Pharmacological Properties of Psammaplysins: Comparison
Please note this is a comparison between Version 2 by Sirius Huang and Version 1 by Diaa Youssef.

Marine natural products (MNPs) continue to be in the spotlight in the global drug discovery endeavor. Currently, more than 32,000 structurally diverse secondary metabolites from marine sources have been isolated, making MNPs a vital source for researchers to look for novel drug candidates. The marine-derived psammaplysins possess the rare and unique 1,6-dioxa-2-azaspiro [4.6] undecane backbone and are represented by 44 compounds in the literature, mostly from sponges of the order Verongiida.

  • marine alkaloids
  • 1,6-dioxa-2-azaspiro[4.6]undecane backbone
  • psammaplysins

1. Introduction

Marine invertebrates are the most diverse group of marine life that exist in the oceans with highest biological and chemical diversity. A total of 38,925 marine-derived natural products, published in 38,645 articles, were identified from marine organisms [4][1]. Such chemical biodiversity is attributed to the fact that these compounds are produced by mostly sessile organisms present in the marine environment. These sessile organisms are extremely susceptible to be attacked by predators. Marine invertebrates, such as sponges, tunicates, bryozoans, gorgonians, and soft corals evolve chemicals as a defense mechanism against highly mobile predators. Marine sponges are one of the most productive phyla of marine invertebrates and considered as an outstanding source of biologically active secondary metabolites [5][2].
Members of the Phylum Porifera and their associated microbes represent the largest reservoir and supplier of secondary metabolites. Primitive and sessile animals, such as sponges, developed survival strategies depending on the production of defensive secondary metabolites for their own protection against different predators, fouling organisms, and invasion by different microbes and pathogens. Sponges are classified in four major classes including Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha. The chemical structural diversity of the secondary metabolites of the sponges includes several classes, such as alkaloids, macrolides, peptides, steroids, terpenoids, polyketides, and many others. [6][3].
It was proven that the sponge-derived secondary metabolites produce an enormous array of antitumor, antiviral, anti-inflammatory, antibiotic, and other bioactive molecules that have the potential for therapeutic use. Studies have shown that different compounds affect the targeted disease through different modes of action. Chemical entities that can act as transcription factor inhibitors may be effective against both viral infections and malignant neoplasms. Most bioactive metabolites from sponges have proven to inhibit specific enzymes, which often mediate or produce mediators of intercellular or intracellular messengers involved in the development of diseases [7][4].
Amongst different orders of marine sponges, the order Verongiida is considered as a reservoir of brominated tyrosine-derived secondary metabolites. This order belongs to the kingdom Animalia, phylum Porifera, class Demospongia, and subclass Verongimorpha. According to the World Porifera Database, order Verongiida includes five families viz. Aplysinellidae, Ernstillidae, Aplysinidae, Ianthellidae, and Pseudoceratinidae.
Members of the order Verongiida attracted researchers of the marine natural products community over the past 65 years due to the large number of bioactive bromotyrosine-derived alkaloids that they produce [5][2]. Bromotyrosine-derived alkaloids display significant chemical diversity and offer effective chemical defense for these organisms against predators in the ocean [8,9][5][6] and the fouling organisms [10,11][7][8].
Bromotyrosine derivatives of the order Verongiida include several classes, such as spirooxepinisoxazolines, mono- and bis-configurated spiroisoxazolines, dibromocyclohexadienes, brominated phenolics, verongiaquinols, verongiabenzenoids, oxime disulfides, brominated oximes, bromotyramines, bromotyramine oximes, bastadins, and hemibastadins. Additional chemical classes that are not of bromotyrosine biosynthetic origin in this order are indole alkaloids, pyrroles, quinolines, hydroquinones guanidines, benzofurans isoprenoids, benzonaphthyridines, sesquiterpenoids, sesterterpenoids, merosesquiterpenoids, and macrolides [12][9].
The bromotyrosine-derived compounds are considered as a class of interest due to their structural diversity and pharmacological and biological importance [13,14,15,16][10][11][12][13]. Prominent members of the bromotyrosine derivatives include psammaplins, disulfide-linked compounds, that were first isolated from an unidentified specimen of Psammaplysilla Keller, 1889 (=Pseudoceratina Carter, 1885) [17][14]. These compounds have stimulated further and deeper investigations on other Verongiid sponges as well as the synthesis of targeted anti-cancer drug analogs [18,19,20][15][16][17]. The bromotyrosin-derived compounds of the Verongiid sponges display huge pharmaceutical and biomedical potential, with many viewed as being promising targets within the preclinical pipeline. Preclinical assays on bromotyrosines have highlighted many candidates for antiplasmodial [21[18][19],22], antimicrobial [22,23,24,25[19][20][21][22][23][24][25][26][27][28][29],26,27,28,29,30,31,32], antioxidant [27[24][25],28], anti-invasion, and antimigratory [33,34[30][31][32],35], parasympatholytic [36][33], as well as compounds that affect the central nervous system [23,29,37,38][20][26][34][35]. These significant and broad-spectrum activities have provided much motivation for further investigations of the members of this order for the exploration of its secondary metabolites and biomedical importance.
To date, more than 633 natural products, mostly bromotyrosine-derived, are reported from over 43 different species of the order Verongiida in the literature [12][9]. Among these, forty-one bromotyrosine alkaloids possessing the 1,6-dioxa-2-azaspiro [4.6] undecane skeleton have been reported from marine sponges of the Verongiida, including members of genera Aplysinella, Psammaplysilla, Pseudoceratina, and Subarea, and three compounds from the order Dictyoceratida (including the genera Dysidea and Hyattella).

