We introduce finite-differences derivatives intended to be exact, with a finite number of terms, for a particular function. For other functions, these finite differences are also an approximation to the actual derivativehen applied to the real exponential function. We want to recover the known results of continuous calculus with our finite differences derivatives. In this article we consider the first derivative on a partition. Our definitions are based on the requirements for the derivative such as that the exponential function is its eigefunction but in a discrete form. The purpose of this work is to have a discrete momentum operator suitable for use as an operator in discrete quantum mechanics theory.
FrThe subject om calculus of a single variable, tf finite differences is an old, but useful method with wide application in science and engineering. The story starts with Newton and Leibnitz themselves with the very definition of the derivative of a function; the limit when the differences become zero, as is well known. The formal definition of the derivative $f'(x)$\( f'(x_0) \) of some function $f(x)$\( f(x) \) of a single variable $x$\( x \), at $x_0$\( x_0 \), requires of takings obtained from the limit $x\t\( x\to x_0 \) of x_0$ of aany of the following ratios of differences
\( \displaystyle f'(x_0)
:=\lim_{x\to x^-_0}
\frac{f(x_0)-f(x)}{x_0-x},
\quad
f'(x_0)
:=\lim_{x\to x^+_0}
\frac{f(x)-f(x_0)}{x-x_0}. \)
\[
f'(x)
:=\lThese ratim_{x\to x_0}
\fs are known ac{f(x)-f(x_0)}{x-x_0}.
\]
Hs backward and forwever, there are atard differences, respectively.
The leasimit two situations in of vanishing finite differences involves variables which we need to compute the derivative when are continuous. However, many times it is not possible to take the mentioned perform such limit $x\to x_0$. One at all. A situation islike that appears when doing numerical simulations in a computation. When doing numerical calculations,er due to the limit in how small a number can be represented in the computer. Another situation in which it is not possible to perform atake the infinitesimal difference limit likeis when the infinitesimal separation between the discrete set of podependent variable is a discrete variable by nature, as is the case found in Quantum Mechanics theory regarding the spectrum of quantum operators.
Finits of a mesh, and then an e differences are necessary in numerical computations to approximation to the several quantities like derivative is used.
Os and inther situation is in the theory of operators. there are operators with a discrete spectrum. The values of the spectrum of the operatorgrals of functions, as well as, differential and integral equations. Their use as a numerical tool is a well developed subject, see for instance the series of books areNumerical Recipes.[1] fixed Anumber and there is no meaning in taking a limit like $x\to x_0$. Thus, an exact interesting development is the use of a complex finite differences, a finite differences which will giv to evaluate the exactreal derivative even if of a function.[2]
On $\Dthelta$ has any finite value, is desirable.
Us other hand, the reader can learn about the calcual us of finite differences calculus, for equ from the classical works of Kopal[3], Booly spaced[4]. pJoirdants[5], Rin a meshchardson[6], for is well develnstance.
Anopthed[1][2][3][4],r Hebre we introducanch of the finite differences calculus which istree, is known as the exact for the first derivative. We specialize the resultsinite differences technique. That scheme was developed by researchers like Potts,[7][8] tRo finnald E. Mickens[9] witeh intervals, first order finthe purpose of obtaining exact finite differences and to the real exponrepresentations of continuous differential function, the real eigenfunctionequations and of their solutions.
Another use of the derivative.
