RF Energy Harvesting Application in Medical Devices: Comparison
Please note this is a comparison between Version 1 by Hussein Yahya Alkhalaf and Version 2 by Conner Chen.

The widespread availability and the diversity of RF energy sources (external and ambient) and the exponential growth in the Internet of Things (IoT) and wireless sensor nodes have encouraged recent reported research work to employ RFEH techniques to energize low-power wearable and implantable medical devices. Biomedical devices gained widespread application in healthcare sectors due to the favourable feature of continuous monitoring of vital signals from the human body or apparent spurs from the internal body organs. RF (Radio Frequency) enenergy is a prominent integral block for wearable and implantable medical devices (IMDs)IMDs in sustaining the lifetime of the battery in use for an extended period, relaxing the need to change or recharge the battery frequently. This is enabled through the development and integration of ultra-low-power electronics, which decreases the power consumption of the primary sensor components to less than a milliwatt.

  • implantable medical devices
  • rectenna
  • RF energy harvesting

1. RF Energy Harvesting for Wearable Medical Devices

Wearable medical devices contribute significantly to improving the current medical system and supporting physical activities due to their ability to offer extensive monitoring of different physiological functions, emergency alerting, and computer-aided rehabilitation. These devices can be used in the healthcare sector and military sector for evaluating the mental and physical health of soldiers in combat [1][2][118,119]. This current global pandemic outbreak has significantly impacted the global healthcare system and, as such, has necessitated the deployment of remote monitoring systems to monitor its symptoms and perform essential tracking [3][120]. Researchers have over the years introduced several Internet of Things (IoT)T-based devices and wearables for accurate diagnosis and monitoring of patients in the prodromal phase; these devices can monitor the temperature, respiratory rate, and heart rate of the patients and provide real-time data for accurate treatments. Such devices are low in power consumption (ranges from pW to  μW) and can be efficiently powered using ambient RF (Radio Frequency) sources. Low-power devices include temperature sensor devices (power consumption ranges from 113 pW–1.4  μW) [4][5][6][7][8][97,121,122,123,124], biosensors, voltage, and current sensors (power consumption ranges from 9.3 nW–436 μW) [9][10][11][125,126,127]. Suggestions have been made for ambient RF power harvesting to power these devices instead of batteries [12][13][128,129]. RF energy harvesting (RFEH) systems provide a controllable and continuous source of energy. However, the implementation of RF harvesters to power wearable devices faces some issues, such as their ability to supply an adequate amount of energy and the deterioration in power transfer efficiency of far-field RFEH systems. Several innovative methods to design RFEH systems for energizing various types of low-power wearable medical devices are reviewed in the following subsections.

