Children Health and Air Pollution: Comparison
Please note this is a comparison between Version 2 by Vivi Li and Version 1 by Jiawen Liao.

The developmental origins of health and disease (DOHaD) hypothesis links adverse fetal exposures with developmental mal-adaptations and morbidity later in life. Short- and long-term exposures to air pollutants are known contributors to health outcomes. Air pollution is an established risk factor for morbidity and mortality that affects the general population. The developmental origins of health and disease (DOHaD) hypothesis states that adverse fetal, infant, and childhood growth patterns are causally linked to disease development in adulthood. This entry summarized the literature on cardiovascular and metabolic, respiratory, allergic, and neuropsychological health outcomes, from prenatal development through early childhood, associated with early-life exposures to outdoor air pollutants, including traffic-related and wildfire-generated air pollutantss are summarized.

  • air pollution
  • wildfire smoke
  • prenatal
  • early life
  • developmental health

1. Introduction

Air pollution is an established risk factor for morbidity and mortality that affects the general population [1,2][1][2]. The developmental origins of health and disease (DOHaD) hypothesis states that adverse fetal, infant, and childhood growth patterns are causally linked to disease development in adulthood [3,4][3][4]. Prenatal or early-childhood environmental exposures predispose the fetus or child to such mal-adaptations in growth and increase the risk of disease in adulthood, in accordance with the DOHaD hypothesis [5,6][5][6]. Two recent reviews on ambient and traffic-related air pollution have linked air pollution exposures in neonates and children with increased cardiovascular morbidity [7] and asthma development [8]. Additionally, prenatal exposure to particulate matter (PM) has been associated with higher odds of respiratory and all-cause infant mortality [9]. However, the literature on early-life air pollution exposures has not been reviewed comprehensively with respect to a broad spectrum of fetal and child health outcomes. Additionally, most reviews have focused on outdoor, ambient air pollution without specific source apportionment [7,8][7][8]. No reviews have been conducted on emerging sources of air pollution, such as traffic-related air pollution from vehicle emissions or wildfire-generated air pollution. This entry reviewed and summarized the literature on cardiovascular and metabolic, respiratory, allergic, and neuropsychological health outcomes, from prenatal development through early childhood, associated with early-life exposures to outdoor air pollutants, including traffic-related and wildfire-generated air pollutants.

2. Cardiovascular and Metabolic Outcomes

OuResearchers' search yielded 81 studies on cardiovascular and metabolic outcomes, and the results support that prenatal and postnatal air pollution exposures are both associated with an increased risk of adverse outcomes. Prenatal exposure to ambient air pollution, including particular matter with an aerodynamic diameter less than 2.5 or 10 μm (PM2.5 and PM10, respectively), sulfur dioxide (SO2), nitrogen dioxide (NO2), or ozone (O3), has been consistently associated with reduced or low birth weight across various populations and geographic locations [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40]. Studies that have estimated traffic-related air pollution (TRAP) or roadway proximity using geographic information system or land use regression models similarly report an association between prenatal TRAP exposure and low birth weight [12,38,41,42,43][12][38][41][42][43]. Prenatal exposures to ambient PM2.5, PM10, SO2, and O3 have also been associated with an elevated risk of macrosomia [44]. Although the results differ in the direction of birth weight deviation, low and high birth weight similarly reflect abnormal metabolism or nutritional transfer to the fetus, and they are both risk factors for developing cardiometabolic disorders [45,46,47,48][45][46][47][48]. Some studies have examined specific constituents of particulate matter and found that birth weight is inversely correlated with prenatal exposures to constituents, including zinc, sulfur, elemental carbon, silicon, titanium, and aluminum. [12,13,49,50][12][13][49][50] Basu et al. reported that the strongest associations were found with constituents that are common markers of traffic pollution, industrial pollution, oil combustion, and alloy production [12]. In addition to birth weight, some studies have reported that ultrasound measures of fetal growth during gestation are negatively associated with prenatal exposures to particular matter with an aerodynamic diameter less than 1 µm (PM1), PM2.5, PM10, SO2, NO2, or O3 [22,51,52,53,54,55][22][51][52][53][54][55]. Exposures to traffic-related and ambient air pollutants, such as PM2.5, PM10, O3, and NOx, have been consistently associated with increased odds of preterm birth [16,18,25,34,56,57,58][16][18][25][34][56][57][58]. However, one study did not find significant associations between NO2 exposure during pregnancy and preterm birth or low birth weight [59]. Early-life wildfire smoke exposure has also been associated with preterm birth and birth weight. Evidence from three studies demonstrates that pregnant women with addresses in wildfire-affected areas during gestation were at a greater risk of preterm birth or low newborn birth weight [60[60][61][62],61,62], while one study found a higher average birth weight in exposed male infants [63]. The results are limited on critical exposure time windows because many studies averaged air pollution exposure across an entire pregnancy or only examined exposure at one time point. Of the studies that did analyze trimester-specific associations, most found that exposures during the second [11,15,19,21,25,36,40,58,60,61][11][15][19][21][25][36][40][58][60][61] or third [11,14,16,17,31,32,33,34,36,37,39,49,58,61][11][14][16][17][31][32][33][34][36][37][39][49][58][61] trimesters had statistically significant associations with birth weight or preterm birth. A few studies report susceptibility during the first trimester to carbon dioxide (CO2), NO2, or O3 exposures, particularly within the first month of pregnancy [16,21,28,52][16][21][28][52]. One study that associated prenatal PM10 exposure with term low birth weight attributed the association to conception month and first trimester exposures [27]. One study on wildfire-related PM2.5 exposure found that full gestation and second trimester exposures were associated with preterm birth, while first trimester exposure was associated with decreased birth weight [60]. The literature also supports a link between prenatal air pollution exposure and abnormal weight and growth trajectory after birth. Prenatal and early postnatal exposures to ambient PM2.5, PM10, NO2, O3, SO2, and carbon monoxide (CO) have been associated with deviant growth trajectories, represented by anthropometric measures, in infancy and childhood [40,64,65,66,67,68,69,70,71][40][64][65][66][67][68][69][70][71]. Obesity-related parameters (higher BMI Z-score, levels of adipokines, and higher risk of obesity development) in newborns and children have been positively associated with prenatal highway proximity, TRAP exposure, or ambient PM, NO2, O3, and polycyclic aromatic hydrocarbons (PAH) exposures [67,71[67][71][72][73][74][75][76],72,73,74,75,76], as well as childhood exposures to TRAP and ambient PM2.5 and NO2 [77,78][77][78]. However, one study did not find an association between ambient air pollution or nearby traffic load during the first four years of life and childhood obesity, waist circumference, or cholesterol at ages four or eight [79]. Epidemiological studies also support a link between air pollution levels and the childhood risk of metabolic disorder, including diabetes and hypertension. Several studies reported that PM2.5 exposure during pregnancy was associated with systolic hypertension in newborns [80], and microvascular changes [81,82][81][82] and elevated blood pressure in children [83,84,85][83][84][85]. Prenatal TRAP, PM2.5, PM10, and NO2 exposures have been associated with a significant increase in cord blood insulin, adiponectin, and leptin levels, [74,75,86][74][75][86] with second trimester exposures having the largest effect [86]. Similarly, proximity to a major road and higher traffic-related PM10 and NO2 levels at the birth address, estimated by land use regression models, have been positively associated with childhood insulin resistance [87]. Prenatal PM2.5 exposure [88] and childhood TRAP exposure [89] have been positively associated with childhood development of risk factors for metabolic syndrome, such as increased hemoglobin A1c and systolic blood pressure. A study on diabetic and healthy children that were randomly selected from a pediatric database at Loma Linda University found that childhood O3 exposure prior to diagnosis was significantly higher in children with type 1 diabetes than in healthy controls, and pre-diagnosis PM10 exposure was significantly higher in children with diabetes diagnosed before age five, when compared with healthy controls [90]. In summary, prenatal and childhood exposures to ambient and traffic-related air pollution have been consistently associated with preterm birth, deviant birth weight, childhood obesity, and insulin resistance, all of which have long-term impacts on cardiometabolic health in adults. WResearchers did not find any studies investigating early-life wildfire exposures in association with cardiometabolic outcomes in infants and children.