2. Compounds with Antimicrobial Properties

Psammaplysins A (1) and B (2) have been reported to show in vitro activity towards gram positive bacteria as well as E. coli [39][36]. In addition, psammaplysin A (1) has found to possess antibacterial activity against Flavobacterium marinotypicum with an inhibition zone of 10 mm at a concentration of 10 µg/disc [45][37]. Furthermore, Psammaplysins A (1) and B (2) have been described to inhibit the Mycobacterium tuberculosis detoxification enzyme mycothiol-S-conjugate amidase in a fluorescence-detected assay [56][38]. Furthermore, psammaplysins F (10) and H (12) have been found to inhibit the growth of six Gram-positive strains, S. aureus NCTC 6571, S. aureus 1H, E. facecalis NCTC-775, B. cereus NCTC-7464, MRSA MW2 and MRSA USA-300 [56][38] (Table 21).
Table 21.
Compounds with reported antimicrobial activities.

3. Compounds with Growth Inhibition and Cytotoxic Activities

Psammaplysin A (1) has been reported as a growth inhibitor of many cancer cell lines including, HCT-116, HCT-15 (colon cancer), PC-3 (prostate cancer), ACHN (renal cancer), MDA-MB-231 (breast cancer), NUGC-3 (stomach cancer), NCI-H23 (lung cancer), and Hela (Cervical) [41,43,51,54][40][41][42][43] (Table 32).
Table 3.
Compounds with reported cancer cells’ growth inhibition activities.
Similarly, psammaplysin B (2) was found to inhibit the growth of several cell lines, including HCT-116, HCT-15 (colon cancer), PC-3 (prostate cancer), ACHN (renal cancer), MDA-MB-231 (breast cancer), NUGC-3 (stomach cancer), and NCI-H23 (lung cancer) [43,51][41][42] (Table 32).
Psammaplysin C (3) has been reported to inhibit the growth of HCT-116 cell line [43][41] (Table 21). Likewise, psammaplysin D (4) has been reported to inhibit the growth of HCT-15 (colon cancer), PC-3 (prostate cancer), ACHN (renal cancer), MDA-MB-231 (breast cancer), NUGC-3 (stomach cancer), and NCI-H23 (lung cancer) cell lines [51][42] (Table 32).
Psammaplysin E (5) has been reported as a potent growth inhibitor of several cancer cell lines, including KB (human oral, epidermoid carcinoma), LoVo (human colon, adenocarcinoma), HCT-15, PC-3, ACHN, MDA-MB-231, NUGC-3, and NCI-H23 [41,44,45,51][37][40][42][44]. In addition, it has been found that psammaplysin E possesses a potent antimigratory effect against MDA-MB-231 and Hela cells [41][40] and has moderate immunosuppressive activity as well [44] (Table 32).
Psammaplysin F (10) has been reported as a moderate inhibitor of HEK293 mammalian cell line [47][45] (Table 32).
Psammaplysin X (35) and 19-hydroxypsammaplysin X (36) were reported to inhibit the growth of HCT-15, PC-3, ACHN, MDA-MB-231, NUGC-3, and NCI-H23 cancer cell lines [51][42] (Table 32).
Psammaplysin Z (38) and 19-hydroxypsammaplysin Z (39) were found to inhibit the growth of MDA-MB-231 and HeLa cancerous cell lines [41][40] (Table 32).
Finally, psammaceratin A (44) has been reported to inhibit the growth of MDA-MB-231, Hela, and HCT116 cell lines [54][43] (Table 32).
From the above results, it could be concluded that the growth inhibition of the psammaplysins towards cancerous cell lines suggests that the spirooxepinisoxazoline ring system is an essential element for the activity. The N-terminal substitution with a cyclopentene-dione moiety, as in psammaplsyins E (5) and 19-hydroxypsammaplysin E (6), or 4-chloro-2-methylenecyclopentane-1,3-dione moiety, as in psammaplysin X (35) and 19-hydroxypsammaplysin X (36), increases the activity. Further, introduction of 19-OH group, as in psammaplysin B (2) versus psammaplysin A (1), diminishes the activity (Table 32).
On the contrary, psammaplysin D (4), however, lacked activity (GI50 > 10 μM), which might be explained by its high lipophilicity. Furthermore, the existence of a terminal N-methyl group, as in psammaplysin F (10), or an urea moiety, as in psammaplysin Z (38), diminished the growth inhibition effect (Table 32).