1.1. Wearable Inkjet-Printed RF Energy Harvester

The environmental friendliness and low-cost fabrication processes of additive manufacturing, such as 3D printing and inkjet printing, have increased its industrial relevance, as these emerging fabrication techniques are designed to significantly reduce the required number of manufacturing steps, such as the elimination of the etching processes, thereby improving the fabrication efficiency. Most of the time, wearable sensor devices are preferable in areas where disposable or single-time use is hygienically sorted, such as in hospital settings. This application type requires the creation of numerous circuit components within the device, using additive manufacturing to reduce the device cost. The improvements recorded recently in fabrication and performance have endeared inkjet printing technology to sensor and RF applications. In this regard, a design of enabling near-field RFEH for wearable sensors with an additional fabrication process was proposed in [14][130]. Their work fabricated circuit prototypes through a combination of conductive traces developed with conductive inkjet printing and masking technologies with lumped circuit components. Furthermore, the S-parameters were used to estimate the input power for the RF to DC conversion circuit; the circuit produced a peak output power of 0.146 W with a H-field harvester and 0.0432 W with an E-field harvester. The harvesters (E- and H-field) were subjected to several operation tests using a microcontroller communication module and an LED in both on-bottle and on-body bent/flex conditions to validate the functionality based on the energy from a two-way talk radio. The outcome of these tests ensures the compatibility of the developed inkjet-printed flexible energy harvesters to be adopted in wearable biosensors. Besides that, the work in [15][131] presented a flexible and wearable energy-autonomous on-body sensor network with complete RFEH operability using a handheld 464.5 MHz UHF band two-way talk radio, which was created using 3D printing and inkjet processes. The system is equipped with two different types of energy harvesters; the first one was attached to the sensing-capable backscattering RFID tags for the harvesting of the 464.5 MHz signal energy that will power the tags; the second type of energy harvester was attached to the hands of the wearer for the harvesting of the same 464.5 MHz signal to provide both the carrier signal and the DC power. The efficiency of this second energy harvester is higher than that of standard ambient energy harvesters. Being that the rectifier’s DC and second harmonics were used to support two extra functions, energy harvesting designs were used in the system. The estimated DC power of the energy harvester is 17.5 dBm, while the second harmonic output (SHO) is 1.43 dBm when a two-way talk radio is placed at a distance of 9 cm. Using the harvester-powered RF amplifier, the measured SHO power is boosted to 13 dBm.
To achieve particular structures, traditional 3D printing technologies often demand a large amount of time and support material. Therefore, the work by [16][132] proposed a fabrication approach to design an origami RF harvester system based on origami folding principles for use in high-frequency applications. This approach was devised such that it considerably decreases the amount of time required for the fabrication and removes the necessity for support material. The method entails fabricating a planar structure using 3D printing technology and then using inkjet printing to directly produce conductors on its surface. The inkjet-printed on-package conductive features were manufactured successfully and integrated with RFEH electronics to demonstrate the effectiveness of using origami techniques to build completely 3D RF systems. At the input power of 0 dBm, the RF energy harvester achieved a DC output voltage of 1.2 V. Furthermore, 3D printing can be a good way of solving huge parasitic problemsfor traditional package structures that have a major impact on the performance of the system [17][18][133,134]. An embedded-on-package 5G RF energy harvester that operates at 26 GHz was presented by [19][135]; this system performs within the 3D printed multilayer flexible packaging. The entire system is made using low-cost, quick-to-prototype additive manufacturing processes such as 3D printing and inkjet printing. In this system, the use of the isotopically radiated power EIRP that is permitted for 5G communication (which is 75 dBm) [20][136] rules out the issue of low power density for RF energy [21][137]. At a 20 cm gap from the source, an energy output voltage of 0.9 V was harvested with a transmitted equivalent (EIRP) of 59 dBm, whereas a >1 m range is anticipated when applying the full 75 dBm EIRP for 5G communication. Another work by [22][138] used a fabrication process that relies on a masking process that is inkjet-printed and then etched. Their work focused on improving the capability of typical shunt Schottky diode topologies that are deployed for energy harvesting in rectenna systems. This was accomplished by providing both flat and high-power conversion capabilities across the whole frequency range of interest. The system is a dual-tapered transmission-line-based matching network for the improvement of the rectification capability of the embedded Schottky diode. The rectenna is made up of a rectifier and a tiny monopole antenna that is optimized for a liquid crystal polymer (LCP) substrate. At an input power of 0 dBm, the flexible rectenna achieved a maximum power conversion efficiency (PCE) PCE of 40%.