3. Respiratory and Allergic Outcomes

OuResearchers' search resulted in 57 studies on respiratory outcomes, and the results support a link between prenatal and early-childhood air pollution exposures and respiratory morbidity. Prenatal air pollution exposure has been associated with decreased lung function during infancy and childhood [91]. Higher PM10 exposure during pregnancy—especially during the second [92] or third [93] trimester—was associated with worsened infant lung function, represented by increased minute ventilation, higher respiratory rate, and tidal breathing flow; in addition, preterm infants showed greater susceptibility to PM10-associated lung inflammation [92]. A different study reported an inverse association between CO exposure during pregnancy and infant lung function [94]. A number of studies have examined the relationship between prenatal exposure to ambient air pollution and pulmonary outcomes in childhood: prenatal exposures to ambient PM2.5, PM10, NO2, NO3, and benzene have been associated with worsened childhood lung function parameters, including forced expiratory volume, forced expiratory flow, airway reactance, and peak expiratory flow [95,96,97,98,99,100,101,102,103,104,105][95][96][97][98][99][100][101][102][103][104][105]. There is also evidence that proximity to major roads, childhood PM2.5 and black carbon exposures [106], and childhood NO2 exposure [101] is associated with worsened lung function in mid-childhood (median age 7). The current literature presents strong evidence that prenatal air pollution exposure also increases the risk of respiratory and allergic disorders. The risk of newborn tachypnea, asphyxia, and respiratory distress has been associated with increased prenatal exposures to ambient PM, CO, NO, and O3 [107]. Epidemiological studies have demonstrated that prenatal exposures to ambient NO2, SO2, PM2.5, PM10, and ultrafine particles (with aerodynamic diameter < 0.1 μm) were associated with increased respiratory tract infections in infancy [108,109,110][108][109][110] and asthma, wheezing, and rhinitis in childhood [109,111,112,113,114,115,116,117,118,119,120][109][111][112][113][114][115][116][117][118][119][120]. One study that assessed respiratory health at 6 or 18 months found no association between prenatal land use regression-modeled NO2 exposure and the incidence of lower respiratory tract infections or wheeze [121]. However, a different study that similarly used NO2 exposure estimates to quantify traffic-related air pollution reported that TRAP exposure during the third-trimester of pregnancy or first year of life was significantly associated with allergic rhinitis, and the association was strongest for male children aged 3 or 4 years old [122]. The literature also presents a consistent relationship between childhood asthma or wheeze and early-childhood exposures to ambient air pollution [102,114,119,120,123,124,125,126,127,128,129,130,131][102][114][119][120][123][124][125][126][127][128][129][130][131] or traffic-related air pollution, estimated by a land use regression model or road proximity [132,133,134,135][132][133][134][135]. Postnatal exposures to ambient PM10, NO2, and O3 have been associated with eczema and allergic symptoms in children [126,129][126][129]. Furthermore, several studies demonstrated that the risk of respiratory infection, such as pneumonia, rhinitis, or bronchitis in infants and children, was associated with increased short-term exposure to ambient PM10, O3, NOx, and SO2 [130,136,137[130][136][137][138],138], and long-term exposure to TRAP and ambient PM2.5, PM10, NOx, and PAH [115,129,139,140,141,142,143,144,145,146][115][129][139][140][141][142][143][144][145][146]. Still, one study did not find an association between childhood asthma incidence in kindergarten-aged children and exposure to ambient air toxics at two years, using estimates from the 2002 National Air Toxics Assessment [147]. WResearchers found only one study that examined early-life respiratory outcomes in association with wildfire-generated air pollution. This studentry reports an increase in respiratory visits for children aged 0–5 in association with acute PM2.5 exposure during a wildfire event [148]. In summary, prenatal and early-childhood exposures to TRAP and ambient air-pollution have been consistently associated with worsened lung function and asthma, wheeze, and respiratory infections in infancy or childhood. More research is needed on early-life respiratory and allergic outcomes in association with wildfire exposures.

4. Neuropsychological Outcomes

OuResearchers' literature search yielded 26 studies on neuropsychological outcomes. While early-life air pollution exposure has been less studied in children with respect to neuropsychological health, the current data suggest there is an association with adverse neurodevelopment. Prenatal and neonatal exposures to both ambient and traffic-related air pollutants, including PM, NO2, SO2, and black carbon, have been associated with impaired cognitive, motor, behavioral, and language development during infancy and early childhood [149,150,151,152,153,154,155,156,157,158,159,160][149][150][151][152][153][154][155][156][157][158][159][160]. Prenatal exposures to ambient PM2.5, PM10, and PAH have been associated with lower IQ [161,162,163][161][162][163] and worsened attention and memory [162] in children aged 4–7 years old. Several studies found greater odds of autism spectrum disorders (ASD) in children with higher prenatal and perinatal exposures to ambient NO, NO2, PM2.5, PM10, O3 and near-roadway air pollution, or TRAP [164,165,166,167,168,169,170,171,172][164][165][166][167][168][169][170][171][172]. TRAP and ambient PM2.5 and O3 exposures in the first two years of life have also been associated with an increased ASD risk [165,169,170][165][169][170]. Childhood exposures to near-residence traffic density, as well as the traffic-related air pollutants NO2, black carbon or elemental carbon, and fine and ultrafine PM, have been positively associated with cognitive and behavioral deficits, hyperactivity, and changes in white matter volume among children [156,173,174][156][173][174]. In summary, ambient and traffic-related air pollution exposures during pregnancy and the first two years of life have been consistently associated with ASD and worsened neuropsychological parameters, including motor and cognitive development. Fewer studies have examined the neuropsychological outcomes associated with childhood air-pollution exposures, and no studies have examined the neuropsychological outcomes in association with early-life wildfire exposure.

 

References

  1. Schwartz, J.D.; Di, Q.; Requia, W.J.; Dominici, F.; Zanobetti, A. A Direct Estimate of the Impact of PM2.5, NO2, and O3 Exposure on Life Expectancy Using Propensity Scores. Epidemiology 2021, 32, 469–476.
  2. Brook, R.D. Cardiovascular effects of air pollution. Clin. Sci. 2008, 115, 175–187.
  3. Barker, D.J.P. The origins of the developmental origins theory. J. Intern. Med. 2007, 261, 412–417.
  4. Osmond, C.; Barker, D.J. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ. Health Perspect. 2000, 108, 545–553.
  5. Swanson, J.M.; Entringer, S.; Buss, C.; Wadhwa, P.D. Developmental Origins of Health and Disease: Environmental Exposures. Semin. Reprod. Med. 2009, 27, 391–402.
  6. Wigle, D.T.; Arbuckle, T.E.; Turner, M.C.; Bérubé, A.; Yang, Q.; Liu, S.; Krewski, D. Epidemiologic Evidence of Relationships Between Reproductive and Child Health Outcomes and Environmental Chemical Contaminants. J. Toxicol. Environ. Health Part B 2008, 11, 373–517.
  7. Kim, J.B.; Prunicki, M.; Haddad, F.; Dant, C.; Sampath, V.; Patel, R.; Smith, E.; Akdis, C.; Balmes, J.; Snyder, M.P.; et al. Cumulative Lifetime Burden of Cardiovascular Disease from Early Exposure to Air Pollution. J. Am. Heart Assoc. 2020, 9, e014944.
  8. Deng, S.-Z.; Jalaludin, B.B.; Antó, J.M.; Hess, J.J.; Huang, C.-R. Climate change, air pollution, and allergic respiratory diseases: A call to action for health professionals. Chin. Med. J. 2020, 133, 1552–1560.
  9. Son, J.-Y.; Bell, M.L.; Lee, J.-T. Survival Analysis of Long-Term Exposure to Different Sizes of Airborne Particulate Matter and Risk of Infant Mortality Using a Birth Cohort in Seoul, Korea. Environ. Health Perspect. 2011, 119, 725–730.
  10. Pedersen, M.; Giorgis-Allemand, L.; Bernard, C.; Aguilera, I.; Andersen, A.-M.N.; Ballester, F.; Beelen, R.M.J.; Chatzi, L.; Cirach, M.; Danileviciute, A.; et al. Ambient air pollution and low birthweight: A European cohort study (ESCAPE). Lancet Respir. Med. 2013, 1, 695–704.
  11. Li, S.; Peng, L.; Wu, X.; Xu, G.; Cheng, P.; Hao, J.; Huang, Z.; Xu, M.; Chen, S.; Zhang, C.; et al. Long-term impact of ambient air pollution on preterm birth in Xuzhou, China: A time series study. Environ. Sci. Pollut. Res. 2021, 28, 41039–41050.
  12. Basu, R.; Harris, M.; Sie, L.; Malig, B.; Broadwin, R.; Green, R. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California. Environ. Res. 2014, 128, 42–51.
  13. Ebisu, K.; Bell, M.L. Airborne PM2.5 Chemical Components and Low Birth Weight in the Northeastern and Mid-Atlantic Regions of the United States. Environ. Health Perspect. 2012, 120, 1746–1752.
  14. Vinikoor-Imler, L.C.; Davis, J.A.; Meyer, R.E.; Messer, L.C.; Luben, T. Associations between prenatal exposure to air pollution, small for gestational age, and term low birthweight in a state-wide birth cohort. Environ. Res. 2014, 132, 132–139.
  15. Estarlich, M.; Ballester, F.; Aguilera, I.; Fernández-Somoano, A.; Lertxundi, A.; Llop, S.; Freire, C.; Tardon, A.; Basterrechea, M.; Sunyer, J.; et al. Residential Exposure to Outdoor Air Pollution during Pregnancy and Anthropometric Measures at Birth in a Multicenter Cohort in Spain. Environ. Health Perspect. 2011, 119, 1333–1338.
