  74. Joung-Man Park; Sang-Il Lee; K. Lawrence Devries; Nondestructive sensing evaluation of surface modified single-carbon fiber reinforced epoxy composites by electrical resistivity measurement. Composites Part B: Engineering 2006, 37, 612-626, 10.1016/j.compositesb.2006.03.002.
  75. Li, X.; Yin, W.; Liu, Z.; Withers, P.J.; Peyton, A.J. Characterization of carbon fibre reinforced composite by means of non-destructive eddy current testing and FEM modeling.17th World Conference on Nondestructive Testing; Shanghai, China, 2008.
  76. R. Prakash; C.N. Owston; Eddy-current method for the determination of lay-up order in cross-plied crfp laminates. Composites 1976, 7, 88-92, 10.1016/0010-4361(76)90018-5.
  77. Yunze He; Guiyun Tian; Mengchun Pan; Dixiang Chen; Non-destructive testing of low-energy impact in CFRP laminates and interior defects in honeycomb sandwich using scanning pulsed eddy current. Composites Part B: Engineering 2014, 59, 196-203, 10.1016/j.compositesb.2013.12.005.
  78. M.P. De Goeje; K.E.D. Wapenaar; Non-destructive inspection of carbon fibre-reinforced plastics using eddy current methods. Composites 1992, 23, 147-157, 10.1016/0010-4361(92)90435-w.
  79. Xavier E. Gros; Kiyoshi Takahashi; Monitoring Delamination Growth In Cfrp Materials Using Eddy Currents. Nondestructive Testing and Evaluation 1998, 15, 65-82, 10.1080/10589759908952865.
  80. X. E. Gros; K. Ogi; K. Takahashi; Eddy Current, Ultrasonic C-Scan and Scanning Acoustic Microscopy Testing of Delaminated Quasi-Isotropic CFRP Materials: A Case Study. Journal of Reinforced Plastics and Composites 1998, 17, 389-405, 10.1177/073168449801700502.
  81. Heuer, H.; Schulze, M.H.; Meyendorf, N. 3 - Non-destructive evaluation (NDE) of composites: Eddy current techniques. In Non-Destructive Evaluation (NDE) of Polymer Matrix Composites; Karbhari, V.M., Ed.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing, 2013; pp. 33–55
  82. Jun Cheng; Jinhao Qiu; Xiaojuan Xu; Hongli Ji; Toshiyuki Takagi; Tetsuya Uchimoto; Research advances in eddy current testing for maintenance of carbon fiber reinforced plastic composites. International Journal of Applied Electromagnetics and Mechanics 2016, 51, 261-284, 10.3233/jae-150168.
  83. T.J. Swait; F.R. Jones; S.A. Hayes; A practical structural health monitoring system for carbon fibre reinforced composite based on electrical resistance. Composites Science and Technology 2012, 72, 1515-1523, 10.1016/j.compscitech.2012.05.022.
  84. A. Baltopoulos; Nick Polydorides; Laurent Pambaguian; Antonis Vavouliotis; Vassilis Kostopoulos; Exploiting carbon nanotube networks for damage assessment of fiber reinforced composites. Composites Part B: Engineering 2015, 76, 149-158, 10.1016/j.compositesb.2015.02.022.
  85. M Louis; S.P Joshi; W Brockmann; An experimental investigation of through-thickness electrical resistivity of CFRP laminates. Composites Science and Technology 2001, 61, 911-919, 10.1016/s0266-3538(00)00177-9.
  86. A Todoroki; High performance estimations of delamination of graphite/epoxy laminates with electric resistance change method. Composites Science and Technology 2003, 63, 1911-1920, 10.1016/s0266-3538(03)00157-x.
  87. Akira Todoroki; Miho Tanaka; Yoshinobu Shimamura; Measurement of orthotropic electric conductance of CFRP laminates and analysis of the effect on delamination monitoring with an electric resistance change method. Composites Science and Technology 2002, 62, 619-628, 10.1016/s0266-3538(02)00019-2.