1.2. Textile-Based Wearable RF Energy Harvester

Wearable devices may benefit considerably from embedded tiny electronics and conductive materials to usher in the smart clothing paradigm [23][139]. Rectennas made of textiles can be used in body-centric wireless communication systems that do not require batteries. Studies have reported the fabrication of many antennas made of textile materials for wireless communication [24][25][140,141]. To create a wearable device for power harvesting, some works have paired a textile antenna with a rectifier circuit manufactured on a printed circuit board (PCB) [26][61]. Several rectennas have been designed for single- or dual-band operation. For example, the work reported by [27][142] described a single-band textile rectenna that operates in the 4.65 GHz frequency band made with jeans cotton as the substrate, while the radiating element is copper tap. The textile rectenna achieved a DC output voltage of 400 mV with a maximum PCE of 55% at an input power of −5 dBm. A dual-band operating textile rectenna was developed by [28][143] in which the antenna is a sub-1 GHz (785–875 MHz) broad-beam rectenna with a 2.4 GHz off-body antenna. The PCE of this rectenna was 63.9% and the DC output was 650 mV from a power density of less than 0.8 μW/cm2. Next, in [29][144], a design of a complete textile-based rectenna system was presented. This rectenna is laden with a novel power management platform enabled independently through RF power harvesting. This rectenna operates at a frequency band of 900 MHz and 1800 MHz, and the wireless fidelity (Wi-Fi) band at 2.4 GHz. The RF properties of the textile rectenna are verified through nonlinear techniques, where textile materials and antenna layout are numerically characterized through electromagnetic simulations. The system is entirely autonomous and is operational even without the use of a battery at a low RF power level of −15 dBm.
To increase the output power of a rectenna, numerous research efforts have been devoted to designing a textile rectenna array. The authors in [30][145] introduced textile-based rectenna arrays for the provision of power in wearable electronic devices. The system is operated at 2.45 GHz and consist of 2 × 2 and 2× 3 rectenna components. Each of the elements consist of a rectifier and a patch antenna created from fabrics using conductive thread embroidery. At −10 dBm input power level, this rectenna achieved a PCE of 35%, whereas the average DC power of the 2 × 3 rectenna was roughly 80 μW at 60 cm from the source. However, the patch antennas and rectifying circuit were on the same layer, resulting in a considerable element-to-element distance. Thus, Chi et al [31][62] presented a 2 × 2 wearable textile-based rectenna array with a stack architecture for each rectenna to minimize the dimensions of the elements in the array. The rectenna element comprises a linearly polarized patch antenna and a single-stage full-wave Greinacher rectifier which are fabricated using Cordura textile material. The rectenna array was positioned on the human body at a distance of 150 cm away from the indoor access point (Wi-Fi). The maximum DC output voltage of the rectenna array was 1.05 V at an input power of 20 dBm. Juan et al. [32][146] developed a 2 × 2 textile rectenna array elements for RFEH based on the combination of the electromagnetically coupled microstrip patch antenna and a simple and precise construction method to improve the performance of multilayer microstrip textile patch antennas. Therefore, the patches and rectifier circuit pads were laser-cut, and the various layers were joined together with double-sided, thermally activated adhesive sheets. The patch antennas and the rectifiers were fabricated on pure copper polyester taffeta fabric. The on-body performance of the 2 × 2 textile rectenna array was verified through perfect alignment with the Tx antenna, as depicted in Figure 16. The on-body measurement of the proposed system obtained a maximum output power of 1.287 mW with a maximum PCE of 40% at an input power of 12 dBm. Estrada et al [33][147] proposed 16- and 81-element broadband rectenna arrays based on a strongly coupled bowtie antenna screenprinted on a cotton T-shirt for harvesting power densities of 4–130 μW/cm2 between 2 and 5 GHz. The broadband rectenna achieved a PCE of 32% at an incident power density of 100 μW/cm2.
Figure 16. On-body experimental setup of 2 × 2 textile rectenna array [32].
 On-body experimental setup of 2 × 2 textile rectenna array [146].

