Trauma-Related Internalizing and Externalizing Behaviors in Adolescence: Comparison
Please note this is a comparison between Version 1 by Daniela Laricchiuta and Version 2 by Vivi Li.

The adolescent brain is an open window on the environment, which is vulnerable to perturbations and the traumatic experiences occurring before or during this period have an increased saliency in affecting cognitive, emotional, and social levels. During adolescence, trauma-related effects causing significant impairment or suffering could be manifest in internalizing and externalizing behaviors. 

  • trauma
  • post-traumatic stress disorder
  • development
  • extroverted symptoms
  • introverted symptoms
  • amygdala
  • medial prefrontal cortex
  • multiple and multimodal therapeutic treatments

1. Introduction

Trauma occurs more often than peoplwe think in youths. By age 16, two-thirds of children reported at least one traumatic event [1]. Among traumatic events, it is possible to include psychological, physical, or sexual abuse; community or school violence; witnessing or experiencing domestic violence; national disasters or terrorism; commercial sexual exploitation; sudden or violent loss of a loved one; refugee or war experiences; family-related military stressors; physical or sexual assault; neglect; serious accidents or life-threatening illness.
The developmental period is especially crucial when examining the effects of trauma at both neurobiological and behavioral levels. Coping with a history of chronic trauma or experiencing exposure to acute trauma during the development may have different, and sometimes even more significant, bio-psycho-social effects than trauma exposure occurring in adulthood [2]. In particular, changes occurring during adolescence are strictly associated with a prolonged period of brain and behavioral adaptations to prepare the individual for independence. Very briefly, adolescent humans, nonhuman primates, and rodents develop similar behaviors, including separation from parents, enhanced social interactions, increased risk-taking and sensation-seeking behaviors, modified food intake, and postponed sleep cycles [3]. In addition, the transition to adolescence gathers attention because some neuropsychiatric disorders, including schizophrenia, manifest at this period of life [4][5][6][4,5,6], and the transition is especially risky for children who are growing up in traumatic environments [7][8][7,8], partially due to the heightened trauma reactivity that characterizes the onset of puberty [9][10][11][9,10,11]. In fact, the variety of drastic (progressive as well as regressive) alterations in the brain renders the adolescent system highly vulnerable to the effects of trauma exposure. A history of trauma can be preadolescence-limited (i.e., early childhood and childhood) or adolescence-limited (i.e., early adolescence, adolescence, and late adolescence), with trauma-related behavioral and brain effects measured in adolescence or in adulthood (the specific ages for each developmental period are shown in Figure 1).
Figure 1. Specific ages for each developmental period (i.e., early childhood, childhood, early adolescence, adolescence, late adolescence, and adulthood) are reported.
During adolescence, affective, cognitive, and behavioral symptoms related to trauma causing significant impairment or suffering could be classified within the internalizing and externalizing domains [12][13][14][12,13,14]. Internalizing problems are those having mood or emotion as their primary feature and include symptoms such as anxiety, depression, anhedonia, and withdrawal, while externalizing problems are those such as aggression, delinquency, oppositional defiant disorder, and conduct disorder [15][16][15,16]. Thus, it is important to recognize the signs of trauma and its short- and long-term consequences and, faced with the complexity of trauma-related consequences, psychoanalysts who work with adolescents are urged to co-construct a relationship with traumatized adolescents to favor the plastic potential of the brain and the Self, enlarging the therapeutic level to counteract the internalizing or externalizing behaviors.

2. Diagnostic Aspects and Neurobiological Correlates in Traumatized Adolescents: A Scenario on Externalizing/Internalizing Behaviors