  88. Akira Todoroki; Miho Tanaka; Yoshinobu Shimamura3); Hideo Kobayashi; Effects with a matrix crack on monitoring by electrical resistance method. Advanced Composite Materials 2004, 13, 107-120, 10.1163/1568551041718071.
  89. Atsushi Iwasaki; Akira Todoroki; Statistical Evaluation of Modified Electrical Resistance Change Method for Delamination Monitoring of CFRP Plate. Structural Health Monitoring 2005, 4, 119-136, 10.1177/1475921705049757.
  90. A Todoroki; K Omagari; Yoshinobu Shimamura3); H Kobayashi; Matrix crack detection of CFRP using electrical resistance change with integrated surface probes. Composites Science and Technology 2006, 66, 1539-1545, 10.1016/j.compscitech.2005.11.029.
  91. Akira Todoroki; Delamination Monitoring Analysis of CFRP Structures using Multi-Probe Electrical Method. Journal of Intelligent Material Systems and Structures 2007, 19, 291-298, 10.1177/1045389x07084154.
  92. Akira Todoroki; Yuuki Tanaka; Yoshinobu Shimamura3); Composite Materials. Electric Resistance Change Method for Identification of Embedded Delamination of CFRP Plates.. Journal of the Society of Materials Science, Japan 2001, 50, 495-501, 10.2472/jsms.50.495.
  93. N. Angelidis; C.Y. Wei; P.E. Irving; Response to discussion of paper: The electrical resistance response of continuous carbon fibre composite laminates to mechanical strain. Composites Part A: Applied Science and Manufacturing 2006, 37, 1495-1499, 10.1016/j.compositesa.2005.11.003.
  94. Shoukai Wang; D.D.L. Chung; Piezoresistivity in continuous carbon fiber polymer-matrix composite. Polymer Composites 2000, 21, 13-19, 10.1002/pc.10160.
  95. R. O. Ritchie; K. J. Bathe; On the calibration of the electrical potential technique for monitoring crack growth using finite element methods. International Journal of Fracture 1979, 15, 47-55, 10.1007/bf00115908.
  96. Daojun Wang; Shoukai Wang; D. D. L. Chung; Jaycee H. Chung; Comparison of the Electrical Resistance and Potential Techniques for the Self-sensing of Damage in Carbon Fiber Polymer-Matrix Composites. Journal of Intelligent Material Systems and Structures 2006, 17, 853-861, 10.1177/1045389x06060218.
  97. Justin McAndrew; Olesya Zhupanska; 79 Experimental Assessment of Single and Cumulative Impact Damage in Carbon Fiber Polymer Matrix Composites Using Electrical Resistance Measurements. Journal of Multifunctional Composites 2015, 2, 79-91, 10.12783/issn.2168-4286/2.2/zhupanska.
  98. Daojun Wang; Shoukai Wang; D. D. L. Chung; Jaycee H. Chung; Sensitivity of the two-dimensional electric potential/resistance method for damage monitoring in carbon fiber polymer-matrix composite. Journal of Materials Science 2006, 41, 4839-4846, 10.1007/s10853-006-0062-3.
  99. D D L Chung; Damage detection using self-sensing concepts. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2007, 221, 509-520, 10.1243/09544100jaero203.
  100. Akira Todoroki; Hideo Kobayashi; Katsuya Matuura; Application of Electric Potential Method to Smart Composite Structures for Detecting Delamination. JSME international journal. Ser. A, Mechanics and material engineering 1995, 38, 524-530, 10.1299/jsmea1993.38.4_524.
  101. Akira Todoroki; Yuuki Tanaka; Yoshinobu Shimamura3); Multi-prove electric potential change method for delamination monitoring of graphite/epoxy composite plates using normalized response surfaces. Composites Science and Technology 2004, 64, 749-758, 10.1016/j.compscitech.2003.08.004.
  102. Masahito Ueda; Akira Todoroki; Delamination monitoring of CFRP laminate using the two-stage electric potential change method with equivalent electric conductivity. Engineering Fracture Mechanics 2008, 75, 2737-2750, 10.1016/j.engfracmech.2007.03.011.