Lfinite differences was developetd $\{q_{i}\}_{i=-N}^{N}$ be a partition of the real interval $[-by Armando Martínez-Pérez and Gabino Torres-Vega,a]$,[10] withat is Wth ren $|\chi_{f,j}-\Delta_j|$ is less thanspect to the spectrum is necessary some small $\epsilon$, our method and the usual finite-differences derivative will give similar results for any vector defined on the mesh. Atimes. The aim is to obtain discrete operators which comply with discrete versions of the properties that a bquackwards versntum operator must have. The explicit fonrm of the exact finite differences derivative, at $q_j$, is Somescuss properties of thehe use of an exact finite- differences derivative arwhen its e {\igemnfunction is The equality\/} {\usemd Twoin discrete versionsQuantum Mechanics. Let of\( \{q_{i}\}_{i=-N}^{N} \) thbe a \( N+1 \) pointsumm patirtition of the derivareal interval \( [-a,a] \), that ive.\/}s \( \displaystyle -a=q_{-N} < q_{-N+1} < \dots < q_{N-1} < q_{N}=a. \) \( \displaystyle \Delta_j = q_{j+1}-q_{j}, \quad j = -N, \dots, N-1. \) These versions of $\int_a^xdy\,g'(y)=g(x)-g(a)$separations can or cannot be equal and are Form at the given \( v\in\mathbb{R} \), backwaright hand side of this equality involve interd and forward finite difference terms ths derivatives, of a vector \( g=(g_{-N}, g_{-N+1},\dots,g_{N-1},g_N)^T \), at va\( q_j \), definished wheon the separation bpartition, aret \( \displaystyle (D_bg)_j=\frac{g_{j}-g_{j-1}}{\eta_{j}}, \) \( \displaystyle (D_fg)_j=\frac{g_{j+1}-g_j}{\chi_{j}}, \) the \( \displaystyle \eta_{j}=\frac{2}{v}\,e^{-v\Delta_{j-1}/2}
\sinh\left(\frac{v}{2}\Delta_{j-1}\right)
=\Delta_{j-1}+\frac{v}{2}\Delta^2_{j-1}+{\cal O}(\Delta^3_j), \) same. For the w\( \displaystyle \chi_{j}=\frac{2}{v}\,e^{v\Delta_{j}/2} \sinh\left(\frac{v}{2}\Delta_{j}\right)
=\Delta_j+\frac{v}{2}\Delta^2_j+{\cal O}(\Delta^3_j). \) Thole interval,discrete variable \( q_j \) weis havthe {\em The eigenfunction of the summation.\/} The finite differences versions of $\int_a^xdx\,v\,e^{vx}=e^{va}-e^{vx}$ adiscrete derivative operation with re \( \displaystyle (D_be^{vq})_j=(D_fe^{vq})_j=v\,e^{vq_j}, \) Whi_{f,n}}e^{vq_{n+1}}, {\sh. Notem The derivative of one.\/} {\eSom The derivative properties of $q$.\/} Th to one inconnection between forward and backward discrete derivatives. tThe limitequality of\( \displaystyle \eta_{j+1}=e^{-v\Delta_j} \chi_{j} \) simall $\Delta_j$.plies that {\em \( (D_fg)_j=e^{-v\Delta_j}\,(D_bg)_{j+1}. \) \( \displaystyle \sum_{j=-N}^n\Delta_j(D_fg)_j
=-\frac{\Delta_{-N}}{\chi_{-N}}g_{-N}
+\sum_{j=-N+1}^n\left(
\frac{\Delta_{j-1}}{\chi_{j-1}}
-\frac{\Delta_j}{\chi_{j}}\right)g_j
+\frac{\Delta_n}{\chi_{n}}g_{n+1}, \) {\tion term The derivative of a product of vectors.\/} {\em Tthe derivative of the inverse of a vectorseparation between mesh points is the same.\/} The eigenfunction of the summation. Theg fin{align*} The derivative of a constant function \( c \). \( (D_f\,c)_j=0,
\quad\text{and}\quad
(D_b\,c)_j=0. \) \( \displaystyle (D_f\,q)_j
=\frac{q_{j+1}-q_j}{\chi_{j}}
=\frac{\Delta_j}{\chi_{j}},
\quad\text{and}\quad
(D_b\,q)_j
=\frac{q_j-q_{j-1}}{\eta_{j}}
=\frac{\Delta_{j-1}}{\eta_{j}}. \) {\em These derivative of a ratio of vectors.\/} The chain rule. Forigh t)_j -\frac{(D_bh)_j}{h_jh_{j-1}}g_j\( \displaystyle (D_fg(h(q)))_j=({\cal D}_fg(h))_j\,(D_fh)_j, \) {\tem Summation by parts.\/} \( \displaystyle (D_bg(h(q)))_j=({\cal D}_bg(h))_j\,(D_bh)_j, \) The derivative of a product of vectors. Theregin{ align*} \( (D_f\,gh)_j=g_{j+1}(D_fh)_j+(D_fg)_jh_j., \) The derivative of a vector of inverses. \( \displaystyle \left(D_f\,\frac{1}{h}\right)_j=-\frac{(D_fh)_j}{h_jh_{j+1}},
\quad\text{and}\quad