1.3. Stretchable and Flexible RF Energy Harvester

Due to the frequency detuning caused by the mechanical deformations, such as stretching or bending, the performance of the wearable rectennas was significantly reduced. For the target frequency bands of ambient wireless energies, the antenna size within the rectenna is restricted to a specific range even though the miniaturized, thin-film rectifying circuit design and the matching network can offer a strong mechanical property. Furthermore, for low ambient RF energies (less than 1 mW), the conversion efficiency of the existing rectennas from any single frequency is dramatically lowered [34][35][36][148,149,150], partly due to the limiting diode’s properties and the high loss of the antenna circuit and the impedance matching circuit [36][150]. Designing and demonstrating high-performance stretchable wideband rectennas and wideband antenna to integrate received RF energy over their bandwidth upon deformations is highly important. In this context, a design of stretchable wideband rectenna to resist mechanical deformations, operate robustly, and incorporate supplied RF power throughout their wideband operation was presented by [37][81]. The design proposes a hybrid of electromagnetic and mechanical approaches with a fabrication based on the laser to implement a highly efficient stretchable wideband rectenna with compatible mechanical properties. The integration of the rectenna is enabled through RF power with different laser-induced graphene (LIG) sensors producing a novel category of stretchable all-LIG devices for remote sensors and wearable devices. The rectenna reduces power consumption due to inherent highly conductive radiations. The rectenna comprises a wideband antenna integrated with a full-wave Greincher rectifier and two matching circuits to enhance the efficiency and sensitivity at the frequency band of 1.75 to 2.45 GHz. A microwave oven is employed as a radiation source in this experiment. The radiation from the microwave oven, which acts as the input power, is programmed to decrease as the distance between the transmitter and receiver increases. Considering the antenna loss and the matching network, this antenna exhibits PCE of 10% at the maximum input power of 0.001 mW. The stretchable wideband rectenna can harvest RF power from a mobile base station against multiple deformation modes such as twisting and stretching. The work reported by [38][80] designed a standalone stretchable RF energy harvester. The system comprises asymmetric 3D microstrip antenna incorporated with a matching network and flexible rectifier circuit forming a stretchable rectenna system to harvest the RF energy. The stretchable rectenna achieved a longer energy transfer distance and a double charging rate from the captured RF energy due to the optimized peak gain of the asymmetric 3D microstrip antenna. The standalone RF energy harvester consists of a stretchable rectenna integrated with stretchable sensing and energy storage module. To test the system in a practical application, the microstrip antenna was incorporated with the flexible supercapacitor and a stretchable strain sensor, both made of LIG foam. The stretchable rectenna efficiently charged the flexible supercapacitor from 0 to 0.5 V within 200 s. The stored energy in the supercapacitor was able to produce a DC output voltage of 1.8 V to energize the strain sensor.
Numerous rectenna systems have been described with features such as flexibility, lightweight, compactness, and wideband operation. Palazzi et al. [39][151] presented a new, compact, ultra-lightweight multiband RF energy harvester built on a paper material that covers all the recently released LTE bands (0.79–0.96 GHz; 1.71–2.17 GHz; and 2.5–2.69 GHz). The use of nested annular slots topology can offer great compactness and easy combination of rectifier and antenna. In the studied bands system, the suggested rectifier recorded PCE of 5–16% at 20 dBm input power, which improves to 11–30% at 15 dBm. Next, the study published by [34][148] constructed an atomically thin and flexible rectenna that was fabricated from a MoS2 semiconducting–metallic-phase heterojunction with 10 GHz cutoff frequency, which is a significant speed improvement of about one order of magnitude. The same piece of Kapton film was also used to create the MoS2 rectifier and flexible receiver antenna. RF power was wirelessly harvested in the Wi-Fi channel (5.9 GHz) using the flexible MoS2 rectenna which produced up to 250 mV rectified output voltage at a distance of about 2.5 cm from the transmitter antenna. At 0.7 dBm input power, this rectenna achieved a maximum PCE of 40.1% at 2.4 GHz.
A flexible RFEH system’s low efficiency can be solved by introducing multipath in the environment while quasi-omnidirectional RF reception can be achieved using antenna diversity; this increases the chances of receiving energy in a realistic environment. The study by [40][152] proposed a 3D flexible antenna diversity that can be fitted into rectangle packaging with the aim of exploiting the benefits of the packaging form andambient RFEH operation in an indoor environment. To ensure low cost and flexibility, Rogers 4003 substrate was used to design the angle and polarization diversity antenna; this resolved the issue of poor substrate performance and preserved the antenna’s compact size, strong isolation, and high radiation efficiency. Various scenarios were performed for the measurement of rectenna in a realistic environment. Scenario S1 tested the available power in the environment at each point and direction by employing a typical antenna patch. Scenario S2 evaluated the absorbed power at each point and in each direction, utilizing the typical antenna patch and rectifying circuit A (Rectenna 1A). Scenario S3 employed four patch antennas oriented in opposite and perpendicular orientations to exploit the geometrical advantages of the packing box connected with Rectifier B (Rectenna 1B). This scenario was designed to assess the performance of a varied antenna system operating in an interior environment. Scenarios S4 and S5 used the flexible antenna diversity with a separated rectifier (Rectenna 2) and an integrated rectifier (Rectenna 3), respectively. These scenarios compared the performance of the flexible rectenna diversity and conventional patch diversity. The proposed 3D flexible structure achieved a median harvested power of 124 nW, which corresponds to a nominal PCE of 6.1% at 0.1 mW/m2 median input power. Most of the work described above focuses on creating a single rectenna that may not be powerful enough for certain applications. Therefore, the work by [41][153] presented a cylindrical dual-band flexible rectenna array that works in the LTE band (1.8 and 2.4 GHz) which can harvest RF energy from a range of sources within the azimuth plane. The components of each rectenna subsystem include a monopole antenna (dual-ring-shaped dual-band) and a rectifying circuit (dual-band) fabricated on a polyimide substrate. At 12 dBm input RF power, the designed single rectenna unit can achieve up to 40% power conversion efficiency.