  103. Masahito Ueda; Akira Todoroki; Yoshinobu Shimamura3); Hideo Kobayashi; Monitoring delamination of laminated CFRP using the electric potential change method: Application of normalization method and the effect of the shape of a delamination crack. Advanced Composite Materials 2004, 13, 311-324, 10.1163/1568551042580226.
  104. Masahito Ueda; Akira Todoroki; Yoshinobu Shimamura3); Hideo Kobayashi; Monitoring delamination of laminated CFRP using the electric potential change method (two-stage monitoring for robust estimation). Advanced Composite Materials 2005, 14, 83-97, 10.1163/1568551053297067.
  105. Liang Cheng; Gui Yun Tian; Comparison of Nondestructive Testing Methods on Detection of Delaminations in Composites. Journal of Sensors 2012, 2012, 1-7, 10.1155/2012/408437.
  106. Patricia P. Parlevliet; Harald E.N. Bersee; Adriaan Beukers; Residual stresses in thermoplastic composites—A study of the literature—Part II: Experimental techniques. Composites Part A: Applied Science and Manufacturing 2007, 38, 651-665, 10.1016/j.compositesa.2006.07.002.
  107. Danielle Kugler; Tess J. Moon; Identification of the Most Significant Processing Parameters on the Development of Fiber Waviness in Thin Laminates. Journal of Composite Materials 2002, 36, 1451-1479, 10.1177/0021998302036012575.
  108. D Adams; M Hyert; Effects of layer waviness on the compression fatigue performance of thermoplastic composite laminates. International Journal of Fatigue 1994, 16, 385-391, 10.1016/0142-1123(94)90450-2.
  109. Koichi Mizukami; Yoshihiro Mizutani; Akira Todoroki; Yoshiro Suzuki; Detection of in-plane and out-of-plane fiber waviness in unidirectional carbon fiber reinforced composites using eddy current testing. Composites Part B: Engineering 2016, 86, 84-94, 10.1016/j.compositesb.2015.09.041.
  110. Koichi Mizukami; Yoshihiro Mizutani; Kenshi Kimura; Akiyoshi Sato; Akira Todoroki; Yoshiro Suzuki; Detection of in-plane fiber waviness in cross-ply CFRP laminates using layer selectable eddy current method. Composites Part A: Applied Science and Manufacturing 2016, 82, 108-118, 10.1016/j.compositesa.2015.11.040.
  111. Shoukai Wang; Zhen Mei; D. D. L. Chung; Interlaminar damage in carbon fiber polymer-matrix composites, studied by electrical resistance measurement. International Journal of Adhesion and Adhesives 2001, 21, 465-471, 10.1016/s0143-7496(01)00023-9.
  112. Liberata Guadagno; Marialuigia Raimondo; U. Vietri; Luigi Vertuccio; G. Barra; B. De Vivo; Patrizia Lamberti; Giovanni Spinelli; Vincenzo Tucci; R. Volponi; et al.G. CosentinoF. De Nicola Effective formulation and processing of nanofilled carbon fiber reinforced composites. RSC Advances 2015, 5, 6033-6042, 10.1039/C4RA12156B.
  113. Yoshiyasu Hirano; Takuya Yamane; Akira Todoroki; Through-thickness electric conductivity of toughened carbon-fibre-reinforced polymer laminates with resin-rich layers. Composites Science and Technology 2016, 122, 67-72, 10.1016/j.compscitech.2015.11.018.
  114. Yoshiyasu Hirano; Tomohiro Yokozeki; Yuichi Ishida; Teruya Goto; Tatsuhiro Takahashi; Danna Qian; Shoji Ito; Toshio Ogasawara; Masaru Ishibashi; Lightning damage suppression in a carbon fiber-reinforced polymer with a polyaniline-based conductive thermoset matrix. Composites Science and Technology 2016, 127, 1-7, 10.1016/j.compscitech.2016.02.022.
  115. A. Vavouliotis; A.S. Paipetis; V. Kostopoulos; On the fatigue life prediction of CFRP laminates using the Electrical Resistance Change method. Composites Science and Technology 2011, 71, 630-642, 10.1016/j.compscitech.2011.01.003.