  16. Le, H.Q.; Batterman, S.A.; Wirth, J.J.; Wahl, R.L.; Hoggatt, K.J.; Sadeghnejad, A.; Hultin, M.L.; Depa, M. Air pollutant exposure and preterm and term small-for-gestational-age births in Detroit, Michigan: Long-term trends and associations. Environ. Int. 2012, 44, 7–17.
  17. Bijnens, E.M.; Derom, C.; Gielen, M.; Winckelmans, E.; Fierens, F.; Vlietinck, R.; Zeegers, M.P.; Nawrot, T.S. Small for gestational age and exposure to particulate air pollution in the early-life environment of twins. Environ. Res. 2016, 148, 39–45.
  18. Bergstra, A.D.; Brunekreef, B.; Burdorf, A. The influence of industry-related air pollution on birth outcomes in an industrialized area. Environ. Pollut. 2021, 269, 115741.
  19. Salam, M.; Millstein, J.; Li, Y.-F.; Lurmann, F.W.; Margolis, H.G.; Gilliland, F.D. Birth Outcomes and Prenatal Exposure to Ozone, Carbon Monoxide, and Particulate Matter: Results from the Children’s Health Study. Environ. Health Perspect. 2005, 113, 1638–1644.
  20. Rosa, M.J.; Pajak, A.; Just, A.C.; Sheffield, P.E.; Kloog, I.; Schwartz, J.; Coull, B.; Enlow, M.B.; Baccarelli, A.A.; Huddleston, K.; et al. Prenatal exposure to PM2.5 and birth weight: A pooled analysis from three North American longitudinal pregnancy cohort studies. Environ. Int. 2017, 107, 173–180.
  21. Ballester, F.; Estarlich, M.; Iñiguez, C.; Llop, S.; Ramón, R.; Esplugues, A.; Lacasaña, M.; Rebagliato, M. Air pollution exposure during pregnancy and reduced birth size: A prospective birth cohort study in Valencia, Spain. Environ. Health 2010, 9, 6.
  22. Lin, L.; Li, Q.; Yang, J.; Han, N.; Jin, C.; Xu, X.; Liu, Z.; Liu, J.; Luo, S.; Raat, H.; et al. The associations of particulate matters with fetal growth in utero and birth weight: A birth cohort study in Beijing, China. Sci. Total Environ. 2010, 709, 136246.
  23. Shang, L.; Huang, L.; Yang, L.; Leng, L.; Qi, C.; Xie, G.; Wang, R.; Guo, L.; Yang, W.; Chung, M.C. Impact of air pollution exposure during various periods of pregnancy on term birth weight: A large-sample, retrospective population-based cohort study. Environ. Sci. Pollut. Res. 2021, 28, 3296–3306.
  24. Romão, R.; Pereira, L.A.; Saldiva, P.H.; Pinheiro, P.M.; Braga, A.L.; Martins, L.C. The relationship between low birth weight and ex-posure to inhalable particulate matter. Cad. Saude Publica 2013, 29, 1101–1108.
  25. Ha, S.; Hu, H.; Roussos-Ross, D.; Haidong, K.; Roth, J.; Xu, X. The effects of air pollution on adverse birth outcomes. Environ. Res. 2014, 134, 198–204.
  26. Chen, L.; Yang, W.; Jennison, B.L.; Goodrich, A.; Omaye, S.T. Air pollution and birth weight in northern nevada, 1991–1999. Inhal. Toxicol. 2002, 14, 141–157.
  27. Lu, C.; Zhang, W.; Zheng, X.; Sun, J.; Chen, L.; Deng, Q. Combined effects of ambient air pollution and home environmental factors on low birth weight. Chemosphere 2020, 240, 124836.
  28. Geer, L.A.; Weedon, J.; Bell, M. Ambient air pollution and term birth weight in Texas from 1998 to 2004. J. Air Waste Manag. Assoc. 2012, 62, 1285–1295.
  29. Wojtyla, C.; Zielinska, K.; Wojtyla-Buciora, P.; Panek, G. Prenatal Fine Particulate Matter (PM2.5) Exposure and Pregnancy Outcomes—Analysis of Term Pregnancies in Poland. Int. J. Environ. Res. Public Health 2020, 17, 5820.
  30. Laine, J.E.; Bodinier, B.; Robinson, O.; Plusquin, M.; Scalbert, A.; Keski-Rahkonen, P.; Robinot, N.; Vermeulen, R.; Pizzi, C.; Asta, F.; et al. Prenatal Exposure to Multiple Air Pollutants, Mediating Molecular Mechanisms, and Shifts in Birthweight. Environ. Sci. Technol. 2020, 54, 14502–14513.
  31. Morello-Frosch, R.; Jesdale, B.M.; Sadd, J.L.; Pastor, M. Ambient air pollution exposure and full-term birth weight in California. Environ. Health 2010, 9, 44.
  32. Darrow, L.A.; Klein, M.; Strickland, M.J.; Mulholland, J.A.; Tolbert, P.E. Ambient Air Pollution and Birth Weight in Full-Term Infants in Atlanta, 1994–2004. Environ. Health Perspect. 2011, 119, 731–737.
  33. Dos Reis, M.M.; Guimarães, M.T.; Braga, A.L.F.; Martins, L.C.; Pereira, L.A.A. Air pollution and low birth weight in an industrialized city in Southeastern Brazil, 2003–2006. Rev. Bras. Epidemiol. 2017, 20, 189–199.
  34. Yuan, L.; Zhang, Y.; Wang, W.; Chen, R.; Liu, Y.; Liu, C.; Kan, H.; Gao, Y.; Tian, Y. Critical windows for maternal fine particulate matter exposure and adverse birth outcomes: The Shanghai birth cohort study. Chemosphere 2020, 240, 124904.
  35. Jedrychowski, W.A.; Majewska, R.; Spengler, J.D.; Camann, D.; Roen, E.L.; Perera, F.P. Prenatal exposure to fine particles and polycyclic aromatic hydrocarbons and birth outcomes: A two-pollutant approach. Int. Arch. Occup. Environ. Health 2017, 90, 255–264.
  36. Johnson, M.; Shin, H.H.; Roberts, E.; Sun, L.; Fisher, M.; Hystad, P.; Van Donkelaar, A.; Martin, R.V.; Fraser, W.D.; Lavigne, E.; et al. Critical Time Windows for Air Pollution Exposure and Birth Weight in a Multicity Canadian Pregnancy Cohort. Epidemiology 2022, 33, 7–16.
  37. Palma, A.; Petrunyk, I.; Vuri, D. Prenatal air pollution exposure and neonatal health. Health Econ. 2022, 31, 729–759.
  38. MoghaddamHosseini, V.; Dowlatabadi, A.; Najafi, M.L.; Ghalenovi, M.; Pajohanfar, N.S.; Ghezi, S.; Mehrabadi, S.; Estiri, E.H.; Miri, M. Association of traffic-related air pollution with Newborn’s anthropometric indexes at birth. Environ. Res. 2022, 204, 112000.
  39. Yitshak-Sade, M.; Kloog, I.; Schwartz, J.D.; Novack, V.; Erez, O.; Just, A.C. The effect of prenatal temperature and PM2.5 exposure on birthweight: Weekly windows of exposure throughout the pregnancy. Environ. Int. 2021, 155, 106588.
  40. Cho, H.-J.; Lee, S.-H.; Lee, S.-Y.; Kim, H.-C.; Kim, H.-B.; Park, M.J.; Yoon, J.; Jung, S.; Yang, S.-I.; Lee, E.; et al. Mid-pregnancy PM2.5 exposure affects sex-specific growth trajectories via ARRDC3 methylation. Environ. Res. 2021, 200, 111640.
  41. Padula, A.M.; Mortimer, K.; Hubbard, A.; Lurmann, F.; Jerrett, M.; Tager, I.B. Exposure to Traffic-related Air Pollution during Pregnancy and Term Low Birth Weight: Estimation of Causal Associations in a Semiparametric Model. Am. J. Epidemiol. 2012, 176, 815–824.
  42. Fleisch, A.F.; Rifas-Shiman, S.L.; Koutrakis, P.; Schwartz, J.D.; Kloog, I.; Melly, S.; Coull, B.A.; Zanobetti, A.; Gillman, M.W.; Gold, D.R.; et al. Prenatal Exposure to Traffic Pollution. Epidemiology 2015, 26, 43–50.
  43. Rokoff, L.B.; Rifas-Shiman, S.L.; Coull, B.A.; Cárdenas, A.; Calafat, A.M.; Ye, X.; Gryparis, A.; Schwartz, J.; Sagiv, S.K.; Gold, D.R.; et al. Cumulative exposure to environmental pollutants during early pregnancy and reduced fetal growth: The Project Viva cohort. Environ. Health 2018, 17, 19.