1.4. Discussion

The previous section explored various ways of designing RFEH systems for powering a range of low-power wearable medical devices. RFEH technology is an appropriate solution for powering wearable medical devices in order to maintain power autonomy and ensure maintenance-free batteries. There are some issues associated with the design of a complete wearable rectenna, such as the reliability of the connectivity between rigid and flexible system components, optimizing the power conversion performance to enhance transfer range, maintaining efficiency and pattern of radiation on the human body, and the performance fluctuation caused by the bending effect, particularly for the antenna. Therefore, advancements in the design of lightweight, compact, and flexible rectennas capable of harvesting the maximum amount of RF energy from different RF sources randomly distributed in space are still required. One of the possible solutions to achieve this is by designing a flexible and lightweight rectenna array arranged in different orthogonal orientations. On the other hand, future advancement in the design of stretchable rectennas can be achieved by integrating or using the metasurface ground [42][43][154,155] or stretchable patch antennas [44][70] with wideband designs [37][45][46][81,156,157] to improve the on-body RFEH performance and further decrease the absorption in the lossy tissues. There are two approaches to designing highly efficient stretchable wideband rectennas. First, by using stretchable wideband antennas with circular polarization [47][158] or dual-polarization [48][159] to incorporate the randomly polarized EM field in a realistic environment; second, by using the spin diode rectifiers to improve the PCE [49][160].
The performance of the wearable RFEH system is affected by several technological challenges, such as the decrease in available energy density as propagation distance increases; impedance mismatch that is caused as a result of differences in the input resistance and reactance between the antenna and rectifier circuit; decreasing the rectenna size while improving the PCE; the dependency of the PCE on the enhancement of the RFEH circuit sensitivity. To overcome these challenges and improve the performance of the wearable RFEH system, several considerations need to be accounted for, such as the following:
  • The efficiency of the system determined by the suitable range and operating frequency;
  • The design and integration of an appropriate rectifier circuit by evaluating the required output power and input sensitivity;
  • The integration of a compact matching network for maximum power transfer independent of input power, frequency, or load change;
  • The received signal strength is dependent on the design of an antenna with high gain and wide bandwidth;
  • The design of a flexible and lightweight rectenna, capable of harvesting RF power from numerous RF sources, distributed randomly in the space;
  • The antenna used in the wearable rectenna design should withstand various mechanical deformations such as stretching, bending, rolling, and twisting.
  • The efficiency of the system determined by the suitable range and operating frequency;
  • The design and integration of an appropriate rectifier circuit by evaluating the required output power and input sensitivity;
  • The integration of a compact matching network for maximum power transfer independent of input power, frequency, or load change;
  • The received signal strength is dependent on the design of an antenna with high gain and wide bandwidth;
  • The design of a flexible and lightweight rectenna, capable of harvesting RF power from numerous RF sources, distributed randomly in the space;
  • The antenna used in the wearable rectenna design should withstand various mechanical deformations such as stretching, bending, rolling, and twisting.

2. RF Energy Harvesting for Implantable Medical Devices

The highlight of implantable medical devices (IMDs) is in the continuous monitoring of human body biological signals to enhance healthcare quality. Due to the favorable inherent low power consumption of IMDs, the goal of manyrecent research groupworks is to extend the battery lifetime of the devices in use. Many of these devices are enabled through a battery that needs frequent replacement, and in the case of invasive devices, surgical intervention is necessary which affects the comfort of patients. Supplying the IMDs with stable and permanent renewable energy sources remains an ongoing challenge. Ambient RFEH is considered as an appropriate solution in addressing this bottleneck. RFEH for IMDs can be achieved in the near-field or far-field scavenging. Some works have also reported midfield energy harvesting [50][51][52][85,165,166]. Therefore, the subsequent part of theise contents paper discusses the RF energy harvesting for IMDs in the near field, midfield, and far field.