  116. M.T. Kim; K.Y. Rhee; J.H. Lee; D. Hui; Alan K.T. Lau; Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Composites Part B: Engineering 2011, 42, 1257-1261, 10.1016/j.compositesb.2011.02.005.
  117. Naveed A. Siddiqui; Shafi Ullah Khan; Peng Cheng Ma; Chi Yin Li; Jang-Kyo Kim; Manufacturing and characterization of carbon fibre/epoxy composite prepregs containing carbon nanotubes. Composites Part A: Applied Science and Manufacturing 2011, 42, 1412-1420, 10.1016/j.compositesa.2011.06.005.
  118. Toshiya Kamae; Lawrence T. Drzal; Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber–matrix interphase – Part I: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion. Composites Part A: Applied Science and Manufacturing 2012, 43, 1569-1577, 10.1016/j.compositesa.2012.02.016.
  119. Huiming Ning; Yuan Li; Jinhua Li; Ning Hu; Yaolu Liu; Liangke Wu; Feng Liu; Toughening effect of CB-epoxy interleaf on the interlaminar mechanical properties of CFRP laminates. Composites Part A: Applied Science and Manufacturing 2015, 68, 226-234, 10.1016/j.compositesa.2014.09.030.
  120. Bhanu Pratap Singh; Veena Choudhary; Parveen Saini; R. B. Mathur; Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding. AIP Advances 2012, 2, 022151, 10.1063/1.4730043.
  121. Bhanu Pratap Singh; Kamal Saini; Veena Choudhary; Satish Teotia; Shailaja Pande; Parveen Saini; R. B. Mathur; Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites. Journal of Nanoparticle Research 2013, 16, 1-11, 10.1007/s11051-013-2161-9.
  122. Sumio Iijima; Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58, 10.1038/354056a0.
  123. M.M.J. Treacy; Thomas W Ebbesen; J. Murray Gibson; Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996, 381, 678-680, 10.1038/381678a0.
  124. Andreas Thess; Roland Lee; Pavel Nikolaev; Hongjie Dai; Pierre Petit; Jerome Robert; Chunhui Xu; Young Hee Lee; Seong Gon Kim; Andrew G. Rinzler; et al.Daniel T. ColbertGustavo E. ScuseriaDavid TománekJohn E. FischerRichard E. Smalley Crystalline Ropes of Metallic Carbon Nanotubes. Science 1996, 273, 483-487, 10.1126/science.273.5274.483.
  125. M. S. Dresselhaus; P.C. Eklund; Phonons in carbon nanotubes. Advances in Physics 2000, 49, 705-814, 10.1080/000187300413184.
  126. Parveen Saini; Veena Choudhary; B. P. Singh; R. B. Mathur; S. K. Dhawan; Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Materials Chemistry and Physics 2009, 113, 919-926, 10.1016/j.matchemphys.2008.08.065.
  127. J. Sánchez-González; A. Macías-García; M.F. Alexandre-Franco; V. Gómez-Serrano; Electrical conductivity of carbon blacks under compression. Carbon 2005, 43, 741-747, 10.1016/j.carbon.2004.10.045.
  128. S. Geetha; K. K. Satheesh Kumar; Chepuri R. K. Rao; M. Vijayan; D. C. Trivedi; EMI shielding: Methods and materials-A review. Journal of Applied Polymer Science 2009, 112, 2073-2086, 10.1002/app.29812.
  129. E Garcia; B Wardle; A Johnhart; N Yamamoto; Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ. Composites Science and Technology 2008, 68, 2034-2041, 10.1016/j.compscitech.2008.02.028.
  130. Tomohiro Yokozeki; Teruya Goto; Tatsuhiro Takahashi; Danna Qian; Shouji Itou; Yoshiyasu Hirano; Yuichi Ishida; Masaru Ishibashi; Toshio Ogasawara; Development and characterization of CFRP using a polyaniline-based conductive thermoset matrix. Composites Science and Technology 2015, 117, 277-281, 10.1016/j.compscitech.2015.06.016.
  131. Florian H. Gojny; Malte H.G. Wichmann; Bodo Fiedler; Wolfgang Bauhofer; Karl Schulte; Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites Part A: Applied Science and Manufacturing 2005, 36, 1525-1535, 10.1016/j.compositesa.2005.02.007.