4. Compounds with Antimalarial Activities

19-Hydroxypsammaplysin E (6), psammaplysin K (15), psammaplysin L (17), psammaplysin M (18), psammaplysin N (19), 19-hydroxypsammaplysin P (22), psammaplysin T (28), and psammaplysin V (32) have been evaluated for their antimalarial activity, at 10 μM, against the chloroquine-sensitive Plasmodium falciparum 3D7 malaria parasite line. Only 19-hyroxypsammaplysin E (6) was found to have antimalarial effect against this strain [50][46] (Table 43).
Table 43.
Compounds with reported antimalarial activities.
Similarly, psammaplysin F (10) has been reported to inhibit chloroquine-sensitive (3D7), Dd2 [47][45], the drug-resistant (K1) and drug-sensitive (FCR3) strains of P. falciparum [52][47] (Table 43). Furthermore, psammaplysin G (11) has been found to inhibit the chloroquine-resistant (Dd2) P. falciparum strain without any toxicity towards the HEK293 cell line [47][45]. Likewise, psammaplysin H (12) was described to have a potent antiplasmodial activity against 3D7 strain with an excellent selectivity index [48] (Table 43).
Finally, ceratinadins E (40) and F (41) were reported to show antiplasmodial activities against the drug-resistant (K1) and drug-sensitive (FCR3) strains of P. falciparum. Moreover, ceratinadin E (40) was found to display higher selectivity indices (SI) than ceratinadin F (41) [52][47] (Table 43).
The antimalarial evaluation of 13 psammaplysins analogs clearly shows that psammaplysin F (10) is the most potent active compound against Dd2 strain, while ceratinadin E (40) possesses a greater antimalarial activity towards K1 strain and a better selectivity index than psammaplysins F (10). The addition of a terminal N-methyl, as in psammaplysin F (10), enhances the activity. However, ceratinadin F (41), which possesses several N-methyls, did not show significant antimalarial activity, which could be attributed to the high lipophilicity of the compound. Though the antimalarial activity against drug-resistant strains of P. falciparum is unknown, psammaplysin H (12), a quaternary analog with a trimethylamino group instead of a methylamino group, possesses a potent antimalarial activity and better selectivity against a drug-sensitive strain of P. falciparum than psammaplysins F (10) without any significant cytotoxicity against the HEK293 384 cell line [47,48,50][45][46][48] (Table 43).
Comparing the activities of psammaplysins F (10), G (11), and H (12) towards two mammalian cell lines (HEK293 and HepG2), psammaplysin H was found to display a minimal toxicity at the highest concentration tested (40 μM), giving this compound a parasite-specific selectivity index (SI) of >97. In contrast, psammaplysins G and F display higher toxicity to these cell lines with IC50 values between 3.71 and 18.96 μM, respectively. These preliminary structure–activity data suggest that full methyl-substitution of the terminal amine (N-quaternization) is essential for optimal antimalarial activity and better selectivity [48].
Likewise, the replacement of an urea, amine, or enamine derivative with a secondary amide group adversely affects the antimalarial activity. However, the higher lipophilicity (i.e., log P) and larger molecular weights associated with the amide analogs including psammaplysin M (18), psammaplysin N (19), 19-hyroxypsammaplysin P (22), psammaplysin T (29, and psammaplysin V (32) would also minimize the bioavailability [58][49], thus reducing the antimalarial effect.

5. Compounds with Antifouling Activities

When evaluated for their antifouling activity, psammaplsyins A (1), E (5), ceratinamides A (7) and B (8) have reported to inhibit the metamorphosis and settlement of the barnacle B. Amphitrite [45][37] (Table 54). The highest activities of psammaplysin A (1) and ceratinamide A (7) suggests the importance of a terminal amine or an N-formyl moiety for a maximum antifouling activity. Furthermore, ceratinamide A (7) was found to induce a larval metamorphosis of the ascidian Halocynthia roretzi [45][37] (Table 54).
Table 54.
Compounds with reported antifouling activities.

6. Compounds with Other Reported Activities

Psammaplysin D (4) was reported to display anti-HIV towards the Haitian RF strain of HIV-I [44] (Table 54). Recently, psammaplysin F (10) was reported to increase the efficacy of the antitumor drugs bortezomib and sorafenib through regulation of the synthesis of stress granules [59][50] (Table 65).
Table 65.
Compounds with other reported activities.
Frondoplysins A (42) and B (43) were described to inhibit protein-tyrosine phosphatase IB (PTP1B). The compounds were found to have a higher activity than the positive control oleanolic acid [53][51] and thiazolidinediones [60][53] and were similar to benzofuran and benzothiophene biphenyls [61][54] (Table 65). Further, frondoplysin A was found to possess in vivo antioxidant activity in transgenic fluorescent zebrafish over five times stronger than that of vitamin C [53][51] without any cytotoxicity [53][51] (Table 65).
It has been described that psamaplysin F (10) andits urea semisynthetic analogs (45, 51, 53 and 54) strongly reduce the mitochondrial membrane potential (MMP). Further, it was found that psammaplysin F strongly affects the mitochondrial morphology and reduced the number of end points and branch points within the tubular structure of individual mitochondria, leading to visible fragmentation of the mitochondrial tubular network. These findings provide a strong rationale for more detailed mechanistic studies of psammaplysin F and derivatives as novel mitochondrial poisons [55][52].