2.1. Near Field

In the conventional near-field inductive and resonant coupling [53][54][55][167,168,169], an optimized design of a transmitter coil is important to increase the wireless power transfer (WPT) efficiency. Power leakage is an additional impediment restraining the widespread use of WPT. The power leakage potentially causes failure to other medical devices [56][170], posing serious health risks. The conventional inductive coupling method can contribute to the focusing of magnetic field in a specific focal region within human tissue. For instance, the low-frequency inductive coupling has been used for wireless telemetry of IMDs since lower frequencies have better penetration in the tissues [57][171]. Despite the wide use of near-field energy harvesting by the reported research works, there are some bottlenecks in adopting this system. The system requires consistent calibration, accuracy, and alignment between the transmitter and receiver coils, where the distance between IMDs and the power supply must be only few centimeters. However, studies in [58][59][172,173] adopted the radiative near-field (RNF) region (Fresnel zone) of the transmitter Tx, which is less sensitive to Tx–Rx misalignments. The IMDs that use the RNF WPT technique are powered at the operating frequencies of 1.9 GHz and 2.4 GHz. Moreover, the devices are incorporated with an antenna, rather than spiral coils, to capture the RF energy. The work reported in [59][173] used the RNF technique to eliminate the alignment issue with power of the sensor devices enabled wirelessly from the near-field radiating patch antennas. Shah et al. [60][174] designed a miniaturized wireless IMD that uses the RNF WPT technology for wireless monitoring elevated intracranial pressure (WICP). The prototype of this device comprises an Rx antenna, a styrofoam spacer, dummy PEC elements realized as a dual layer PCB, and an alumina container. The power transfer efficiency (PTE) of the IMD was measured in terms of distance variations. The maximum achieved PTE was −25.9 dB at 20 mm (0.1267λ) Tx–Rx separation. The setup to demonstrate the performance of WPT comprises an external RF transmitter coil, a receiver antenna immersed in saline solution, a rectifier circuit, and a green LED employed as a DC load. The work reported by [61][175] proposed a metasurface-based technique to improve the efficiency of the RNF WPT system. The technique is based on using the high refractive index of the metasurface to improve the PTE. The metasurface, which includes a transmitting patch and a receiving implantable loop antenna (see Figure 27a–c), is positioned above the surface of the skin layer in the WPT link. The Rx element is located in a skin-mimicking gel, minced pork, and a pork slab incorporated with a metasurface, as described in Figure 27d–f. The system exhibited a PTE of 1.26% for the skin-mimicking gel. To extend the operating distance in the near-field WPT, the work reported by [62][176] proposed a synchronized biventricular (BiV) pacing in a leadless fashion by implementing miniaturized and inductively powered pacemakers. An integrated circuit design was employed to reduce the power consumption of these pacemakers, which significantly increased the maximum operating distance to 8.5 cm and 11 cm from 1 W Tx power at frequency bands of 40.68 MHz and 13.56 MHz, respectively. Junho et al. [63][177] used an inductive coupling method for the WPT system to recharge an implantable ECG monitoring device continuously for 23.6 h. The Tx and Rx coils were fabricated to charge the battery wirelessly, as depicted in Figure 38a. The mainboard, a battery, and the Rx coil were positioned together similarly to the ECG monitoring system, with the coil spacing set at 4 mm, taking into account the animal testing situations as illustrated in Figure 38b. The proposed ECG monitoring device was implanted into a rat to measure and transmit the ECG, as shown in Figure 38c,d. The WPT system achieved a charging voltage of 4.2 V with a PTE of 10% at an input power of 1.8 W. However, the WPT system suffers from electromagnetic interference. The biopotential is small and, thus, it is exposed to noise, such as 60 Hz, from the power line. As a result, the ECG was not measured accurately while utilizing the WPT.
Figure 27. Prototype and measurement setup of implantable WPT system: (a) fabricated Tx patch antenna; (b) fabricated RX implantable loop antenna; (c) metasurface design of 4 × 4 unit cell array; (d) testing RX element inside skin-mimicking gel; (e) testing RX element inside minced pork; (f) testing RX element inside pork slab [61][175].
Figure 38. WPT system for implantable ECG monitoring device: (a) fabricated Tx and Rx coils; (b) mainboard, battery, and Rx coil positioned similar to the ECG device; (c) implantation of the ECG device in the rat; (d) WPT process in anesthetized rats [63][177].
Magnetic resonant coupling is another type of near-field WPT technology that is often used to power IMDs. This method offers high PTE and has been used to power ventricular assist devices; the method used implantable wire coils (length = 9.5 cm, diameter = 22 mm) for energy delivery [54][57][168,171]. However, the frequency employed in this technology is quite low, hence limiting the channel capacity and the potential data rate that is required for numerous applications, such as retinal prostheses and recording of multichannel neural networks [64][65][178,179].
On the other hand, the study by [66][180] experimented with a wireless powering method based on near-field capacitive coupling (NCC) for efficient energy transmission to IMDs. The authors identified that the sub-GHz frequency range is the appropriate operating frequency of the NCC technique for subcutaneous power transfer by modeling the power link. The implementation of a conformal and flexible power receiver, as well as compliance with the IEEE C95.1 standard for safe absorption, are desirable features of this method. The NCC link was designed and tested on a non-human primate (NHP) cadaver, and the results show its ability to safely supply power (up to 0.1 W) to IMDs at a maximum efficiency of >50%.