  44. Li, C.; Ju, L.; Yang, M.; Zhang, Q.; Sun, S.; Cao, J.; Ding, R. Prenatal air pollution exposure increases the risk of macrosomia: Evidence from a prospective cohort study in the coastal area of China. Environ. Sci. Pollut. Res. 2021, 29, 5144–5152.
  45. Calkins, K.; Devaskar, S.U. Fetal Origins of Adult Disease. Curr. Probl. Pediatr. Adolesc. Health Care 2011, 41, 158–176.
  46. Henriksen, T. The macrosomic fetus: A challenge in current obstetrics. Acta Obstet. Gynecol. Scand. 2008, 87, 134–145.
  47. Tian, J.-Y.; Cheng, Q.; Song, X.-M.; Li, G.; Jiang, G.-X.; Gu, Y.-Y.; Luo, M. Birth weight and risk of type 2 diabetes, abdominal obesity and hypertension among Chinese adults. Eur. J. Endocrinol. 2006, 155, 601–607.
  48. Curhan, G.C.; Willett, W.C.; Rimm, E.B.; Spiegelman, D.; Ascherio, A.L.; Stampfer, M.J. Birth Weight and Adult Hypertension, Diabetes Mellitus, and Obesity in US Men. Circulation 1996, 94, 3246–3250.
  49. Bell, M.L.; Belanger, K.; Ebisu, K.; Gent, J.F.; Lee, H.J.; Koutrakis, P.; Leaderer, B.P. Prenatal Exposure to Fine Particulate Matter and Birth Weight. Epidemiology 2010, 21, 884–891.
  50. Bell, M.L.; Belanger, K.; Ebisu, K.; Gent, J.F.; Leaderer, B.P. Relationship between birth weight and exposure to airborne fine particulate potassium and titanium during gestation. Environ. Res. 2012, 117, 83–89.
  51. van den Hooven, E.H.; Pierik, F.H.; de Kluizenaar, Y.; Willemsen, S.P.; Hofman, A.; van Ratingen, S.W.; Zandveld, P.Y.J.; Mackenbach, J.P.; Steegers, E.A.P.; Miedema, H.M.E.; et al. Air Pollution Exposure during Pregnancy, Ultrasound Measures of Fetal Growth, and Adverse Birth Outcomes: A Prospective Cohort Study. Environ. Health Perspect. 2012, 120, 150–156.
  52. Iñiguez, C.; Ballester, F.; Estarlich, M.; Esplugues, A.; Murcia, M.; Llop, S.; Plana, A.; Amorós, R.; Rebagliato, M. Prenatal exposure to traffic-related air pollution and fetal growth in a cohort of pregnant women. Occup. Environ. Med. 2012, 69, 736–744.
  53. Clemens, T.; Turner, S.; Dibben, C. Maternal exposure to ambient air pollution and fetal growth in North-East Scotland: A population-based study using routine ultrasound scans. Environ. Int. 2017, 107, 216–226.
  54. Shao, X.; Cheng, H.; Zhou, J.; Zhang, J.; Zhu, Y.; Yang, C.; Di Narzo, A.; Yu, J.; Shen, Y.; Li, Y.; et al. Prenatal exposure to ambient air multi-pollutants significantly impairs intrauterine fetal development trajectory. Ecotoxicol. Environ. Saf. 2020, 201, 110726.
  55. Lin, L.; Guo, Y.; Han, N.; Su, T.; Jin, C.; Chen, G.; Li, Q.; Zhou, S.; Tang, Z.; Liu, Z.; et al. Prenatal exposure to airborne particulate matter of 1 μm or less and fetal growth: A birth cohort study in Beijing, China. Environ. Res. 2021, 194, 110729.
  56. Siddika, N.; Rantala, A.K.; Antikainen, H.; Balogun, H.; Amegah, A.K.; Ryti, N.R.; Kukkonen, J.; Sofiev, M.; Jaakkola, M.S.; Jaakkola, J.J. Synergistic effects of prenatal exposure to fine particulate matter (PM2.5) and ozone (O3) on the risk of preterm birth: A population-based cohort study. Environ. Res. 2019, 176, 108549.
  57. Siddika, N.; Rantala, A.K.; Antikainen, H.; Balogun, H.; Amegah, A.K.; Ryti, N.R.I.; Kukkonen, J.; Sofiev, M.; Jaakkola, M.S.; Jaakkola, J.J.K. Short-term prenatal exposure to ambient air pollution and risk of preterm birth—A population-based cohort study in Finland. Environ. Res. 2020, 184, 109290.
  58. Padula, A.M.; Mortimer, K.M.; Tager, I.B.; Hammond, S.K.; Lurmann, F.W.; Yang, W.; Stevenson, D.K.; Shaw, G.M. Traffic-related air pollution and risk of preterm birth in the San Joaquin Valley of California. Ann. Epidemiol. 2014, 24, 888–895.e4.
  59. Gehring, U.; Van Eijsden, M.; A Dijkema, M.B.; Van Der Wal, M.F.; Fischer, P.; Brunekreef, B. Traffic-related air pollution and pregnancy outcomes in the Dutch ABCD birth cohort study. Occup. Environ. Med. 2011, 68, 36–43.
  60. Abdo, M.; Ward, I.; O’Dell, K.; Ford, B.; Pierce, J.; Fischer, E.; Crooks, J. Impact of Wildfire Smoke on Adverse Pregnancy Outcomes in Colorado, 2007–2015. Int. J. Environ. Res. Public Health 2019, 16, 3720.
  61. Holstius, D.M.; Reid, C.; Jesdale, W.; Morello-Frosch, R. Birth Weight following Pregnancy during the 2003 Southern California Wildfires. Environ. Health Perspect. 2012, 120, 1340–1345.
  62. Prass, T.S.; Lopes, S.R.C.; Dórea, J.G.; Marques, R.C.; Brandão, K.G. Amazon Forest Fires between 2001 and 2006 and Birth Weight in Porto Velho. Bull. Environ. Contam. Toxicol. 2012, 89, 1–7.
  63. O’Donnell, M.H.; Behie, A.M. Effects of wildfire disaster exposure on male birth weight in an Australian population. Evol. Med. Public Health 2015, 2015, 344–354.
  64. Tan, Y.; Liao, J.; Zhang, B.; Mei, H.; Peng, A.; Zhao, J.; Zhang, Y.; Yang, S.; He, M. Prenatal exposure to air pollutants and early childhood growth trajectories: A population-based prospective birth cohort study. Environ. Res. 2021, 194, 110627.
  65. Patterson, W.B.; Glasson, J.; Naik, N.; Jones, R.B.; Berger, P.K.; Plows, J.F.; Minor, H.A.; Lurmann, F.; Goran, M.I.; Alderete, T.L. Prenatal exposure to ambient air pollutants and early infant growth and adiposity in the Southern California Mother’s Milk Study. Environ. Health 2021, 20, 67.
  66. Sun, X.; Liu, C.; Liang, H.; Miao, M.; Wang, Z.; Ji, H.; van Donkelaar, A.; Martin, R.V.; Kan, H.; Yuan, W. Prenatal exposure to residential PM2.5 and its chemical constituents and weight in preschool children: A longitudinal study from Shanghai, China. Environ. Int. 2021, 154, 106580.
  67. Starling, A.P.; Moore, B.; Thomas, D.S.; Peel, J.L.; Zhang, W.; Adgate, J.L.; Magzamen, S.; Martenies, S.E.; Allshouse, W.B.; Dabelea, D. Prenatal exposure to traffic and ambient air pollution and infant weight and adiposity: The Healthy Start study. Environ. Res. 2020, 182, 109130.
  68. Fossati, S.; Valvi, D.; Martinez, D.; Cirach, M.; Estarlich, M.; Fernández-Somoano, A.; Guxens, M.; Iñiguez, C.; Irizar, A.; Lertxundi, A.; et al. Prenatal air pollution exposure and growth and cardio-metabolic risk in preschoolers. Environ. Int. 2020, 138, 105619.
  69. Rosofsky, A.S.; Fabian, M.P.; de Cuba, S.E.; Sandel, M.; Coleman, S.; Levy, J.I.; Coull, B.A.; Hart, J.E.; Zanobetti, A. Prenatal Ambient Particulate Matter Exposure and Longitudinal Weight Growth Trajectories in Early Childhood. Int. J. Environ. Res. Public Health 2020, 17, 1444.
  70. Boamah-Kaali, E.; Jack, D.W.; Ae-Ngibise, K.A.; Quinn, A.; Kaali, S.; Dubowski, K.; Oppong, F.B.; Wylie, B.J.; Mujtaba, M.N.; Gould, C.F.; et al. Prenatal and Postnatal Household Air Pollution Exposure and Infant Growth Trajectories: Evidence from a Rural Ghanaian Pregnancy Cohort. Environ. Health Perspect. 2021, 129, 117009.
  71. Zhou, S.; Lin, L.; Bao, Z.; Meng, T.; Wang, S.; Chen, G.; Li, Q.; Liu, Z.; Bao, H.; Han, N.; et al. The association of prenatal exposure to particulate matter with infant growth: A birth cohort study in Beijing, China. Environ. Pollut. 2021, 277, 116792.