\left(D_b\,\frac{1}{h}\right)_j=-\frac{(D_bh)_j}{h_jh_{j-1}}, \) The derivative of a vector of ratios. Thi_{f,j-1}} \( \displaystyle \left(D_f\,\frac{g}{h}\right)_j=\frac{(D_f\,g)_j}{h_j} -\frac{(D_fh)_j}{h_jh_{j+1}}g_{j+1}, \) \( \displaystyle \left(D_f\,\frac{g}{h}\right)_j=\frac{(D_f\,g)_j}{h_{j+1}} -\frac{(D_fh)_j}{h_jh_{j+1}}g_j, \) \( \displaystyle \left(D_b\,\frac{g}{h}\right)_j=\frac{(D_b\,g)_j}{h_{j-1}} -\frac{(D_bh)_j}{h_jh_{j-1}}g_j, \) \( \displaystyle \left(D_b\,\frac{g}{h}\right)_j=\frac{(D_b\,g)_j}{h_j} -\frac{(D_bh)_j}{h_jh_{j-1}}g_{j-1}. \) Summation by parts. \( \displaystyle \sum_{j=-N}^{N-1}\Delta_jg_{j+1}(D_fh)_j
+\sum_{j=-N}^{N-1}\Delta_j(D_fg)_jh_j=\cal{I}_1, \) wht)\Delta_{N-1}h_Ng_N. Also \( \displaystyle \sum_{j=-N+1}^n\Delta_{j-1}g_j(D_bh)_j
+\sum_{j=-N+1}^n\Delta_{j-1}(D_bg)_jh_{j-1}
=\cal{I}_2, \) The commutator between \( q \) and $D$\( D \).\/} The discrete version of $\frac{d}{dq}qh(q)-q\frac{d}{dq}h(q)=h(q)$the relationship \( \displaystyle \frac{d}{dq}qh(q)-q\frac{d}{dq}h(q)=h(q) \) becomes \( \displaystyle (D_f\,qh)_j-q_{j+1}(D_f\,h)_j=\frac{\Delta_j}{\chi_{j}}q_j, \) Translation of the exponential function. Theg din{align*} {\enemrator of Ttranslations of the exponential function.\/} Weg win{align*} \( \displaystyle \tilde g_j=(Fg)_j=\frac{1}{\sqrt{{\cal V}}}
\int_{-{\cal V}/2}^{{\cal V}/2}e^{ivq_j}g(v)dv, \) We \int_{-{\cal V}/2}^{{\cal V}/2}e^{ivq_j}g(v)dv, {\em The discrete Fourier transform\/}d of the discrete Fourier transform of a vector \( h_j \) $which_j$ is defined as {\em The coInjugate of $D_f$}. Consider the equality The adjoint of \( D \). Consqidert{\frac{\Delta_{N-1}}{\cal V}}\,(D_be^{-ipq}h)_N. {\em The conjugate of $q_j$The conjugate of \( q_j \).} The relationship {\em The normalized eigenvector\/} of the coordinate operator eigenvector of the coordinate operator with eigenvalue $q_n$\( q_n \) in the $v$\( v \) representation is The_{q_n}(v)=se^{-ivq_n}/\sqrt{\cal V}$. Or functhionormalitys are $\orthonormal int_{-{\cal V}/2}^{{\cal V}/2}dv\, Now, thext{ conjugate to the coordinate eigenvector \( e_{q_n}(v) \) isi \( \displaystyle \)\( \displaystyle e_{q_n}(m)
=\frac{1}{\sqrt{{\cal V}}}\int_{-{\cal V}/2}^{{\cal V}/2}
e^{ivq_m}\frac{e^{-ivq_n}}{\sqrt{\cal V}}dv
=\sqrt{\frac{{\cal V}}{2a}}\,
\text{sinc}\left[\frac{\cal V}{2}(q_m-q_n)\right], \) anc} {\ orthonormality bem Conjugate vectors.} The conjugatween these vector to $e_{q_n}(v)=e^{-ivq_n}/\sqrt{\cal V}$ is reads \( \displaystyle \sum_{m=-N}^N\Delta_me^*_{q_j}(m)e_{q_n}(m)=\sum_{m=-N}^N
\text{sinc}\left[\frac{\cal V}{2}(q_m-q_j)\right]\,
\text{sinc}\left[\frac{\cal V}{2}(q_m-q_n)\right], \) {\emNow, Tthe normalized} eigenvector of the discrete derivative with eigenvaluec \( v \) in tor,he conjugate to $e_{q_n}(v)=e^{-ivq_n}/\sqrt{\cal V}$ is and{align*} {\em Tthe orthonormality\/} betweengonality for these vectorstates reads Theg conjugate function to \( e_{v}(n)=e^{ivq_n}/\sqrt{2N+1} \) in{als Thign*} Thop{\longrightarrow}_{{\cal V}\to\infty} {\em Thste normalized eigenvector\/} of the p more in the theory of discrete derivative with eigenvalue $v$ in the coordinate representation is $e_{v}(n)=e^{ivq_n}/\sqrt{\Delta_n(2N+1)}$ {\emoperators. It shows that it is possible to have discrete operators very similar Orthogonality} {\ore m The conjugate\/} function to $e_{v}(n)=e^{ivq_n}/\sqrt{2N+1}$ is We^{i(v'-v)q_j}} Thiscus ised a local approach to the finite differences first derivative. Another point of view is obtained by collecting the finite differences at each point of the mesh in a single matrix, the subject of another article. Another approach futo the derivative on a mesh make use of second order finite differences. This subject is deal with in another articlesure work.[5][6]
\b the integin{align*}
a=q_{-N}tion <of q_{-N+1} < \dots < q_{N-1} < q_{N}=b.
\eobtaind{align*}
Theng diseparations between mesh points are
\begicrete operators for use in Quantum Mechanics theory. It is common{ thalign*}
\Delt a_j = q_{j+1}-q_{j}, \quad j = -N, \dots, N-1.