2.2. Midfield

The midfield WPT method is an integration of near-field inductive and far-field radiative methods at a frequency range of sub-GHz–GHz. This method was presented to eliminate the limitation of the traditional WPT methods [64][67][68][69][70][71][72][178,181,182,183,184,185,186]. A conventional midfield method is created based on an appropriate operating frequency and proper current distribution surface on the transmitter source. This method is focused on exploiting propagating fields in the electromagnetic midfield, where the wavelength is identical to the transfer depth. Unlike the near-field scenario, the 3D field pattern in this approach is determined by interference which allows improved energy transfer by manipulating the power flow lines [51][73][74][165,187,188]. In order to obtain high PTE in a deep implantation position, an appropriate operating frequency is selected depending on the depth of IMDs and tissue layer properties [68][182]. Multiple midfield WPT systems have been presented to power numerous IMDs. Andrew et al. [72][186] proposed a midfield WPT system that operated at almost any area in the body. A midfield source with numerous excitation ports was developed in this system. The system was evaluated by two configurations that mimic power transmission to devices in the cortex area of the brain in pigs and the left ventricle of the heart. The received power at the implant coil for the heart and brain configurations were 198 μW and 200 μW, respectively, with the Tx source power of 500 mW located 40 mm away. However, this system requires an external controllable circuit to achieve proper distribution of the current. The study by [75][189] reported the use of a multiband conformal antenna for midfield WPT in IMDs. The antenna was tuned using a T-shaped ground slot before wrapping it with a 3D printed capsule prototype to test run its suitability in various biomedical devices. A shorting pin scheme was suggested to reduce the complexity of the system and obtain a circular current path with two excitation ports. The system was tested in minced pork muscle and obtained an output power of 2.9 mW with a 1 W Tx source power located 55 mm away. Nguyen et al. [69][183] proposed a compact transmitting design in the midfield band that can concentrate the magnetic field into human tissue. To create a focusing field with one excitation port, an aperture coupled excitation approach was investigated in theirs work. The system was evaluated in porcine muscle and achieved an output power of 5.6 mW with a 1 W Tx source power located 55 mm away. Notwithstanding, the transmission coefficient of this system is reduced by about 7 dB when rotating Rx, which means the system is sensitive to Rx misalignment. To overcome the misalignment sensitivity of the midfield WPT system, the work reported by [52][166] designed a bipolar spiral Tx construction. At the Tx source, a multiturn design is used to identify an appropriate current distribution surface and to produce a rotating magnetic field inside human tissue. The system was measured in minced pork and achieved a transmission coefficient of −20.48 dB and −22.15 dB at a distance of 45 mm and 60 mm, respectively.
The efficiency of the WPT system is reliant on the RF-to-DC rectifier since efficient rectification and effective RF power contribute significantly to a successful midfield WPT. Hence, a rectifier can achieve wide operating bandwidth and high conversion efficiency to compensate for the frequency shifts due to differences in the electrical potentials of the body tissues [76][190]. However, previous studies have shown that it is a difficult task to achieve both extended input power range and broadband characteristics in a high-efficiency rectifier design because a rectifying diode exhibits nonlinear characteristics at different input power levels and operating frequencies. Considering these, the work by [77][191] proposed a novel rectifier that achieves both broadband and wide dynamic input power range; a modified real-frequency (MRF) technology was used in the design of the rectifier circuit to power deep-placed IMDs in the human body. As a numerical technique, the MRF technique achieves optimum performance by generating a bounded input reflection coefficient, and this differentiates it from the traditional methods where the preselection of the network topology is needed to design the matching network. The operating bandwidth of the fabricated rectifier ranged from 0.9–1.7 GHz, whereas the PCE was >50% at the input power level of 0 dBm. The compact size of the circuit, which is 16 × 11 mm2, made it suitable for use with IMDs. The proposed rectifier recorded a measured DC power at load value of around 0.9 mW upon the application of 250 mW to the transmitter source.