References

  1. https://marinlit.rsc.org/, accessed on July 19, 2022.Available online: https://marinlit.rsc.org/ (accessed on 19 July 2022).
  2. Carroll, A.R.; Copp. B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2022, 39, 1122-1171.Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2022, 39, 1122–1171.
  3. Han, B-N.; Hong, L-L.; Gu, B-B.; Yang-Ting Sun, Y-T.; Wang, J.; Liu, J-T.; Lin, H-W. (2019). Natural Products from Sponges. In: Li, Z. (eds) Symbiotic Microbiomes of Coral Reefs Sponges and Corals, chapter 15, pp 329-463; Springer, Dordrecht, Springer Nature B.V.Han, B.-N.; Hong, L.-L.; Gu, B.-B.; Yang-Ting Sun, Y.-T.; Wang, J.; Liu, J.-T.; Lin, H.-W. Natural Products from Sponges. In Symbiotic Microbiomes of Coral Reefs Sponges and Corals; Li, Z., Ed.; Springer Nature B.V.: Dordrecht, The Netherland, 2019; Chapter 15; pp. 329–463.
  4. Blunt, J.W.; Copp, BR, Keyzers RA, Munro M, Prinsep MR. Marine natural products. Nat. Prod. Rep. 2013, 30, 237–323.Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2013, 30, 237–323.
  5. Peng, J.; Li, J.; Hamann, M.T. The marine bromotyrosine derivatives. Alkaloids Chem. Biol. 2005, 61, 59–262.Thoms, C.; Schupp, P.J. Activated chemical defense in marine sponges—A case study on Aplysinella rhax. J. Chem. Ecol. 2008, 34, 1242–1252.
  6. Thoms, C.; Schupp, P.J. Activated chemical defense in marine sponges—A case study on Aplysinella rhax. J. Chem. Ecol. 2008, 34, 1242–1252.Thoms, C.; Wolff, M.; Padmakumar, K.; Ebel, R.; Proksch, P. Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophoba. Z. Naturforsch. 2004, 59, 113–122.
  7. Thoms, C.; Wolff, M.; Padmakumar, K.; Ebel, R.; Proksch, P. Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophoba. Z. Naturforsch. 2004, 59c, 113–122.Ortlepp, S.; Sjogren, M.; Dahlstrom, M.; Weber, H.; Ebel, R.; Edrada, R.; Thoms, C.; Schupp, P.; Bohlin, L.; Proksch, P. Antifouling activity of bromotyrosine-derived sponge metabolites and synthetic analogues. Mar. Biotechnol. 2007, 9, 776–785.
  8. Ortlepp, S.; Sjogren, M.; Dahlstrom, M.; Weber, H.; Ebel, R.; Edrada, R.; Thoms, C.; Schupp, P.; Bohlin, L.; Proksch, P. Antifouling activity of bromotyrosine-derived sponge metabolites and synthetic analogues. Mar. Biotechnol. 2007, 9, 776–785.Teeyapant, R.; Woerdenbag, H.J.; Kreis, P.; Hacker, J.; Wray, V.; Witte, L.; Proksch, P. Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophoba. Z. Naturforsch. 1993, 48, 939–945.
  9. Teeyapant, R.; Woerdenbag, H.J.; Kreis, P.; Hacker, J.; Wray, V.; Witte, L.; Proksch, P. Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophoba. Z. Naturforsch. 1993, 48c, 939–945.Lever, J.; Brkljača, R.; Rix, C.; Urban, S. Application of networking approaches to assess the chemical diversity, biogeography, and pharmaceutical potential of Verongiida natural products. Mar. Drugs 2021, 19, 582.
  10. Lever, J.; Brkljača, R.; Rix, C.; Urban, S. Application of networking approaches to assess the chemical diversity, biogeography, and pharmaceutical potential of Verongiida natural products. Mar. Drugs 2021, 19, 582.Peng, J.; Li, J.; Hamann, M.T. The marine bromotyrosine derivatives. Alkaloids Chem. Biol. 2005, 61, 59–262.
  11. Lira, N.S.; Montes, R.C.; Tavares, J.F.; da Silva, M.S.; da Cunha, E.V.; de Athayde-Filho, P.F.; Rodrigues, L.C.; da Silva Dias, C.; Barbosa-Filho, J.M. Brominated compounds from marine sponges of the genus Aplysina and a compilation of their 13C NMR spectral data. Mar. Drugs 2011, 9, 2316–2368.Lira, N.S.; Montes, R.C.; Tavares, J.F.; da Silva, M.S.; da Cunha, E.V.; de Athayde-Filho, P.F.; Rodrigues, L.C.; da Silva Dias, C.; Barbosa-Filho, J.M. Brominated compounds from marine sponges of the genus Aplysina and a compilation of their 13C NMR spectral data. Mar. Drugs 2011, 9, 2316–2368.
  12. El-Demerdash, A.; Atanasov, A.G.; Horbanczuk, O.K.; Tammam, M.A.; Abdel-Mogib, M.; Hooper, J.N.A.; Sekeroglu, N.; Al-Mourabit, A.; Kijjoa, A. Chemical diversity and biological activities of marine sponges of the genus Suberea: A systematic review. Mar. Drugs 2019, 17, 115.El-Demerdash, A.; Atanasov, A.G.; Horbanczuk, O.K.; Tammam, M.A.; Abdel-Mogib, M.; Hooper, J.N.A.; Sekeroglu, N.; Al-Mourabit, A.; Kijjoa, A. Chemical diversity and biological activities of marine sponges of the genus Suberea: A systematic review. Mar. Drugs 2019, 17, 115.
  13. Niemann, H.; Marmann, A.; Lin, W.; Proksch, P. Sponge derived bromotyrosines: Structural diversity through natural combinatorial chemistry. Nat. Prod. Comm. 2015, 10, 219–231.Niemann, H.; Marmann, A.; Lin, W.; Proksch, P. Sponge derived bromotyrosines: Structural diversity through natural combinatorial chemistry. Nat. Prod. Comm. 2015, 10, 219–231.