\end{ quantum operator has align*}
\[ (D_fg)_j=\frac{g_{j+1}-g_j}{\chdi_{f,j}},
\quad
\schi_{f,j}=\frac{e^{v\Delta_j}-1}{v}
=\Dete spelcta_j+\frac{v}{2}\Delta^2_j+{\cal O}(\Delta^3_j). \]
\brum and a degrin{align*}
(D_fe^{vativq})_j=v\,e^{vq_j},
\end{al wign*}
%
\[ depends on the (D_bg)_j=\frac{g_j-g_{j-1}}{\chi_{b,j}},
\quad
\nchti_{b,j}=\frac{1-e^{-v\Delta_{j-1}}}{v}
=\Delons thata_{j-1}-\frac{v}{2}\D welta^2_{j-1}
+{\cwal O}(\Delta^3_{j-1}), \]
%
which alsnt to complnsies wider. In th
%
\begin{s align*}
(D_brticle^{vq})_j=v\,e^{vq_j}.
\en we d{align*}Properties
%
$the real exponential \frac{\chi_{b,j+1}}{\chi_{f,j}}
=e^{-v\Deunction. This willta_j}
$ implrovies thade with a moment
%
\[um (D_fg)_j
=ope^{-v\Delrator ta_j}\,(D_bg)_{j+1}
.o be \]The partition
The fseparatinite diffeons between mesh points arenc
%
\beg fin{align*}
&\sum_{j=-N}^n\Delta_j(D_fg)_j
%
&=
-\frac{\Delta_{-N}}{\c. Thi_{f,-N}}g_{-N}
+\e disum_{j=-N+1}^n\lcreft(
te \fvarac{\Delta_{j-1}}{\chi_{f,j-1}}
iable $q_j$ -\frac{\Delta_j}{\chi_{f,j}}\right)g_j
s +\frac{\Delta_n}{\chi_{f,n}}g_{n+1}
,
\hend{al ign*}
%
annd
%
\bepegin{align*}
&\Ddelta_{-N}(D_fg)_{-N}
+\sum_{j=-N+1}^n\Delta_{j-1}(D_bg)_j
%
&=
-\left(\f varac{1}{\chi_{f,-N}}
+\frac{1}{\chi_{b,-N+1}}\right)\Delta_{-N}g_{-N}
+\fle with rac{\Delta_{-N}}{\chi_{f,-N}}g_{-N+1}
+\sum_{j=-N+1}^{n-1}\lpeft(
ct to \frac{\Dwelta_{j-1}}{\chi_{b,j}}
-\fr will calc{\Delta_j}{\chi_{b,{j+1}}}\right)g_j
+\frac{\Dulatel ta_{n-1}}{\chi_{b,n}}g_n
%,
\hen d{align*}
%
wherivativere $n<N$. The summation teof a function.The exact finite differences derivative
wheen mesh points ire the denominators are defined as
%
\beg in{aligdepen*}
&
\sum_{j=-N}^{N-1}\Ddelnta_j(D_fg)_j
+\Deltva_{N-1}(D_bg)_N
\\
%
&=
-\friac{\Delta_{-N}}{\chi_{f,-N}}g_{-N}
ble with +\resum_{j=-N+1}^{N-1}\left(
pect \frac{\Delta_{j-1}}{\chi_{f,j-1}}
o which we will -\frcac{\Delta_j}{\chi_{f,j}}\right)g_j
lculate the derivative -\ofrac{\Delta_{N-1}}{\chi_{b,N}}g_{N-1}+\left(\frac{1}
a function. {\cThi_{f,N-1}}
e +\frac{1}{\chi_{b,N}}\right)\Delta_{N-1}g_N
,
\unctions in the dend{alomign*}
%
\begin{nalign*}
&
\Delta_{-N}(D_ors ofg)_{-N}
+\ thesum_{j=-N+1}^N\Delta_{j-1}(D_bg)_j\\
&=-\l eft(\fxprac{1}{\chi_{f,-N}}
essions, the +\frac{1}{\chi_{bunctions \( \eta_{j} \) and \( \chi_{j} \),-N+1}}\ makes suright)
e that \Dthelta_{-N}g_{-N}
+\f reac{\Delta_{-N}}{\chi_{f,-N}}g_{-N+1}
+\sum_{j=-N+1}^{N-1}\l exponentialeft(
\frac{\Delta_{j-1}}{\chi_{unction \( e^{vq} \) be,j}}
-\frac{\Delta_j}{\chi_{b,j+1}}\right)g_j
+\frac{\Dexactlta_{N-1}}{\chi_{by,N}}g_N
,
\end{ align*}
%
\begin{al eign*}
\sum_{j=-N}^n\Deenvalta_jv\,e^{vq_j}
&=\sum_{j=-N}^n\Delta_j(D_f\ \( v \),e^{vq})_j\\
%
&=-\frawhic{\Delta_{-N}}{\chi_{f,-N}}e^{vq_{-N}}
+\h is the suam_{-N+1}^n\left(
e \fprac{\Delta_{j-1}}{\chi_{f,j-1}}
operty as the continuous -\fvarac{\Delta_j}{\chi_{f,j}}\right)e^{vq_j}
+\frac{\Diable derivativelt ha_n}{\cs.