2.3. Far Field

As the far-field radiative charging is more resistant to changes in antenna location, orientation, and environment, it is more suitable in the use for higher implantable depth. It is adoptable for high-frequencies’ operation, given that a small supporting antenna can be used to reduce the implanted devices’ size. Hence, the proposed solution is implanted deep inside a patient’s body without much discomfort as the user’s mobility is not restricted while the device is charging (inductive charging is not affected by the position or location of the device). Additionally, RF power transfer is significantly safer than inductive charging because of the rigorous power density regulation for the power transmitter.
Reported research works have investigated RFEH in far field; for instance, the feasibility of implementing far-field RF powering enabled by the RFEH technique was investigated by [78][192] using an access point (powering frequency = 403 MHz, transmit power = 1 W) for wireless power transfer. The proposed system adopted a harvest-then-transmit protocol to enable power transmission to the implanted device by the access point during the downlink phase. Consequently, the power signal is used for battery recharging and back-transmission of the generated information by the implants toward the access point during the uplink stage. The work in [79][193] proposed an implanted rectenna system comprising a planar inverted-F antenna (PIFA) and rectifying circuit for WPT to far-field biomedical sensors at 2.45 GHz. The wireless power link was enhanced by adding a parasitic patch onto the human body, which increases the received power level. Their study also optimized the PCE after estimating the level of the power received by the implantable antenna based on safety constraints. A wireless optoelectronic system (soft and biocompatible) was developed by Park et al. [80][194]; the system can sustain natural motions and molds towards their environment to allow operation in areas that were not previously accessible. The components of the proposed device consist of an RF antenna, an LED for neural modulation, and an RF–DC rectifier. The size of the antenna is 3 × 3 mm2 with the ability to receive up to 2.34 GHz of an input frequency. The antenna design should be durable against antenna strains since an excessive strain could decrease the efficiency by 12%. The LED could produce up to 100 μW of optical power when energized with 2 W transmitters distanced about 20 cm away; this eliminates the limitations of midfield and inductive coupling powering techniques. Changrong et al. [81][88] proposed a circular polarized (CP) implantable antenna with a miniaturized size and good radiation performance to develop a power link with minimum polarization. The system was tested in minced pork and obtained a DC power of 5.14  μW from a power source located 0.4 m away. However, the CP implantable antenna has low realized gain due to its operating frequency of 900 MHz.
Analyses of the SA, specific absorption rate (SAR), and increase in temperature were reported by [82][195]; their study aimed to verify the impulse radio ultra-wideband transmitter device in compliance with international safety standards. The work in [83][196] focused on the safety aspect of far-field powering using simplified theoretical analysis and Federal Communications Commission (FCC)C safety limits for radiating antennas. The design of a discrete-transmit-and-receive-on-chip antenna for the use of implantable intraocular pressure monitoring devices was presented by [84][197], whereas the work of [85][198] proposed a triple-band implanted antenna capable of data telemetry (402 MHz), wireless power transfer (433 MHz), and wake-up control (2.45 GHz). This triple-band antenna was used in the rectenna for 433 MHz wireless powering transmission, and achieved conversion efficiency of about 86% at 11 dBm input power with a 5 KΩ load. A wireless link operated at 2.45 GHz to power on miniaturized biomedical devices was presented by [86][199]. A chip antenna was adopted for the transmission of RF power. In this link, the authors used a resonant network that consists of a chip capacitor and compact inductor for energy harvesting.
Video Production Service