  14. Quinoa, E.; Crews, P. Phenolic constituents of psammaplysilla. Tetrahedron Lett. 1987, 28, 3229–3232.Quinoa, E.; Crews, P. Phenolic constituents of psammaplysilla. Tetrahedron Lett. 1987, 28, 3229–3232.
  15. Jing, Q.; Hu, X.; Ma, Y.; Mu, J.; Liu, W.; Xu, F.; Li, Z.; Bai, J.; Hua, H.; Li, D. Marine-derived natural lead compound disulfide-linked dimer psammaplin A: Biological activity and structural modification. Mar. Drugs 2019, 17, 384.Jing, Q.; Hu, X.; Ma, Y.; Mu, J.; Liu, W.; Xu, F.; Li, Z.; Bai, J.; Hua, H.; Li, D. Marine-derived natural lead compound disulfide-linked dimer psammaplin A: Biological activity and structural modification. Mar. Drugs 2019, 17, 384.
  16. Kumar, M.S.L.; Ali, K.; Chaturvedi, P.; Meena, S.; Datta, D.; Panda, G. Design, synthesis and biological evaluation of oxime lacking psammaplin inspired chemical libraries as anti-cancer agents. J. Mol. Struct. 2021, 1225, 129173.Kumar, M.S.L.; Ali, K.; Chaturvedi, P.; Meena, S.; Datta, D.; Panda, G. Design, synthesis and biological evaluation of oxime lacking psammaplin inspired chemical libraries as anti-cancer agents. J. Mol. Struct. 2021, 1225, 129173.
  17. Bao, Y.; Xu, Q.; Wang, L.; Wei, Y.; Hu, B.; Wang, J.; Liu, D.; Zhao, L.; Jing, Y. Studying histone deacetylase inhibition and apoptosis induction of psammaplin A monomers with modified thiol group. ACS Med. Chem. Lett. 2021, 12, 39–47.Bao, Y.; Xu, Q.; Wang, L.; Wei, Y.; Hu, B.; Wang, J.; Liu, D.; Zhao, L.; Jing, Y. Studying histone deacetylase inhibition and apoptosis induction of psammaplin A monomers with modified thiol group. ACS Med. Chem. Lett. 2021, 12, 39–47.
  18. Lebouvier, N.; Jullian, V.; Desvignes, I.; Maurel, S.; Parenty, A.; Dorin-Semblat, D.; Doerig, C.; Sauvain, M.; Laurent, D. Antiplasmodial activities of homogentisic acid derivative protein kinase inhibitors isolated from a Vanuatu marine sponge Pseudoceratina sp. Mar. Drugs 2009, 7, 640–653.Lebouvier, N.; Jullian, V.; Desvignes, I.; Maurel, S.; Parenty, A.; Dorin-Semblat, D.; Doerig, C.; Sauvain, M.; Laurent, D. Antiplasmodial activities of homogentisic acid derivative protein kinase inhibitors isolated from a Vanuatu marine sponge Pseudoceratina sp. Mar. Drugs 2009, 7, 640–653.
  19. Mayer, A.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2009–2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2013, 11, 2510–2573.Mayer, A.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2009–2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2013, 11, 2510–2573.
  20. Mayer, A.; Guerrero, A.J.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N. Marine pharmacology in 2014–2015: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, antiviral, and anthelmintic activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2020, 18, 5.Mayer, A.; Guerrero, A.J.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N. Marine pharmacology in 2014–2015: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, antiviral, and anthelmintic activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2020, 18, 5.
  21. Shaala, L.A.; Youssef, D.T.A. Pseudoceratonic Acid and molok’iamine derivatives from the Red Sea Verongiid sponge Pseudoceratina arabica. Mar. Drugs 2020, 18, 525.Shaala, L.A.; Youssef, D.T.A. Pseudoceratonic Acid and molok’iamine derivatives from the Red Sea Verongiid sponge Pseudoceratina arabica. Mar. Drugs 2020, 18, 525.
  22. Xu, M.; Davis, R.A.; Feng, Y.; Sykes, M.L.; Shelper, T.; Avery, V.M.; Camp, D.; Quinn, R.J. Ianthelliformisamines A-C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. J. Nat. Prod. 2012, 75, 1001–1005.Xu, M.; Davis, R.A.; Feng, Y.; Sykes, M.L.; Shelper, T.; Avery, V.M.; Camp, D.; Quinn, R.J. Ianthelliformisamines A-C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. J. Nat. Prod. 2012, 75, 1001–1005.
  23. Pieri, C.; Borselli, D.; Di Giorgio, C.; De Meo, M.; Bolla, J.-M.; Vidal, N.; Combes, S.; Brunel, J.M. New ianthelliformisamine derivatives as antibiotic enhancers against resistant Gram-negative bacteria. J. Med. Chem. 2014, 57, 4263–4272.Pieri, C.; Borselli, D.; Di Giorgio, C.; De Meo, M.; Bolla, J.-M.; Vidal, N.; Combes, S.; Brunel, J.M. New ianthelliformisamine derivatives as antibiotic enhancers against resistant Gram-negative bacteria. J. Med. Chem. 2014, 57, 4263–4272.
  24. Shaala, L.A.; Bamane, F.H.; Badr, J.M.; Youssef, D.T.A. Brominated arginine-derived alkaloids from the Red Sea sponge Suberea mollis. J. Nat. Prod. 2011, 74, 15171520.Shaala, L.A.; Bamane, F.H.; Badr, J.M.; Youssef, D.T.A. Brominated arginine-derived alkaloids from the Red Sea sponge Suberea mollis. J. Nat. Prod. 2011, 74, 1517–1520.