\en \( |\eta_{j}-\Delta_j| \) and{ \( |\chi_{j}-\Delta_j| \) are lign*}
%
ess thand
%
\b somegin{ smalign*}
&\Delta_{-N}v\ \( \epsilon \),e^{vq_{-N}}
+\soum_{j=-N+1}^n\Delta_{j-1}v\,e^{vq_j}
%=\Delr method and ta_{-N}(D_f\,he^{vq})_{-N}
% +\usum_{j=-N+1}^n\Delta_{j-1}(D_b\,e^{vq})_j\\
%
&=al finite-\ledift(\frac{1}{\chi_{f,-N}}
ferences +\fderac{1}{\chi_{b,-N+1}}\right)
\Delta_{-N}e^{ivq_{-N}}
+\frac{\Delta_{-N}}{\chi_{f,-N}}e^{vq_{-N+1}}
+\ive give suim_{j=-N+1}^{n-1}\left(
ilar \frac{\Delta_{j-1}}{\chi_{b,j}}
esults -\frac{\Delta_j}{\chi_{b,j+1}}\right)e^{vq_j}
+\or any vector defrac{\Delta_{n-1}}{\chi_{b,n}}e^{vq_n},
\enned{alig on*}
%
w ther me $-N<n<N$.
%
\begithat the den{alomign*}
(D_f\,1)_j=0,
\qunad\text{ors \( \eta_{j} \) and}\quad
(D_ \( \chi_{j} \) b\,1)_j=0,
\ecome \( \Delta_j \) whend{align*} \( v=0 \).Properties of the finite-differences derivative
%
\bthe egin{xalign*}
(D_f\,q)_j
=\frac{q_{j+1}-q_j}{\chct fini_{f,j}}
=\frac{\Delta_j}{\chi_{f,j}},
\quad\text{an-d}\quad
(D_b\,q)_j
=\ifrac{q_j-q_{j-1}}{\chi_{b,j}}
=\ferac{\Delta_{j-1}}{\chi_{b,j}}.
\encend{align*}
%
These derivatives will approac are
The summation of the derivative. The chafin rule.\/}
%
\begite din{align*}
(D_fg(h(q)))_j
=({\cal D}_fg)_j\,(D_fh)_j,
\end{align*}
%
where
%
\begin{align*}
({\cales D}_fg)_j
=\fverac{g(h(q_{j+1}))-g(h(q_j))}{h(q_{j+1})-h(q_j)}.
\end{alsigon*}
%
s of \( \displaystyle \int_a^xdy\,g'(y)=g(x)-g(a) \) and
%
\bregin{align*}
(D_bg(h(q)))_j
=({\cal D}_bg)_j\,(D_bh)_j,
\end{align*}\( \displaystyle \sum_{j=-N+1}^n\Delta_{j-1}(D_bg)_j
=-\frac{\Delta_{-N}}{\eta_{-N+1}}g_{-N}
+\sum_{j=-N+1}^{n-1}\left(
\frac{\Delta_{j-1}}{\eta_{j}}
-\frac{\Delta_j}{\eta_{{j+1}}}\right)g_j
+\frac{\Delta_{n-1}}{\eta_{n}}g_n, \)
%
where
%
\begin{align*}
({\cal \( \)\( n \)<\( N \). D}_bg)_j
=\frac{g(h(q_j))-g(Th(q_{j-1}))}{\chi_{b,j}}.
\end{ summalign*}
%
\bat the right hand side of these egin{qualign*}
(D_f\,gh)_j
=g_{j+1}(D_fh)_j+(D_fg)_jh_j
.
\end{altign*}
%
\begs in{align*}
(D_f\,gh)_j
=(D_fg)_jh_{j+1}+g_j(D_fh)_j
.
\volvend{ align*}
%
\bsymmetry tegin{rms thalign*}
(D_b\,gh)_j
=g_j(D_bh)_j+(D_bg)_jh_{j-1}
.
\end{t valign*}
%
\begin{align*}
(D_b\,gsh)_j
=(D_bg)_j wh_j+g_{j-1}(D_bh)_j
.
\end{align*}
%
\b
\lite dift(D_f\,\frac{1}{h}\right)_j
=-\ferences versions of \( \displaystyle \int_a^xdx\,v\,e^{vx}=e^{vx}-e^{va} \) arac{(D_fh)_j}{h_jh_{j+1}},e\( \displaystyle \sum_{j=-N}^n\Delta_jv\,e^{vq_j}
=\sum_{j=-N}^n\Delta_j(D_f\,e^{vq})_j
=-\frac{\Delta_{-N}}{\chi_{-N}}e^{vq_{-N}}
+\sum_{-N+1}^n\left(
\frac{\Delta_{j-1}}{\chi_{j-1}}
-\frac{\Delta_j}{\chi_{j}}\right)e^{vq_j}
+\frac{\Delta_n}{\chi_{n}}e^{vq_{n+1}}, \)
%
\quad\text{and}\quad
%
\l\( \displaystyle \sum_{j=-N+1}^n\Delta_{j-1}v\,e^{vq_j}
=\sum_{j=-N+1}^n\Delta_{j-1}(D_b\,e^{vq})_j
=-\frac{\Delta_{-N}}{\eta_{-N+1}}e^{vq_{-N}}
+\sum_{j=-N+1}^{n-1}\left(
\frac{\Delta_{j-1}}{\eta_{j}}
-\frac{\Delta_j}{\eta_{j+1}}\right)e^{vq_j}
+\frac{\Delta_{n-1}}{\eta_{n}}e^{vq_n}, \)wheft(D_b\,\frac{1}{h}\right)_je \( -N \)<\( n \)<\( N \).