  72. Rundle, A.G.; Gallagher, D.; Herbstman, J.B.; Goldsmith, J.; Holmes, D.; Hassoun, A.; Oberfield, S.; Miller, R.L.; Andrews, H.; Widen, E.M.; et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and childhood growth trajectories from age 5–14 years. Environ. Res. 2019, 177, 108595.
  73. Fleisch, A.F.; Luttmann-Gibson, H.; Perng, W.; Rifas-Shiman, S.L.; Coull, B.A.; Kloog, I.; Koutrakis, P.; Schwartz, J.D.; Zanobetti, A.; Mantzoros, C.S.; et al. Prenatal and early life exposure to traffic pollution and cardiometabolic health in childhood. Pediatr. Obes. 2017, 12, 48–57.
  74. Lavigne, E.; Ashley-Martin, J.; Dodds, L.; Arbuckle, T.E.; Hystad, P.; Johnson, M.; Crouse, D.; Ettinger, A.S.; Shapiro, G.D.; Fisher, M.; et al. Air Pollution Exposure during Pregnancy and Fetal Markers of Metabolic Function. Am. J. Epidemiol. 2016, 183, 842–851.
  75. Alderete, T.L.; Song, A.Y.; Bastain, T.; Habre, R.; Toledo-Corral, C.M.; Salam, M.T.; Lurmann, F.; Gilliland, F.D.; Breton, C.V. Prenatal traffic-related air pollution exposures, cord blood adipokines and infant weight. Pediatr. Obes. 2018, 13, 348–356.
  76. Bloemsma, L.D.; Dabelea, D.; Thomas, D.S.K.; Peel, J.L.; Adgate, J.L.; Allshouse, W.B.; Martenies, S.E.; Magzamen, S.; Starling, A.P. Prenatal exposure to ambient air pollution and traffic and indicators of adiposity in early childhood: The Healthy Start study. Int. J. Obes. 2021, 46, 491–501.
  77. Vrijheid, M.; Fossati, S.; Maitre, L.; Márquez, S.; Roumeliotaki, T.; Agier, L.; Andrusaityte, S.; Cadiou, S.; Casas, M.; De Castro, M.; et al. Early-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach. Environ. Health Perspect. 2020, 128, 067009.
  78. de Bont, J.; Casas, M.; Barrera-Gómez, J.; Cirach, M.; Rivas, I.; Valvi, D.; Álvarez, M.; Dadvand, P.; Sunyer, J.; Vrijheid, M. Ambient air pollution and overweight and obesity in school-aged children in Barcelona, Spain. Environ. Int. 2019, 125, 58–64.
  79. Fioravanti, S.; Cesaroni, G.; Badaloni, C.; Michelozzi, P.; Forastiere, F.; Porta, D. Traffic-related air pollution and childhood obesity in an Italian birth cohort. Environ. Res. 2018, 160, 479–486.
  80. van Rossem, L.; Rifas-Shiman, S.L.; Melly, S.J.; Kloog, I.; Luttmann-Gibson, H.; Zanobetti, A.; Coull, B.A.; Schwartz, J.D.; Mittleman, M.A.; Oken, E.; et al. Prenatal Air Pollution Exposure and Newborn Blood Pressure. Environ. Health Perspect. 2015, 123, 353–359.
  81. Luyten, L.J.; Dockx, Y.; Provost, E.B.; Madhloum, N.; Sleurs, H.; Neven, K.Y.; Janssen, B.G.; Bové, H.; Debacq-Chainiaux, F.; Gerrits, N.; et al. Children’s microvascular traits and ambient air pollution exposure during pregnancy and early childhood: Prospective evidence to elucidate the developmental origin of particle-induced disease. BMC Med. 2020, 18, 128.
  82. Witters, K.; Dockx, Y.; Roodt, J.O.; Lefebvre, W.; Vanpoucke, C.; Plusquin, M.; Vangronsveld, J.; Janssen, B.G.; Nawrot, T.S. Dynamics of skin microvascular blood flow in 4–6-year-old children in association with pre- and postnatal black carbon and particulate air pollution exposure. Environ. Int. 2021, 157, 106799.
  83. Zhang, M.; Mueller, N.; Wang, H.; Hong, X.; Appel, L.J.; Wang, X. Maternal Exposure to Ambient Particulate Matter ≤2.5 µm During Pregnancy and the Risk for High Blood Pressure in Childhood. Hypertension 2018, 72, 194–201.
  84. Ni, Y.; Szpiro, A.A.; Young, M.T.; Loftus, C.T.; Bush, N.R.; LeWinn, K.Z.; Sathyanarayana, S.; Enquobahrie, D.A.; Davis, R.L.; Kratz, M.; et al. Associations of Pre- and Postnatal Air Pollution Exposures with Child Blood Pressure and Modification by Maternal Nutrition: A Prospective Study in the CANDLE Cohort. Environ. Health Perspect. 2021, 129, 47004.
  85. Rosa, M.J.; Hair, G.M.; Just, A.C.; Kloog, I.; Svensson, K.; Pizano-Zárate, M.L.; Pantic, I.; Schnaas, L.; Tamayo-Ortiz, M.; Baccarelli, A.A.; et al. Identifying critical windows of prenatal particulate matter (PM2.5) exposure and early childhood blood pressure. Environ. Res. 2019, 182, 109073.
  86. Madhloum, N.; Janssen, B.G.; Martens, D.S.; Saenen, N.D.; Bijnens, E.; Gyselaers, W.; Penders, J.; Vanpoucke, C.; Lefebvre, W.; Plusquin, M.; et al. Cord plasma insulin and in utero exposure to ambient air pollution. Environ. Int. 2017, 105, 126–132.
  87. Thiering, E.; Cyrys, J.; Kratzsch, J.; Meisinger, C.; Hoffmann, B.; Berdel, D.; von Berg, A.; Koletzko, S.; Bauer, C.-P.; Heinrich, J. Long-term exposure to traffic-related air pollution and insulin resistance in children: Results from the GINIplus and LISAplus birth cohorts. Diabetologia 2013, 56, 1696–1704.
  88. Moody, E.C.; Cantoral, A.; Tamayo-Ortiz, M.; Pizano-Zárate, M.L.; Schnaas, L.; Kloog, I.; Oken, E.; Coull, B.; Baccarelli, A.; Téllez-Rojo, M.M.; et al. Association of Prenatal and Perinatal Exposures to Particulate Matter with Changes in Hemoglobin A1c Levels in Children Aged 4 to 6 Years. JAMA Netw. Open 2019, 2, e1917643.
  89. Mann, J.K.; Lutzker, L.; Holm, S.M.; Margolis, H.G.; Neophytou, A.M.; Eisen, E.A.; Costello, S.; Tyner, T.; Holland, N.; Tindula, G.; et al. Traffic-related air pollution is associated with glucose dysregulation, blood pressure, and oxidative stress in children. Environ. Res. 2021, 195, 110870.
  90. Hathout, E.H.; Beeson, W.L.; Nahab, F.; Rabadi, A.; Thomas, W.; Mace, J.W. Role of exposure to air pollutants in the development of type 1 diabetes before and after 5 yr of age. Pediatr. Diabetes 2002, 3, 184–188.
  91. Korten, I.; Ramsey, K.; Latzin, P. Air pollution during pregnancy and lung development in the child. Paediatr. Respir. Rev. 2016, 21, 38–46.
  92. Decrue, F.; Gorlanova, O.; Salem, Y.; Vienneau, D.; de Hoogh, K.; Gisler, A.; Usemann, J.; Korten, I.; Nahum, U.; Sinues, P.; et al. Increased Impact of Air Pollution on Lung Function in Preterm versus Term Infants: The BILD Study. Am. J. Respir. Crit. Care Med. 2022, 205, 99–107.
  93. Latzin, P.; Röösli, M.; Huss, A.; Kuehni, C.E.; Frey, U. Air pollution during pregnancy and lung function in newborns: A birth cohort study. Eur. Respir. J. 2008, 33, 594–603.
  94. Lee, A.G.; Kaali, S.; Quinn, A.; Delimini, R.; Burkart, K.; Opoku-Mensah, J.; Wylie, B.J.; Yawson, A.K.; Kinney, P.L.; Ae-Ngibise, K.A.; et al. Prenatal Household Air Pollution Is Associated with Impaired Infant Lung Function with Sex-Specific Effects. Evidence from GRAPHS, a Cluster Randomized Cookstove Intervention Trial. Am. J. Respir. Crit. Care Med. 2019, 199, 738–746.
  95. Jedrychowski, W.A.; Perera, F.P.; Maugeri, U.; Majewska, R.; Mroz, E.; Flak, E.; Camann, D.; Sowa, A.; Jacek, R. Long term effects of prenatal and postnatal airborne PAH exposures on ventilatory lung function of non-asthmatic preadolescent children. Prospective birth cohort study in Krakow. Sci. Total Environ. 2014, 502, 502–509.