  25. Abou-Shoer, M.I.; Shaala, L.A.; Youssef, D.T.A.; Badr, J.M.; Habib, A.M. Bioactive brominated metabolites from the Red Sea sponge Suberea mollis. J. Nat. Prod. 2008, 71, 14641467.Abou-Shoer, M.I.; Shaala, L.A.; Youssef, D.T.A.; Badr, J.M.; Habib, A.M. Bioactive brominated metabolites from the Red Sea sponge Suberea mollis. J. Nat. Prod. 2008, 71, 1464–1467.
  26. Mayer, A.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2012–2013: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2017, 15, 273.Mayer, A.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2012–2013: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2017, 15, 273.
  27. Mani, L.; Jullian, V.; Mourkazel, B.; Valentin, A.; Dubois, J.; Cresteil, T.; Folcher, E.; Hooper, J.N.A.; Erpenbeck, D.; Aalbersberg, W.; et al. New antiplasmodial bromotyrosine derivatives from Suberea ianthelliformis. Chem. Biodivers. 2012, 9, 1436–1451.Mani, L.; Jullian, V.; Mourkazel, B.; Valentin, A.; Dubois, J.; Cresteil, T.; Folcher, E.; Hooper, J.N.A.; Erpenbeck, D.; Aalbersberg, W.; et al. New antiplasmodial bromotyrosine derivatives from Suberea ianthelliformis. Chem. Biodivers. 2012, 9, 1436–1451.
  28. Buchanan, M.S.; Carroll, A.R.; Wessling, D.; Jobling, M.; Avery, V.M.; Davis, R.A.; Feng, Y.; Xue, Y.; Oster, L.; Fex, T.; et al. Clavatadine A, a natural product with selective recognition and irreversible inhibition of factor XIa. J. Med. Chem. 2008, 51, 3583–3587.Buchanan, M.S.; Carroll, A.R.; Wessling, D.; Jobling, M.; Avery, V.M.; Davis, R.A.; Feng, Y.; Xue, Y.; Oster, L.; Fex, T.; et al. Clavatadine A, a natural product with selective recognition and irreversible inhibition of factor XIa. J. Med. Chem. 2008, 51, 3583–3587.
  29. Buchanan, M.S.; Carroll, A.R.; Wessling, D.; Jobling, M.; Avery, V.M.; Davis, R.A.; Feng, Y.; Hooper, J.N.A.; Quinn, R.J. Clavatadines C-E, guanidine alkaloids from the Australian sponge Suberea clavata. J. Nat. Prod. 2009, 72, 973–975.Buchanan, M.S.; Carroll, A.R.; Wessling, D.; Jobling, M.; Avery, V.M.; Davis, R.A.; Feng, Y.; Hooper, J.N.A.; Quinn, R.J. Clavatadines C-E, guanidine alkaloids from the Australian sponge Suberea clavata. J. Nat. Prod. 2009, 72, 973–975.
  30. Shaala, L.A.; Youssef, D.T.A.; Badr, J.M.; Souliman, M.; Khedr, A. Bioactive secondary metabolites from a Red Sea marine Verongid sponge Suberea species. Mar. Drugs 2015, 13, 16211631.Shaala, L.A.; Youssef, D.T.A.; Badr, J.M.; Souliman, M.; Khedr, A. Bioactive secondary metabolites from a Red Sea marine Verongid sponge Suberea species. Mar. Drugs 2015, 13, 1621–1631.
  31. Shaala, L.A.; Youssef, D.T.A.; Sulaiman, M.; Behery, F.A.; Foudah, A.I.; El Sayed, K.A. Subereamolline A as a potent breast cancer migration, invasion and proliferation inhibitor and bioactive dibrominated alkaloids from the Red Sea sponge Pseudoceratina arabica. Mar. Drugs 2012, 10, 25092518.Shaala, L.A.; Youssef, D.T.A.; Sulaiman, M.; Behery, F.A.; Foudah, A.I.; El Sayed, K.A. Subereamolline A as a potent breast cancer migration, invasion and proliferation inhibitor and bioactive dibrominated alkaloids from the Red Sea sponge Pseudoceratina arabica. Mar. Drugs 2012, 10, 2492–2508.
  32. Shaala, L.A.; Youssef, D.T.A.; Badr, J.M.; Sulaiman, M.; Khedr, A.; El Sayed, K.A. Bioactive alkaloids from the Red Sea marine Verongid sponge Pseudoceratina arabica. Tetrahedron, 2015, 71, 78377841.Shaala, L.A.; Youssef, D.T.A.; Badr, J.M.; Sulaiman, M.; Khedr, A.; El Sayed, K.A. Bioactive alkaloids from the Red Sea marine Verongid sponge Pseudoceratina arabica. Tetrahedron 2015, 71, 7837–7841.
  33. Badr, J.M.; Shaala, L.A.; Abou-Shoer, M.I.; Tawfik, M.A.; Habib, A.M. Bioactive brominated metabolites from the Red Sea sponge Pseudoceratina arabica. J. Nat. Prod. 2008, 71, 14721474.Badr, J.M.; Shaala, L.A.; Abou-Shoer, M.I.; Tawfik, M.A.; Habib, A.M. Bioactive brominated metabolites from the Red Sea sponge Pseudoceratina arabica. J. Nat. Prod. 2008, 71, 1472–1474.
  34. Feng, Y.; Bowden, B.F.; Kapoor, V. Ianthellamide A, a selective kynurenine-3-hydroxylase inhibitor from the Australian marine sponge Ianthella quadrangulata. Bioorg. Med. Chem. Lett. 2012, 22, 3398–3401.Feng, Y.; Bowden, B.F.; Kapoor, V. Ianthellamide A, a selective kynurenine-3-hydroxylase inhibitor from the Australian marine sponge Ianthella quadrangulata. Bioorg. Med. Chem. Lett. 2012, 22, 3398–3401.