=-\frac{(D_bh)_j}{h_jh_{j-1}}The derivatives of \( q \).
\end{align*}
%
\begin{s will approach to one in the limit of smallig \( \Delta_j \). In*}
\left(D_f\,\fr pac{g}{h}\right)_j
&=\fratic{(D_f\,g)_j}{h_j}
-\frulac{(D_fh)_j}{h_jh_{j+1}}g_{j+1}
%=\frac{h_{j+1}(D_f\,g)_j-(D_fh)_jg_{j+1}}{h_jh_{j+1}}
.
%
\qu both \( (D_f\,q)_j \) and\t \( (D_b\,q)_j \) are ext{or}\quad
%
\l to oneft(D_f\,\frac{g}{h}\ when \( v=0 \).
=\frac{(D_f\,g)_j}{h_{j+1}}
e -\frac{(D_fh)_j}{h_jh_{j+1}}g_j\\
.
\orward schend{align*}
%
and
%
\bmeg thin{align*}
\ls rulef t(D_b\,\frac{g}{h}\right)_j
=\frac{(D_urns to b\,g)_j}{h_{j-1}}
e
,
%
\quad\twhext{or}\quade
% \( \displaystyle ({\cal D}_fg(h))_j
=\frac{g(h(q_{j+1}))-g(h(q_j))}{h(q_{j+1})-h(q_j)}. \)
\lFor theft(D_b\,\frac{g}{h}\right)_j
=\frac{(D_b\,g)_j}{h_j}
backward -\frac{(D_bh)_j}{h_jh_{j-1}}g_{j-1}
.
\eind{align*}
%
\bdifferegin{align*}
&\sum_{j=-N}^{N-1}\Dcelta_jg_{j+1}(D_fh)_j
+\Delta_{N-1}g_N(D_bh)_N
+\sum_{j=-N}^{N-1}\D welta_j(D_fg)_jh_j
+\Delt ha_{N-1}(D_bg)_Nh_{N-1}
=\tvext{b.i.t},
\end{align*}
%
where
%
\b \( \displaystyle ({\cal D}_bg(h))_j
=\frac{g(h(q_j))-g(h(q_{j-1}))}{h(q_{j})-h(q_{j-1})}. \)
&\trext{b.i.t.}
=\s foum_{j=-N}^{N-1}\Delta_j(D_f\,gh)_j
r +\Delta_{N-1}(D_b\,gh)_N\\
&=-\frac{\Dequalita_{-N}}{\chi_{f,-N}}g_{-N}h_{-N}ies
\( \displaystyle (D_f\,gh)_j=(D_fg)_jh_{j+1}+g_j(D_fh)_j, \)
+\sum_{-N+1}^{N-1}\left( \( \displaystyle (D_b\,gh)_j=g_j(D_bh)_j+(D_bg)_jh_{j-1}, \)
\f \( \displaystyle (D_b\,gh)_j=(D_bg)_jh_j+g_{j-1}(D_bh)_j. \)
prac{\Dovidelta_{j-1}}{\cd \( h_j,h_{j\pm 1} \neq 0 \).
-\ferac{\Delta_j}{\chi_{f,j}}\right)h_jg_j
-\ are fourac{\Delta_{N-1}}{\chi_{b,N}}h_{N-1}g_{N-1}\\
&\quad+\le versions of t(\frac{1}{\chi_{b,{N-1}}}
+\fhis prac{1}{\chi_{b,N}}\operigty
\rend{align*}
%
\( \displaystyle {\cal I}_1
=\sum_{j=-N}^{N-1}\Delta_j(D_f\,gh)_j
=-\frac{\Delta_{-N}}{\chi_{-N}}g_{-N}h_{-N}
+\sum_{-N+1}^{N-1}\left(
\frac{\Delta_{j-1}}{\chi_{j-1}}
-\frac{\Delta_j}{\chi_{j}}\right)h_jg_j
+\frac{\Delta_{N-1}}{\chi_{{N-1}}}h_Ng_N. \)The terms in the summation vanish when $\D\( \Delta_j\to0 \), i.elta_j\to0$. or when the separation between the mesh points is the same.