  96. Urman, R.; McConnell, R.; Islam, T.; Avol, E.L.; Lurmann, F.W.; Vora, H.; Linn, W.S.; Rappaport, E.B.; Gilliland, F.D.; Gauderman, W.J. Associations of children’s lung function with ambient air pollution: Joint effects of regional and near-roadway pollutants. Thorax 2013, 69, 540–547.
  97. Gutiérrez-Delgado, R.I.; Barraza-Villarreal, A.; Escamilla-Núñez, M.C.; Hernández-Cadena, L.; Dsc, M.C.; Sly, P.; Romieu, I.; Cortez-Lugo, M. Prenatal exposure to VOCs and NOx and lung function in preschoolers. Pediatr. Pulmonol. 2020, 55, 2142–2149.
  98. Bose, S.; Rosa, M.J.; Chiu, Y.-H.M.; Hsu, H.-H.L.; Di, Q.; Lee, A.; Kloog, I.; Wilson, A.; Schwartz, J.; Wright, R.O.; et al. Prenatal nitrate air pollution exposure and reduced child lung function: Timing and fetal sex effects. Environ. Res. 2018, 167, 591–597.
  99. Dutta, A.; Alaka, M.; Ibigbami, T.; Adepoju, D.; Adekunle, S.; Olamijulo, J.; Adedokun, B.; Deji-Abiodun, O.; Chartier, R.; Ojengbede, O.; et al. Impact of prenatal and postnatal household air pollution exposure on lung function of 2-year old Nigerian children by oscillometry. Sci. Total Environ. 2020, 755, 143419.
  100. Cai, Y.; Hansell, A.L.; Granell, R.; Blangiardo, M.; Zottoli, M.; Fecht, D.; Gulliver, J.; Henderson, A.J.; Elliott, P. Prenatal, Early-Life, and Childhood Exposure to Air Pollution and Lung Function: The ALSPAC Cohort. Am. J. Respir. Crit. Care Med. 2020, 202, 112–123.
  101. Usemann, J.; Decrue, F.; Korten, I.; Proietti, E.; Gorlanova, O.; Vienneau, D.; Fuchs, O.; Latzin, P.; Röösli, M.; Frey, U. Exposure to moderate air pollution and associations with lung function at school-age: A birth cohort study. Environ. Int. 2019, 126, 682–689.
  102. Branco, P.T.; Alvim-Ferraz, M.C.; Martins, F.G.; Ferraz, C.; Vaz, L.G.; Sousa, S.I. Impact of indoor air pollution in nursery and primary schools on childhood asthma. Sci. Total Environ. 2020, 745, 140982.
  103. Morales, E.; Garcia-Esteban, R.; De La Cruz, O.A.; Basterrechea, M.; Lertxundi, A.; De Dicastillo, M.D.M.L.; Zabaleta, C.; Sunyer, J. Intrauterine and early postnatal exposure to outdoor air pollution and lung function at preschool age. Thorax 2014, 70, 64–73.
  104. Jedrychowski, W.A.; Perera, F.P.; Maugeri, U.; Mroz, E.; Klimaszewska-Rembiasz, M.; Flak, E.; Edwards, S.; Spengler, J.D. Effect of prenatal exposure to fine particulate matter on ventilatory lung function of preschool children of non-smoking mothers. Paediatr. Périnat. Epidemiol. 2010, 24, 492–501.
  105. Mortimer, K.; Neugebauer, R.; Lurmann, F.; Alcorn, S.; Balmes, J.; Tager, I. Air Pollution and Pulmonary Function in Asthmatic Children. Epidemiology 2008, 19, 550–557.
  106. Rice, M.B.; Rifas-Shiman, S.L.; Litonjua, A.A.; Oken, E.; Gillman, M.W.; Kloog, I.; Luttmann-Gibson, H.; Zanobetti, A.; Coull, B.A.; Schwartz, J.; et al. Lifetime Exposure to Ambient Pollution and Lung Function in Children. Am. J. Respir. Crit. Care Med. 2016, 193, 881–888.
  107. Seeni, I.; Ha, S.; Nobles, C.; Liu, D.; Sherman, S.; Mendola, P. Air pollution exposure during pregnancy: Maternal asthma and neonatal respiratory outcomes. Ann. Epidemiol. 2018, 28, 612–618.e4.
  108. Aguilera, I.; Pedersen, M.; Garcia-Esteban, R.; Ballester, F.; Basterrechea, M.; Esplugues, A.; Somoano, A.F.; Lertxundi, A.; Tardon, A.; Sunyer, J. Early-Life Exposure to Outdoor Air Pollution and Respiratory Health, Ear Infections, and Eczema in Infants from the INMA Study. Environ. Health Perspect. 2013, 121, 387–392.
  109. Liu, W.; Huang, C.; Hu, Y.; Fu, Q.; Zou, Z.; Sun, C.; Shen, L.; Wang, X.; Cai, J.; Pan, J.; et al. Associations of gestational and early life exposures to ambient air pollution with childhood respiratory diseases in Shanghai, China: A retrospective cohort study. Environ. Int. 2016, 92, 284–293.
  110. Goshen, S.; Novack, L.; Erez, O.; Yitshak-Sade, M.; Kloog, I.; Shtein, A.; Shany, E. The effect of exposure to particulate matter during pregnancy on lower respiratory tract infection hospitalizations during first year of life. Environ. Health 2020, 19, 90.
  111. Jedrychowski, W.A.; Perera, F.P.; Maugeri, U.; Mrozek-Budzyn, D.; Mroz, E.; Klimaszewska-Rembiasz, M.; Flak, E.; Edwards, S.; Spengler, J.; Jacek, R.; et al. Intrauterine exposure to polycyclic aromatic hydrocarbons, fine particulate matter and early wheeze. Prospective birth cohort study in 4-year olds. Pediatr. Allergy Immunol. 2010, 21, e723–e732.
  112. Bharadwaj, P.; Zivin, J.G.; Mullins, J.T.; Neidell, M. Early-Life Exposure to the Great Smog of 1952 and the Development of Asthma. Am. J. Respir. Crit. Care Med. 2016, 194, 1475–1482.
  113. Hehua, Z.; Qing, C.; Shanyan, G.; Qijun, W.; Yuhong, Z. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. Environ. Res. 2017, 159, 519–530.
  114. Norbäck, D.; Lu, C.; Zhang, Y.; Li, B.; Zhao, Z.; Huang, C.; Zhang, X.; Qian, H.; Sun, Y.; Sundell, J.; et al. Onset and remission of childhood wheeze and rhinitis across China—Associations with early life indoor and outdoor air pollution. Environ. Int. 2018, 123, 61–69.
  115. Lin, Y.-T.; Shih, H.; Jung, C.-R.; Wang, C.-M.; Chang, Y.-C.; Hsieh, C.-Y.; Hwang, B.-F. Effect of exposure to fine particulate matter during pregnancy and infancy on paediatric allergic rhinitis. Thorax 2021, 76, 568–574.
  116. Hsieh, C.-Y.; Jung, C.-R.; Lin, C.-Y.; Hwang, B.-F. Combined exposure to heavy metals in PM2.5 and pediatric asthma. J. Allergy Clin. Immunol. 2021, 147, 2171–2180.e13.
  117. Wright, R.J.; Hsu, H.-H.L.; Chiu, Y.-H.M.; Coull, B.A.; Simon, M.C.; Hudda, N.; Schwartz, J.; Kloog, I.; Durant, J.L. Prenatal Ambient Ultrafine Particle Exposure and Childhood Asthma in the Northeastern United States. Am. J. Respir. Crit. Care Med. 2021, 204, 788–796.
  118. Guo, M.; Wei, L.; Yan, H.; Duan, Z.; Niu, Z.; Xiao, C. Exposure to ambient air pollution during trimesters of pregnancy and childhood allergic diseases in Wuhan, China. Int. J. Environ. Health Res. 2021, 1–11.
  119. Zhang, Y.; Wei, J.; Shi, Y.; Quan, C.; Ho, H.C.; Song, Y.; Zhang, L. Early-life exposure to submicron particulate air pollution in relation to asthma development in Chinese preschool children. J. Allergy Clin. Immunol. 2021, 148, 771–782.e12.
  120. Rivera, N.Y.R.; Tamayo-Ortiz, M.; García, A.M.; Just, A.C.; Kloog, I.; Téllez-Rojo, M.M.; Wright, R.O.; Wright, R.J.; Rosa, M.J. Prenatal and early life exposure to particulate matter, environmental tobacco smoke and respiratory symptoms in Mexican children. Environ. Res. 2020, 192, 110365.
  121. Madsen, C.; Haberg, S.E.; Magnus, M.C.; Aamodt, G.; Stigum, H.; London, S.; Nystad, W.; Nafstad, P. Pregnancy exposure to air pollution and early childhood respiratory health in the Norwegian Mother and Child Cohort Study (MoBa). BMJ Open 2017, 7, e015796.