  35. Tian, L.W.; Feng, Y.; Shimizu, Y.; Pfeifer, T.; Wellington, C.; Hooper, J.N.; Quinn, R.J. Aplysinellamides A-C, bromotyrosine-derived metabolites from an Australian Aplysinella sp. marine sponge. J. Nat. Prod. 2014, 77, 1210–1214.Tian, L.W.; Feng, Y.; Shimizu, Y.; Pfeifer, T.; Wellington, C.; Hooper, J.N.; Quinn, R.J. Aplysinellamides A-C, bromotyrosine-derived metabolites from an Australian Aplysinella sp. marine sponge. J. Nat. Prod. 2014, 77, 1210–1214.
  36. Rotem, M.; Carmely, S.; Kashman, Y. Two new antibiotics from the Red Sea sponge Psammaplysilla purprea. Tetrahedron, 1983, 39, 667-676.Rotem, M.; Carmely, S.; Kashman, Y. Two new antibiotics from the Red Sea sponge Psammaplysilla purprea. Tetrahedron 1983, 39, 667–676.
  37. Roll, D.M.; Chang, C.W.J.; Scheuer, P.J.; Gray, G.A.; Shoolery, J.N.; Matsumoto, G.K.; Van Duyne, G.D.; Clardy, J. Structure of the psammaplysins. J. Am. Chem. Soc. 1985, 107, 2916-2920.Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Ceratinamides A and B: New antifouling dibromotyrosine derivatives from the marine sponge Pseudoceratina purpurea. Tetrahedron 1996, 52, 8181–8186.
  38. Shaala, L.A.; Youssef, D.T.A. Cytotoxic psammaplysin analogues from Red Sea sponge Aplysinella species. Biomolecules 2019, 9, 841.Nicholas, G.M.; Eckman, L.L.; Ray, S.; Hughes, R.O.; Pfefferkorn, J.A.; Barluenga, S.; Nicolaou, K.C.; Bewley, C.A. Bromotyrosine-derived natural and synthetic products as inhibitors of mycothiol-S-conjugate amidase. Bioorg. Med. Chem. 2002, 12, 2487–2490.
  39. Mándi, A.; Mudianta, I.W.; Kurtán, T.; Garson, M.J. Absolute configuration and conformational study of psammaplysins A and B from the Balinese marine sponge Aplysinella strongylata. J. Nat. Prod. 2015, 78, 2051–2056.Ramsey, D.M.; Amirul, I.M.; Turnbull, L.; Davis, R.A.; Whitchurch, C.B.; McAlpine, S.R. Psammaplysin F: A unique inhibitor of bacterial chromosomal partitioning. Bioorg. Med. Chem. Lett. 2013, 23, 4862–4866.
  40. Copp, B.R.; Ireland, C.M.; Barrows, R.L. Psammaplysin C: a new cytotoxic dibromotyrosine derived metabolite from the marine sponge Druinella (= Psammplysilla) purpurea. J. Nat.Prod. 1992, 55, 822-823.Shaala, L.A.; Youssef, D.T.A. Cytotoxic psammaplysin analogues from Red Sea sponge Aplysinella species. Biomolecules 2019, 9, 841.
  41. Ichiba, T.; Scheuer, P.J.; Kelly-Borges, M. Three bromotyrosine derivatives, one terminating in an unprecedented diketocyclopentenylidene enamine. J. Org. Chem. 1993, 58, 4149–4150.Copp, B.R.; Ireland, C.M.; Barrows, R.L. Psammaplysin C: A new cytotoxic dibromotyrosine derived metabolite from the marine sponge Druinella (= Psammplysilla) purpurea. J. Nat.Prod. 1992, 55, 822–823.
  42. Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Ceratinamides A and B: New antifouling dibromotyrosine derivatives from the marine sponge Pseudoceratina purpurea. Tetrahedron 1996, 52, 8181-8186.Lee, Y.J.; Han, S.; Lee, H.S.; Kang, J.S.; Yun, J.; Sim, C.J.; Shin, H.J.; Lee, J.S. Cytotoxic psammaplysin analogues from a Suberea sp. marine sponge and the role of the spirooxepinisoxazoline in their activity. J. Nat. Prod. 2013, 76, 1731–1736.
  43. Liu, S.; Fu, X.; Schmitz, F.J.; Kelly-Borges, M. Psammaplysin F, a new bromotyrosine derivative from a sponge, Aplysinella sp. J. Nat. Prod. 1997, 60, 614–615.Youssef, D.T.A.; Asfour, H.Z.; Shaala, A.L. Psammaceratin A: A cytotoxic psammaplysin dimer featuring an unprecedented (2Z,3Z)-2,3-bis(aminomethylene)succinamide backbone from the Red Sea sponge Pseudoceratina arabica. Mar. Drugs 2021, 19, 433.
  44. Yang, X.; Davis, R.A.; Buchanan, M.S.; Duffy, S.; Avery, V.M.; Camp, D.; Quinn, R.J. Antimalarial bromotyrosine derivatives from the Australian marine sponge Hyattella sp. J. Nat. Prod. 2010, 73, 985–987.Ichiba, T.; Scheuer, P.J.; Kelly-Borges, M. Three bromotyrosine derivatives, one terminating in an unprecedented diketocyclopentenylidene enamine. J. Org. Chem. 1993, 58, 4149–4150.
  45. Xu, M.; Andrews, K.T.; Birrell, G.W.; Tran, T.L.; Camp, D.; Davis, R.A.; Quinn, R.J. Psammaplysin H, a new antimalarial bromotyrosine alkaloid from a marine sponge of the genus Pseudoceratina. Bioorg. Med. Chem. Lett. 2011, 21, 846–848.Yang, X.; Davis, R.A.; Buchanan, M.S.; Duffy, S.; Avery, V.M.; Camp, D.; Quinn, R.J. Antimalarial bromotyrosine derivatives from the Australian marine sponge Hyattella sp. J. Nat. Prod. 2010, 73, 985–987.
  46. Wright, A.D.; Peter J. Schupp, P.J.; Schrör, J.; Anna Engemann, A.; Rohde, S.; Dovi Kelman, D.; Voogd, N.; Carroll, A.; and Motti, C.A. Twilight zone sponges from Guam yield theonellin isocyanate and psammaplysins I and J. J. Nat. Prod. 2012, 75, 502−506.Mudianta, I.W.; Skinner-Adams, T.; Andrews, K.T.; Davis, R.A.; Hadi, T.A.; Hayes, P.Y.; Garson, M.J. Psammaplysin derivatives from the Balinese marine sponge Aplysinella strongylata. J. Nat. Prod. 2012, 75, 2132–2143.