%
\b But wegin{ calign*}
&\Delta_{-N}g_{-N+1}(D_fn ch)_{-N}
+\Delta_{-N}(D_fg)_{-N}h_{-N}
+\osum_{j=-N+1}^n\Delta_{j-1}g_j(D_bh)_j
+\sum_{j=-N+1}^n\D thelta_{j-1}(D_bg)_jh_{j-1}
\\
\\
%
&=
-\l vefct(\frors \( \mathbf{h} \) ac{1}{\chnd \( \mathbf{g} \) i_{f,-N}}
+\fras suc{1}{\chi_{b,-N+1}}\right)\Delta_{-N}g_{-N}h_{-N}
+\fr a wac{\Dely ta_{-N}}{\chi_{f,-N}}g_{-N+1}h_{-N+1}
+\sum_{j=-N+1}^{N-1}\lefhat(
\frac{\Delta_{j-1}}{\chi_{b,j}}
he -\frac{\Delta_j}{\chi_{b,{j+1}}}\right)g_jh_j\\
&\qast sum vad+\frac{\Delta_{N-1}}{\chi_{b,N}}g_Nh_N
,
\nishend{as. Align*}so
{\em The commutator between $q$\( \displaystyle \cal{I}_2
=-\frac{\Delta_{-N}}{\chi_{b,-N+1}}g_{-N}h_{-N}
+\sum_{j=-N+1}^{N-1}\left(
\frac{\Delta_{j-1}}{\chi_{b,j}}
-\frac{\Delta_j}{\chi_{b,{j+1}}}\right)g_jh_j
+\frac{\Delta_{N-1}}{\chi_{b,N}}g_Nh_N. \)
% \( \displaystyle (D_b\,qh)_j-q_j(D_b\,h)_j=\frac{\Delta_j}{\eta_{j}}q_{j-1}. \)
\b
(D_f\,qh)_j-q_{j+1}(D_f\,h)_j
=\fscrac{\Delta_j}{\chi_{f,j}}q_j,
\ten d{align*}
%
\begrin{align*}
(D_b\,qh)_j-q_j(D_b\,h)_j
=\frac{\Dvativel is ta_j}{\chi_{b,j}}q_{j-1}
\hend{ali gn*}
%
\b \( \displaystyle (e^{s\,D_{b,f}}e^{vq})_j=e^{v(q_j+s)}. \)
(e^{s\,D_{b,f}}e^{vq})_j
=e^{v(q_j+s)}
\end{allig n*}
{\em The bounded Fourier transform\/}d of the bounded Fourier transform of a given function $g(v)$\( g(v) \) which is defined as
%
\begion{align*}
\ tildhe g_j=(Fg)_j
=\frac{1}{\mesqrt{2a}}
h.
\eso nd{align*}
%
\begin{align*}
\tilde h(v)=({\cal F}h)(v)
=\sum_{j=-N}^N\sqrt{\frac{\Delta_j}{\cal V}}\,e^{-ivq_j}h_j.\( \displaystyle \tilde h(v)=({\cal F}h)(v)
=\sum_{j=-N}^{N-1}\sqrt{\frac{\Delta_j}{\cal V}}\,e^{-ivq_j}h_j. \)
\end{align*}
%
These transformations preserve the norm of vectors and functions.
%
\bidistant caseg in{align*}
p({\ whicalh \( q_{j+1}-q_j=2\pi/(N-1) \) F}th)_j
&=\esum_{j=-N}^{N-1}\e transqrt{\frac{\Delta_j}{\cal V}}\,
forms can be ide^{-ipq_{j+1}}(-iD_fh)_j
+\ntified with the usqual Fouriert{\frac{\Delta_{N-1}}{\cal V}}e^{-ipq_{N-1}}(-iD_bh)_N
transform on \\\( [-{\cal V},{\cal V}] \)
&\quad +i\sum_{j=-N}^N\sqrt{\frac{\Delta_j}{\cal V}}\nd with the Fourier series,
(D_fre^{-ipq}h)_j
+specti\vely.
\end{ the equalign*}ty \( \displaystyle v({\cal F}h)_j=\sum_{j=-N}^{N-1}\sqrt{\frac{\Delta_j}{\cal V}}\,
e^{-ivq_{j+1}}(-iD_fh)_j
+i\sum_{j=-N}^N\sqrt{\frac{\Delta_j}{\cal V}}\,
(D_fe^{-ivq}h)_j. \)
%
Then, there is the relationship
%
\begin{align*}
p\leftrightarrow
\begin{cases}
e^{-ip\Delta_j}(-iD_fh)_j,& j=-N,\dots,N-1,\\
e^{ip\Delta_{N-1}}(-iD_bh)_N,& j=N.\( \displaystyle p\leftrightarrow e^{-iv\Delta_j}(-iD_fh)_j,\quad j=-N,\dots,N-1, \)
\end{cases}
\end{align*}
%
provided inthat terference and boundahe asymmetry terms
\( \displaystyle \sum_{j=-N}^{N-1}\sqrt{\frac{\Delta_j}{\cal V}}\,
(D_fe^{-ivq}h)_j, \)
vanishes.