  122. Deng, Q.; Lu, C.; Yu, Y.; Li, Y.; Sundell, J.; Norbäck, D. Early life exposure to traffic-related air pollution and allergic rhinitis in preschool children. Respir. Med. 2016, 121, 67–73.
  123. Gehring, U.; Wijga, A.H.; Hoek, G.; Bellander, T.; Berdel, D.; Brüske, I.; Fuertes, E.; Gruzieva, O.; Heinrich, J.; Hoffmann, B.; et al. Exposure to air pollution and development of asthma and rhinoconjunctivitis throughout childhood and adolescence: A population-based birth cohort study. Lancet Respir. Med. 2015, 3, 933–942.
  124. Gehring, U.; Wijga, A.H.; Brauer, M.; Fischer, P.; de Jongste, J.C.; Kerkhof, M.; Oldenwening, M.; Smit, H.A.; Brunekreef, B. Traffic-related Air Pollution and the Development of Asthma and Allergies during the First 8 Years of Life. Am. J. Respir. Crit. Care Med. 2010, 181, 596–603.
  125. Gehring, U.; Beelen, R.; Eeftens, M.; Hoek, G.; de Hoogh, K.; de Jongste, J.C.; Keuken, M.; Koppelman, G.H.; Meliefste, K.; Oldenwening, M.; et al. Particulate Matter Composition and Respiratory Health. Epidemiology 2015, 26, 300–309.
  126. To, T.; Zhu, J.; Stieb, D.; Gray, N.; Fong, I.; Pinault, L.; Jerrett, M.; Robichaud, A.; Ménard, R.; Van Donkelaar, A.; et al. Early life exposure to air pollution and incidence of childhood asthma, allergic rhinitis and eczema. Eur. Respir. J. 2019, 55, 1900913.
  127. Gruzieva, O.; Bergström, A.; Hulchiy, O.; Kull, I.; Lind, T.; Melén, E.; Moskalenko, V.; Pershagen, G.; Bellander, T. Exposure to Air Pollution from Traffic and Childhood Asthma Until 12 Years of Age. Epidemiology 2013, 24, 54–61.
  128. Lavigne, É.; Talarico, R.; van Donkelaar, A.; Martin, R.V.; Stieb, D.M.; Crighton, E.; Weichenthal, S.; Smith-Doiron, M.; Burnett, R.T.; Chen, H. Fine particulate matter concentration and composition and the incidence of childhood asthma. Environ. Int. 2021, 152, 106486.
  129. Liu, W.; Cai, J.; Fu, Q.; Zou, Z.; Sun, C.; Zhang, J.; Huang, C. Associations of ambient air pollutants with airway and allergic symptoms in 13,335 preschoolers in Shanghai, China. Chemosphere 2020, 252, 126600.
  130. Zhu, L.; Ge, X.; Chen, Y.; Zeng, X.; Pan, W.; Zhang, X.; Ben, S.; Yuan, Q.; Xin, J.; Shao, W.; et al. Short-term effects of ambient air pollution and childhood lower respiratory diseases. Sci. Rep. 2017, 7, 4414.
  131. Jung, K.H.; Hsu, S.-I.; Yan, B.; Moors, K.; Chillrud, S.N.; Ross, J.; Wang, S.; Perzanowski, M.S.; Kinney, P.L.; Whyatt, R.M.; et al. Childhood exposure to fine particulate matter and black carbon and the development of new wheeze between ages 5 and 7 in an urban prospective cohort. Environ. Int. 2012, 45, 44–50.
  132. Brunst, K.J.; Ryan, P.H.; Brokamp, C.; Bernstein, D.; Reponen, T.; Lockey, J.; Hershey, G.K.K.; Levin, L.; Grinshpun, S.A.; LeMasters, G. Timing and Duration of Traffic-related Air Pollution Exposure and the Risk for Childhood Wheeze and Asthma. Am. J. Respir. Crit. Care Med. 2015, 192, 421–427.
  133. Bernstein, D.I. Traffic-Related Pollutants and Wheezing in Children. J. Asthma 2012, 49, 5–7.
  134. Almeida, L.D.O.E.; Favaro, A.; Raimundo-Costa, W.; Anhê, A.C.B.M.; Ferreira, D.C.; Blanes-Vidal, V.; Senhuk, A.P.M.D.S. Influence of urban forest on traffic air pollution and children respiratory health. Environ. Monit. Assess. 2020, 192, 175.
  135. Ranzi, A.; Porta, D.; Badaloni, C.; Cesaroni, G.; Lauriola, P.; Davoli, M.; Forastiere, F. Exposure to air pollution and respiratory symptoms during the first 7 years of life in an Italian birth cohort. Occup. Environ. Med. 2014, 71, 430–436.
  136. Ghosh, R.; Joad, J.; Benes, I.; Dostal, M.; Sram, R.J.; Hertz-Picciotto, I. Ambient nitrogen oxides exposure and early childhood respiratory illnesses. Environ. Int. 2012, 39, 96–102.
  137. HEI Collaborative Working Group on Air Pollution, Poverty, and Health in Ho Chi Minh City; Le, T.G.; Ngo, L.; Mehta, S.; Do, V.D.; Thach, T.Q.; Vu, X.D.; Nguyen, D.T.; Cohen, A. Effects of short-term exposure to air pollution on hospital admissions of young children for acute lower respiratory infections in Ho Chi Minh City, Vietnam. Res. Rep. 2012, 169, 5–72.
  138. Darrow, L.A.; Klein, M.; Flanders, W.D.; Mulholland, J.A.; Tolbert, P.E.; Strickland, M.J. Air Pollution and Acute Respiratory Infections Among Children 0–4 Years of Age: An 18-Year Time-Series Study. Am. J. Epidemiol. 2014, 180, 968–977.
  139. Hertz-Picciotto, I.; Baker, R.J.; Yap, P.-S.; Dostál, M.; Joad, J.P.; Lipsett, M.; Greenfield, T.; Herr, C.E.; Beneš, I.; Shumway, R.H.; et al. Early Childhood Lower Respiratory Illness and Air Pollution. Environ. Health Perspect. 2007, 115, 1510–1518.
  140. Suryadhi, M.; Abudureyimu, K.; Kashima, S.; Yorifuji, T. Nitrogen dioxide and acute respiratory tract infections in children in Indonesia. Arch. Environ. Occup. Health 2019, 75, 274–280.
  141. Terrazas, C.; Castro-Rodriguez, J.A.; Camargo, C.A.; Borzutzky, A. Solar radiation, air pollution, and bronchiolitis hospitalizations in Chile: An ecological study. Pediatr. Pulmonol. 2019, 54, 1466–1473.
  142. MacIntyre, E.A.; Gehring, U.; Moelter, A.; Fuertes, E.; Kluemper, C.; Kraemer, U.; Quass, U.; Hoffmann, B.; Gascon, M.; Brunekreef, B.; et al. Air Pollution and Respiratory Infections during Early Childhood: An Analysis of 10 European Birth Cohorts within the ESCAPE Project. Environ. Health Perspect. 2014, 122, 107–113.
  143. Fuertes, E.; MacIntyre, E.; Agius, R.; Beelen, R.; Brunekreef, B.; Bucci, S.; Cesaroni, G.; Cirach, M.; Cyrys, J.; Forastiere, F.; et al. Associations between particulate matter elements and early-life pneumonia in seven birth cohorts: Results from the ESCAPE and TRANSPHORM projects. Int. J. Hyg. Environ. Health 2014, 217, 819–829.
  144. Nicolussi, F.H.; Dos Santos, A.P.M.; André, S.C.D.S.; Veiga, T.B.; Takayanagui, A.M.M. Air pollution and respiratory allergic diseases in schoolchildren. Rev. Saude Publica 2014, 48, 326–330.
  145. Hao, S.; Yuan, F.; Pang, P.; Yang, B.; Jiang, X.; Yan, A. Early childhood traffic-related air pollution and risk of allergic rhinitis at 2–4 years of age modification by family stress and male gender: A case-control study in Shenyang, China. Environ. Health Prev. Med. 2021, 26, 48.
  146. Odo, D.B.; Yang, I.A.; Dey, S.; Hammer, M.S.; van Donkelaar, A.; Martin, R.V.; Dong, G.-H.; Yang, B.-Y.; Hystad, P.; Knibbs, L.D. Ambient air pollution and acute respiratory infection in children aged under 5 years living in 35 developing countries. Environ. Int. 2021, 159, 107019.
  147. Stoner, A.M.; Anderson, S.E.; Buckley, T.J. Ambient Air Toxics and Asthma Prevalence among a Representative Sample of US Kindergarten-Age Children. PLoS ONE 2013, 8, e75176.
  148. Leibel, S.; Nguyen, M.; Brick, W.; Parker, J.; Ilango, S.; Aguilera, R.; Gershunov, A.; Benmarhnia, T. Increase in Pediatric Respiratory Visits Associated with Santa Ana Wind–Driven Wildfire Smoke and PM2.5 Levels in San Diego County. Ann. Am. Thorac. Soc. 2020, 17, 313–320.