  132. Tomohiro Yokozeki; Yutaka Iwahori; Shin Ishiwata; Matrix cracking behaviors in carbon fiber/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs). Composites Part A: Applied Science and Manufacturing 2007, 38, 917-924, 10.1016/j.compositesa.2006.07.005.
  133. Fawad Inam; Doris W. Y. Wong; Manabu Kuwata; Ton Peijs; Multiscale Hybrid Micro-Nanocomposites Based on Carbon Nanotubes and Carbon Fibers. Journal of Nanomaterials 2010, 2010, 1-12, 10.1155/2010/453420.
  134. † Fangming Du; ‡ Robert C. Scogna; ‡ Wei Zhou; ‡ Stijn Brand; ‡ And John E. Fischer; ‡ Karen I. Winey; Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity. Macromolecules 2004, 37, 9048-9055, 10.1021/ma049164g.
  135. Sonja Carolin Schulz; Jana Schlutter; Wolfgang Bauhofer; Influence of Initial High Shearing on Electrical and Rheological Properties and Formation of Percolating Agglomerates for MWCNT/Epoxy Suspensions. Macromolecular Materials and Engineering 2010, 295, 613-617, 10.1002/mame.201000065.
  136. Young Seok Song; Jae Ryoun Youn; Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 2005, 43, 1378-1385, 10.1016/j.carbon.2005.01.007.
  137. Peng-Cheng Ma; Naveed A. Siddiqui; Gad Marom; Jang-Kyo Kim; Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing 2010, 41, 1345-1367, 10.1016/j.compositesa.2010.07.003.
  138. T.R. Pozegic; I. Hamerton; J.V. Anguita; W. Tang; P. Ballocchi; P. Jenkins; S.R.P. Silva; Low temperature growth of carbon nanotubes on carbon fibre to create a highly networked fuzzy fibre reinforced composite with superior electrical conductivity. Carbon 2014, 74, 319-328, 10.1016/j.carbon.2014.03.038.
  139. Xusheng Du; Feng Xu; H. Y. Liu; Yinggang Miao; Wei-Guo Guo; Yiu-Wing Mai; Improving the electrical conductivity and interface properties of carbon fiber/epoxy composites by low temperature flame growth of carbon nanotubes. RSC Advances 2016, 6, 48896-48904, 10.1039/c6ra09839h.
  140. Xiuyan Cheng; Tomohiro Yokozeki; Lixin Wu; HaoPeng Wang; Jinmeng Zhang; Jun Koyanagi; Zixiang Weng; Qing-Fu Sun; Electrical conductivity and interlaminar shear strength enhancement of carbon fiber reinforced polymers through synergetic effect between graphene oxide and polyaniline. Composites Part A: Applied Science and Manufacturing 2016, 90, 243-249, 10.1016/j.compositesa.2016.07.015.
  141. Axel Salinier; Sylvie Dagréou; Frédéric Léonardi; Christophe Derail; Nuria Navascués; Electrical, rheological and mechanical characterization of multiscale composite materials based on poly(etherimide)/short glass fibers/multiwalled carbon nanotubes. Composite Structures 2013, 102, 81-89, 10.1016/j.compstruct.2013.02.025.
  142. Jin-Hua Han; Hui Zhang; Ming-Ji Chen; Dong Wang; Qing Liu; Qi-Lei Wu; Zhong Zhang; The combination of carbon nanotube buckypaper and insulating adhesive for lightning strike protection of the carbon fiber/epoxy laminates. Carbon 2015, 94, 101-113, 10.1016/j.carbon.2015.06.026.
  143. Yeon Ju Kwon; Youn Kim; Hyerin Jeon; Sehyeon Cho; Wonoh Lee; Jea Uk Lee; Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites. Composites Part B: Engineering 2017, 122, 23-30, 10.1016/j.compositesb.2017.04.005.
  144. Rodney S. Ruoff; Dong Qian; Wing Kam Liu; Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. Comptes Rendus Physique 2003, 4, 993-1008, 10.1016/j.crhy.2003.08.001.
More
ScholarVision Creations