  47. Mudianta, I.W.; Skinner-Adams, T.; Andrews, K.T.; Davis, R.A.; Hadi, T.A.; Hayes, P.Y.; Garson, M.J. Psammaplysin derivatives from the Balinese marine sponge Aplysinella strongylata. J. Nat. Prod. 2012, 75, 2132–2143.Kurimoto, S.I.; Ohno, T.; Hokari, R.; Ishiyama, A.; Iwatsuki, M.; Omura, S.; Kobayashi, J.; Kubota, T. Ceratinadins E and F, new bromotyrosine alkaloids from an Okinawan marine sponge Pseudoceratina sp. Mar. Drugs 2018, 16, 463.
  48. Lee, Y.J.; Han, S.; Lee, H.S.; Kang, J.S.; Yun, J.; Sim, C.J.; Shin, H.J.; Lee, J.S. Cytotoxic psammaplysin analogues from a Suberea sp. marine sponge and the role of the spirooxepinisoxazoline in their activity. J. Nat. Prod. 2013, 76, 1731–1736.Xu, M.; Andrews, K.T.; Birrell, G.W.; Tran, T.L.; Camp, D.; Davis, R.A.; Quinn, R.J. Psammaplysin H, a new antimalarial bromotyrosine alkaloid from a marine sponge of the genus Pseudoceratina. Bioorg. Med. Chem. Lett. 2011, 21, 846–848.
  49. Kurimoto, S.I.; Ohno, T.; Hokari, R.; Ishiyama, A.; Iwatsuki, M.; Omura, S.; Kobayashi J.; Kubota, T. Ceratinadins E and F, new bromotyrosine alkaloids from an Okinawan marine sponge Pseudoceratina sp. Mar. Drugs 2018, 16, 463.Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 1997, 23, 3–25.
  50. Jiao, W.H.; Li, J.; Zhang, M.M.; Cui, J.; Gui, Y.H.; Zhang, Y.; Li, J.Y.; Liu, K.C.; Lin, H.W. Frondoplysins A and B, unprecedented terpene-alkaloid bioconjugates from Dysidea frondosa. Org. Lett. 2019, 21, 6190–6193.Christen, K.E.; Davis, R.A.; Kennedy, D. Psammaplysin F increases the efficacy of bortezomib and sorafenib through regulation of stress granule formation. Int. J. Biochem. Cell. Biol. 2019, 112, 24–38.
  51. Youssef, D.T.A.; Asfour, H.Z.; Shaala, A.L. Psammaceratin A: A cytotoxic psammaplysin dimer featuring an unprecedented (2Z,3Z)-2,3-bis(aminomethylene)succinamide backbone from the Red Sea sponge Pseudoceratina arabica. Mar. Drugs 2021, 19, 433.Jiao, W.H.; Li, J.; Zhang, M.M.; Cui, J.; Gui, Y.H.; Zhang, Y.; Li, J.Y.; Liu, K.C.; Lin, H.W. Frondoplysins A and B, unprecedented terpene-alkaloid bioconjugates from Dysidea frondosa. Org. Lett. 2019, 21, 6190–6193.
  52. Kumar, R.; Bidgood, C.L.; Levrier, C.; Gunter, J.H.; Nelson, C.C.; Sadowski, M.C.; Davis, R.A. Synthesis of a unique psammaplysin F library and functional evaluation in prostate cancer cells by multiparametric quantitative single cell imaging. J. Nat. Prod. 2022, 83, 2357-2366.Kumar, R.; Bidgood, C.L.; Levrier, C.; Gunter, J.H.; Nelson, C.C.; Sadowski, M.C.; Davis, R.A. Synthesis of a unique psammaplysin F library and functional evaluation in prostate cancer cells by multiparametric quantitative single cell imaging. J. Nat. Prod. 2022, 83, 2357–2366.
  53. Nicholas, G.M.; Eckman, L.L.; Ray, S.; Hughes, R.O.; Pfefferkorn, J.A.; Barluenga, S.; nicolaou, K.C.; Bewley, C.A. Bromotyrosine-derived natural and synthetic products as inhibitors of mycothiol-S-conjugate amidase. Bioorg. Med. Chem. 2002, 12, 2487-2490.Malamas, M.S.; Sredy, J.; Moxham, C.; Katz, A.; Xu, W.; McDevitt, R.; Adebayo, F.O.; Sawicki, D.R.; Seestaller, L.; Sullivan, D.; et al. Novel benzofuran and benzothiophene biphenyls as inhibitors of protein tyrosine phosphatase 1B with antihyperglycemic properties. J. Med. Chem. 2000, 43, 1293–1310.
  54. Ramsey, D.M.; Amirul, I.M.; Turnbull, L.; Davis, R.A.; Whitchurch, C.B.; McAlpine, S.R. Psammaplysin F: A unique inhibitor of bacterial chromosomal partitioning. Bioorg. Med. Chem. Lett. 2013, 23, 48624866.Bhattarai, B.R.; Kafle, B.; Hwang, J.-S.; Khadka, D.; Lee, S.-M.; Kang, J.-S.; Ham, S.W.; Han, I.-O.; Park, H.; Cho, H. Thiazolidinedione derivatives as PTP1B inhibitors with antihyperglycemic and antiobesity effects. Bioorg. Med. Chem. Lett. 2009, 19, 6161–6165.
  55. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Adv. Drug Delivery Rev. 1997, 23, 3−25.
  56. Christen, K.E.; Davis, R.A.; Kennedy. D. Psammaplysin F increases the efficacy of bortezomib and sorafenib through regulation of stress granule formation. Int. J. Biochem. Cell. Biol. 2019, 112, 2438.
  57. Malamas, M.S.; Sredy, J.; Moxham, C.; Katz, A.; Xu, W.; McDevitt, R.; Adebayo, F. O.; Sawicki, D. R.; Seestaller, L.; Sullivan, D.; Taylor, J.R. Novel benzofuran and benzothiophene biphenyls as inhibitors of protein tyrosine phosphatase 1B with antihyperglycemic properties. J. Med. Chem. 2000, 43, 1293−1310.
More
ScholarVision Creations