  149. Guxens, M.; Garcia-Esteban, R.; Giorgis-Allemand, L.; Forns, J.; Badaloni, C.; Ballester, F.; Beelen, R.; Cesaroni, G.; Chatzi, L.; De Agostini, M.; et al. Air Pollution during Pregnancy and Childhood Cognitive and Psychomotor Development. Epidemiology 2014, 25, 636–647.
  150. Yorifuji, T.; Kashima, S.; Diez, M.H.; Kado, Y.; Sanada, S.; Doi, H. Prenatal Exposure to Traffic-related Air Pollution and Child Behavioral Development Milestone Delays in Japan. Epidemiology 2016, 27, 57–65.
  151. Lertxundi, A.; Andiarena, A.; Martínez, M.D.; Ayerdi, M.; Murcia, M.; Estarlich, M.; Guxens, M.; Sunyer, J.; Julvez, J.; Ibarluzea, J. Prenatal exposure to PM2.5 and NO2 and sex-dependent infant cognitive and motor development. Environ. Res. 2019, 174, 114–121.
  152. Ren, Y.; Yao, X.; Liu, Y.; Liu, S.; Li, X.; Huang, Q.; Liu, F.; Li, N.; Lu, Y.; Yuan, Z.; et al. Outdoor air pollution pregnancy exposures are associated with behavioral problems in China’s preschoolers. Environ. Sci. Pollut. Res. 2018, 26, 2397–2408.
  153. Kim, E.; Park, H.; Hong, Y.-C.; Ha, M.; Kim, Y.; Kim, B.-N.; Kim, Y.; Roh, Y.-M.; Lee, B.-E.; Ryu, J.-M.; et al. Prenatal exposure to PM10 and NO2 and children’s neurodevelopment from birth to 24 months of age: Mothers and Children’s Environmental Health (MOCEH) study. Sci. Total Environ. 2014, 481, 439–445.
  154. Lubczyńska, M.J.; Sunyer, J.; Tiemeier, H.; Porta, D.; Kasper-Sonnenberg, M.; Jaddoe, V.W.; Basagaña, X.; Dalmau-Bueno, A.; Forastiere, F.; Wittsiepe, J.; et al. Exposure to elemental composition of outdoor PM2.5 at birth and cognitive and psychomotor function in childhood in four European birth cohorts. Environ. Int. 2017, 109, 170–180.
  155. Wang, P.; Zhao, Y.; Li, J.; Zhou, Y.; Luo, R.; Meng, X.; Zhang, Y. Prenatal exposure to ambient fine particulate matter and early childhood neurodevelopment: A population-based birth cohort study. Sci. Total Environ. 2021, 785, 147334.
  156. Harris, M.H.; Gold, D.R.; Rifas-Shiman, S.L.; Melly, S.J.; Zanobetti, A.; Coull, B.A.; Schwartz, J.D.; Gryparis, A.; Kloog, I.; Koutrakis, P.; et al. Prenatal and childhood traffic-related air pollution exposure and childhood executive function and behavior. Neurotoxicol. Teratol. 2016, 57, 60–70.
  157. Yu, T.; Zhou, L.; Xu, J.; Kan, H.; Chen, R.; Chen, S.; Hua, H.; Liu, Z.; Yan, C. Effects of prenatal exposures to air sulfur dioxide/nitrogen dioxide on toddler neurodevelopment and effect modification by ambient temperature. Ecotoxicol. Environ. Saf. 2021, 230, 113118.
  158. Su, X.; Zhang, S.; Lin, Q.; Wu, Y.; Yang, Y.; Yu, H.; Huang, S.; Luo, W.; Wang, X.; Lin, H.; et al. Prenatal exposure to air pollution and neurodevelopmental delay in children: A birth cohort study in Foshan, China. Sci. Total Environ. 2021, 816, 151658.
  159. Hurtado-Díaz, M.; Riojas-Rodríguez, H.; Rothenberg, S.J.; Schnaas-Arrieta, L.; Kloog, I.; Just, A.; Hernández-Bonilla, D.; Wright, R.O.; Téllez-Rojo, M.M. Prenatal PM2.5 exposure and neurodevelopment at 2 years of age in a birth cohort from Mexico city. Int. J. Hyg. Environ. Health 2021, 233, 113695.
  160. Li, J.; Liao, J.; Hu, C.; Bao, S.; Mahai, G.; Cao, Z.; Lin, C.; Xia, W.; Xu, S.; Li, Y. Preconceptional and the first trimester exposure to PM2.5 and offspring neurodevelopment at 24 months of age: Examining mediation by maternal thyroid hormones in a birth cohort study. Environ. Pollut. 2021, 284, 117133.
  161. Loftus, C.T.; Hazlehurst, M.F.; Szpiro, A.A.; Ni, Y.; Tylavsky, F.A.; Bush, N.R.; Sathyanarayana, S.; Carroll, K.N.; Karr, C.J.; LeWinn, K.Z. Prenatal air pollution and childhood IQ: Preliminary evidence of effect modification by folate. Environ. Res. 2019, 176, 108505.
  162. Chiu, Y.-H.M.; Hsu, H.-H.L.; Coull, B.A.; Bellinger, D.C.; Kloog, I.; Schwartz, J.; Wright, R.O.; Wright, R.J. Prenatal particulate air pollution and neurodevelopment in urban children: Examining sensitive windows and sex-specific associations. Environ. Int. 2015, 87, 56–65.
  163. Jedrychowski, W.A.; Perera, F.P.; Camann, D.; Spengler, J.; Butscher, M.; Mroz, E.; Majewska, R.; Flak, E.; Jacek, R.; Sowa, A. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ. Sci. Pollut. Res. 2014, 22, 3631–3639.
  164. Volk, H.E.; Hertz-Picciotto, I.; Delwiche, L.; Lurmann, F.; McConnell, R. Residential Proximity to Freeways and Autism in the CHARGE Study. Environ. Health Perspect. 2011, 119, 873–877.
  165. Volk, H.E.; Lurmann, F.; Penfold, B.; Hertz-Picciotto, I.; McConnell, R. Traffic-Related Air Pollution, Particulate Matter, and Autism. JAMA Psychiatry 2013, 70, 71–77.
  166. Wang, S.-Y.; Cheng, Y.-Y.; Guo, H.-R.; Tseng, Y.-C. Air Pollution during Pregnancy and Childhood Autism Spectrum Disorder in Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 9784.
  167. Pagalan, L.; Bickford, C.; Weikum, W.; Lanphear, B.; Brauer, M.; Lanphear, N.; Hanley, G.; Oberlander, T.; Winters, M. Association of Prenatal Exposure to Air Pollution with Autism Spectrum Disorder. JAMA Pediatr. 2019, 173, 86–92.
  168. Becerra, T.A.; Wilhelm, M.; Olsen, J.; Cockburn, M.; Ritz, B. Ambient Air Pollution and Autism in Los Angeles County, California. Environ. Health Perspect. 2013, 121, 380–386.
  169. McGuinn, L.A.; Windham, G.C.; Kalkbrenner, A.E.; Bradley, C.; Di, Q.; Croen, L.A.; Fallin, M.D.; Hoffman, K.; Ladd-Acosta, C.; Schwartz, J.; et al. Early Life Exposure to Air Pollution and Autism Spectrum Disorder. Epidemiology 2020, 31, 103–114.
  170. Kaufman, J.A.; Wright, J.M.; Rice, G.; Connolly, N.; Bowers, K.; Anixt, J. Ambient ozone and fine particulate matter exposures and autism spectrum disorder in metropolitan Cincinnati, Ohio. Environ. Res. 2019, 171, 218–227.
  171. Raz, R.; Roberts, A.; Lyall, K.; Hart, J.E.; Just, A.; Laden, F.; Weisskopf, M.G. Autism Spectrum Disorder and Particulate Matter Air Pollution before, during, and after Pregnancy: A Nested Case–Control Analysis within the Nurses’ Health Study II Cohort. Environ. Health Perspect. 2015, 123, 264–270.
  172. Carter, S.A.; Rahman, M.; Lin, J.C.; Shu, Y.-H.; Chow, T.; Yu, X.; Martinez, M.P.; Eckel, S.P.; Chen, J.-C.; Chen, Z.; et al. In utero exposure to near-roadway air pollution and autism spectrum disorder in children. Environ. Int. 2021, 158, 106898.
  173. Sunyer, J.; Esnaola, M.; Alvarez-Pedrerol, M.; Forns, J.; Rivas, I.; López-Vicente, M.; Suades-González, E.; Foraster, M.; Garcia-Esteban, R.; Basagaña, X.; et al. Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study. PLoS Med. 2015, 12, e1001792.
  174. van Kempen, E.; Fischer, P.; Janssen, N.; Houthuijs, D.; van Kamp, I.; Stansfeld, S.; Cassee, F. Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in primary schoolchildren. Environ. Res. 2012, 115, 18–25.
More