One of the adaptive values of long adolescence is a prolonged period of synaptogenesis, neuroplasticity, and neuronal connectivity, all processes that sustain behavioral changes, mainly in the social domain, needed for the passage to adulthood [17][18][19,20]. The adolescent brain is vulnerable to environmental perturbations and traumatic experiences occurring before or during this period have an increased saliency in affecting cognitive, emotional, and social levels. Given these bio-psycho-social changes occurring in this part of life, diagnosing trauma-related disorders in adolescence is quite complex. In this life period, besides a categorical approach, a dimensional approach should be used in the diagnostic process as a tool to capture the elements of continuity in physiological and psychopathological trajectories of development [19][21]. According to the fifth edition of the Diagnostic and Statistical Manual (DSM-5) of mental disorders, trauma-related disorders during adolescence imply exposure to overwhelming, aversive, threatening, or fearful experiences [20][22]. Affective, cognitive, and behavioral symptoms related to trauma causing significant impairment or suffering can be accompanied by dissociative symptomatology (depersonalization and derealization on the positive pole, as well as dissociative amnesia on the negative pole). As mentioned above, trauma-related symptoms in adolescence can be classified within the externalizing and internalizing domains, along with a dimension ranging from hyper- to hypoarousal, and may also lead to a Reactive Attachment Disorder or an Uninhibited Social Engagement Disorder [12][13][14][12,13,14]. As regards externalizing behaviors, extroverted symptoms mainly occur such as: hypervigilance, impulsivity, hyperactivity, disinhibition, aggression, mood enhancement, intrusive thoughts, disorganized cognitive processing on the paranoid side, substance abuse, difficulty in attention and concentration, hyperactivity, and hyperexcitability, accompanied by depersonalization and derealization. Conversely, introverted symptoms mainly occur in the presence of internalizing behaviors, such as: freezing, social withdrawal, mood deflection, cognitive inhibition, depressive ideation, numbing, reduced psychomotor skills, avoidance behaviors, and feelings of impotence, accompanied by dissociative amnesia. The externalizing/internalizing conducts are grounded in a neurobiological basis, which undergo crucial changes during adolescence, especially in the presence of trauma. In fact, brain structure, function and connectivity, neurotransmitter levels, stress response, homeostasis maintenance, immune system, genetics/epigenetics, and gut microbiome undergo marked changes due to trauma exposure [21][22][23][23,24,25]. To improve understanding of how the effects of traumatic experiences on the brain involve changes at nearly every level of analysis, there is a need to comprehend the adolescent physiological conditions. During adolescence, brain remodeling is characterized by changes in associative and limbic circuits (such as the medial prefrontal cortex, amygdala, and hippocampus) subserving high-order processes (e.g., executive function, mentalizing, emotion regulation, and social cognition), along with dramatic changes in endocrine, immune, and biochemical systems [18][24][20,26]. The initiation of puberty represents a period of dynamic synaptogenesis and dendritic/synaptic pruning, with experience-dependent remodeling of brain circuits underlying complex behaviors [25][26][27,28]. Specifically, during this time there is substantial pruning of excitatory synapses in the cortex and in particular in the prefrontal cortex, supporting the hypothesis that overproduction and subsequent pruning of synapses is a computationally advantageous approach to building a competent brain [27][29]. A correct balance of activity of the GABA and glutamate systems is vital for optimal neurodevelopment and general central nervous system function, and the dysregulation of this balance has been implicated in a number of neurological conditions that range from mild to severe, including schizophrenia and epilepsy, and has been shown to increase the incidence of anxiety disorders [28][29][30,31]. In the context of trauma, the amygdala, the medial prefrontal cortex, and the hippocampus have been extensively investigated with respect to fear learning and extinction, threat reactivity, and emotion regulation [30][31][32][32,33,34], and they have been identified as critical loci of dysfunction following trauma [33][34][35,36]. Notably, acute exposure to threatening adversity promotes the secretion of hormones (e.g., cortisol) and pro-inflammatory cytokines, which drive changes in the structural plasticity of the amygdala and hippocampus to enhance fear learning in the occurrence of similar events [35][37]. Chronic exposure to traumatic events acts through these same hormonal and immune mediators to create glutamatergic excitotoxicity and atrophy in the amygdala and hippocampus linked to impaired memory and other behavioral and cognitive symptoms, commonly found in internalizing behaviors, such as depression [36][38]. Furthermore, deficits in the synthesis of GABAergic neurosteroids—produced from progesterone in the brain, adrenal gland, ovaries, and testes [37][39], clearly more active during puberty—have been implicated in the pathophysiology and recovery from trauma-related disorders [38][40]. For individuals raised in environments where multiple sources of threat are present and/or long-term survival is uncertain, the “developmental reprioritization” is often marked by an accelerated maturation, characterized by the early emergence of adult-like phenotypes [39][40][41,42]. Specifically, traumatized children showed adult-like neural phenotype in the functional connectivity between the amygdala and medial prefrontal cortex during threat processing [41][42][43][44][43,44,45,46], in parallel with experimental reports indicating that early adversity leads to accelerated myelination of axons in the amygdala [45][47]. Overall, across various types of traumatic experiences, an altered structure, function, and connectivity of the amygdala, medial prefrontal cortex, and hippocampus correspond to an increased fear reactivity, attentional biases towards threat, and difficulty with affective regulation [46][47][48][48,49,50], contributing to a risk of externalizing/internalizing behaviors.
ScholarVision Creations