%
\begin{align*}
q_j\tilde g_j
&=i\frac{1}{\sqrt{2a}}
\int_{-{\cal V}/2}^{{\cal V}/2}
e^{ivq_j}\frac{d\,g(v)}{dv}dv\( \displaystyle q_j\tilde g_j
=i\frac{1}{\sqrt{{\cal V}}}
\int_{-{\cal V}/2}^{{\cal V}/2}
e^{ivq_j}\frac{d\,g(v)}{dv}dv
-i\frac{1}{\sqrt{{\cal V}}}
e^{ivq_j}g(v)\Big|_{v=-{\cal V}/2}^{{\cal V}/2} \)
-i\frac{1}{\sqrt{2a}}
e^{ivq_j}g(v)\Big|_{v=-{\cal V}/2}^{{\cal V}/2}
\end{align*}
%
indicates that
%
\begin{align*}
q_j\leftrightarrow \( \displaystyle q_j\tilde g_j
=i\frac{1}{\sqrt{{\cal V}}}
\int_{-{\cal V}/2}^{{\cal V}/2}
e^{ivq_j}\frac{d\,g(v)}{dv}dv
-i\frac{1}{\sqrt{{\cal V}}}
e^{ivq_j}g(v)\Big|_{v=-{\cal V}/2}^{{\cal V}/2} \)
i\,\frac{d}{dv}
\end{align*}
%
provided boundary terms
\( \displaystyle \frac{i}{\sqrt{{\cal V}}}
e^{ivq_j}g(v)\Big|_{v=-{\cal V}/2}^{{\cal V}/2} \)
vanish.Eigenvetors of the coordinate operator
$ \( \displaystyle e_{q_n}(v)=\frac{e^{-ivq_n}}{\sqrt{\cal V}}. \)
a discrete^*_{q_m}(v)
se_{q_n}(v)nse, i.e.
=\ \( \displaystyle \int_{-{\cal V}/2}^{{\cal V}/2}dv\,e^*_{q_m}(v) e_{q_n}(v)=\text{sinc} \left[\frac{\cal V}{2}(q_m-q_n)\right] \)
d \ltheft[\frac{\cal V}{2}(q_m-q_n)\right]$
%
\begin{align*}
re_{q_n}(m)
=\frac{1}{\sqrult{2a}}\int_{-{\cal V}/2}^{{\cal V}/2}
which becomes the Krone^{ivq_m}\frac{e^{-ivq_n}}{\sqrt{\cal V}}dv
=\sqrt{\frac{{\cal V}}{2a}}\,
\tcker dext{sinc}\left[\frac{\calta \( \delta_{jn} \) V}{2}(q_m-q_n)\rigwht],
\end{align*} \( {\cal V}\to\infty \).Eigenvectors of the derivative operator
%
\bordinate represegin{align*}
e_{q_n}(m)
=\frac{1}{\sqrt{\Delta_m}}\,
\text{sinc}\left[\frac{\cal V}{2}(q_m-q_n)\right],on is
\e \( \displaystyle e_{v}(n)=\frac{e^{ivq_n}}{\sqrt{\Delta_n(2N+1)}}, \)
%
\b(31) \( \displaystyle \sum_{n=-N}^N\Delta_ne^*_{v'}(n)e_{v}(n)
=\frac{1}{2N+1}\sum_{n=-N}^Ne^{i(v-v')q_n}
\mathop{\longrightarrow}_{N\to\infty}
\delta(v-v'). \)
\( \displaystyle e_{v}(v')
=\sum_{j=-N}^N\frac{e^{i(v'-v)q_j}} {\sqrt{{\cal V}(2N+1)}} , \)
\s fum_{m=-N}^N\Delta_me^*_{q_j}(m)e_{q_n}(m)
&=\nction approximatesum_{m=-N}^N\D a delta_m\frac{1}{\Delta_m}
\text{s functionc}\left(\frac{\cal V}{2}(q_m-q_j)\right)
\t with small noisext{s inc}\left(\frac{\cal V}{2}(q_m-q_n)\right)\\ it.
%
&\matConcluding remarks
\delts is a_{jn}
,
\end{align*}
%
\bo thegin{align*}
\ usum_{n=-N}^N\Dealta_ne^*_{v'}(n)e_{v}(n)
=\f operator of c{1}{2N+1}\sum_{n=-N}^Ne^{i(v-v')q_n}
\montinuous vathop{\longrightarrow}_{N\to\infty}
\dable theory. We willta(v-v')
.
\ end{axplign*}
%
\bore things about this operator, Things likeg in{align*}
ts inve_{v}(v')
=\rsum_{j=-N}^N\sqrt{\frac{\Delta_j}{\cal V}}
e^{-, ivq_j}\frac{e^{iv'q_j}}{\sqrt{2N+1}}
=\s um_{j=-N}^N\sqrt{\frac{\Delta_j}{{\cal V}(2N+1)}}
e^{se in obtai(v'-v)q_j},
\end{align*}
{\emng Thse normalized vector is}
%
\blf-adjoint extegin{align*}
e_{v}(v')
=\sionsum_{j=-N}^N\, frac{or instance.
{\sqrt{{\chal V}(2N+1)}}
,
\enve d{align*}