Materials for Chemical Sensing: Comparison
Please note this is a comparison between Version 2 by Vivi Li and Version 1 by Stefano Lettieri.

The ability to measure and monitor the concentration of specific chemical and/or gaseous species (i.e., “analytes”) is the main requirement in many fields, including industrial processes, medical applications, and workplace safety management. As a consequence, several kinds of sensors have been developed in the modern era according to some practical guidelines that regard the characteristics of the active (sensing) materials on which the sensor devices are based. These characteristics include the cost-effectiveness of the materials’ manufacturing, the sensitivity to analytes, the material stability, and the possibility of exploiting them for low-cost and portable devices. Consequently, many gas sensors employ well-defined transduction methods, the most popular being the oxidation (or reduction) of the analyte in an electrochemical reactor, optical techniques, and chemiresistive responses to gas adsorption. In recent years, mMany of the efforts devoted to improving these methods have been directed towards the use of certain classes of specific materials.

  • gas sensors
  • ionic liquids
  • metal–organic frameworks
  • MOF-based composites
  • optical sensors
  • chemiresistors
  • electrochemical sensors
  • oxygen
  • hydrogen
  • chemical sensing

1. Introduction

It is widely recognized that the development of technologies suitable for the identification and measurement of concentration of gaseous species is of great significance in many fields, including, for example, public health and safety, energy, climate, and environmental risk assessment. While it is clear that useful sensing devices (also referred to as “sensors”) must fulfill analytical standards, it is important to underline that other additional requirements exist, whose relative importance may vary depending on the specific application. Here, wresearchers can mention, for example: low production and consumption costs, small sizes, device portability for in-field measurements, possibility to transmit the data remotely, and so forth. A couple of examples of public documents available on the web are given here [1,2][1][2] as references for the economic figures involved.
The need to monitor the concentration of several kinds of gases (“analytes”) is recurring or, more appropriately, constantly present in many industrial processes, medical activities and everyday life activities. Due to this, several kinds of gas-sensing devices—based on different technologies and on different gas-sensitive materials—have been developed in the modern era [3,4,5,6,7,8,9][3][4][5][6][7][8][9]. Hence, a review on gas sensors and on the related technologies can be organized in different ways, such as by focusing on the transduction technology, on the specific application in which given sensors are employed, on the analyte to be revealed or, finally, on the active materials which allow sensing the gas molecules.
The present entreviewy is organized according to the latter criterion and is structured in sections dedicated to different typologies of materials. In particular, weresearchers review here some more recent developments in the use of ionic liquids and metal–organic frameworks (MOFs) in chemical sensing. Regarding the latter class of materials, the present reviewentry considers both MOFs used in pure form and, more extensively, composite materials in which a MOF is a component of the active sensing materials. In more detail, weresearchers will discuss hybrid materials in which MOFs are integrated with metal oxides, carbon-based materials, metal nanoparticles, and conducting polymers.
For the sake of clarity, wresearchers will first spend the first part of this introduction by pointing out (i) some of the applications requiring the use of chemical sensors and gas sensors, (ii) some of the most important analytes which are extensively considered in the present reviewentry, and (iii) the physical/chemical mechanisms for the detection and concentration measurements of the gaseous species which are at the basis of the kind of sensors considered in this work.
Among the most important fields that involve or require gas sensing and concentration measurements, wresearchers shall mention at least: (i) environmental monitoring, which includes, for example, the control of indoor air quality [6,10,11][6][10][11] and the analysis of air pollution caused by vehicular traffic [12,13][12][13]; (ii) human safety, including the detection of harmful and/or explosive gases [14,15,16,17][14][15][16][17]; and (iii) medical application and diagnoses, such as breath and blood analysis [18,19][18][19]. A large variety of applications exist in reference to these fields, whose review is below the scope of the present work. It is worth mentioning that almost any (if not, any) monitoring activity has to be performed on-site and that measurements shall be collected in real time for various reasons (consider, for example, the case in which sensors have to monitor an industrial process or the leakage of some toxic species in an enclosed area). Moreover, prolonged monitoring is very often also needed, so the cost-effectiveness of running the sensor device is also an issue. This variety of applications and requirements explains why a wide array of sensing devices have been developed in recent decades [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26].
The development of gas-sensing devices is in many cases focused on the detection of toxic or harmful gases generated by industrial processes or automobiles, such as NO and NO2 (NOx), CO, CO2, SO2, O3, and NH3. Other species to be mentioned are volatile organic compounds (VOCs), namely, organic compounds of small molecular mass which vaporize easily at room temperature such as acetone (CH3CH3CO), formaldehyde (HCHO), ethanol (CH3CH2OH), benzene (C6H6), toluene (C7H8), and others [16].
Molecular oxygen (O2) is another analyte of importance. The possibility to detect it and to measure its partial pressure in air or, in most cases, when dissolved in some liquid medium (e.g., water or blood) is of paramount importance for many applications, such as medicine (e.g., the measurement of O2 concentration in blood or in breath for medical diagnoses), plant biology, marine and freshwater research, and food technology and packaging. Several examples on the applications of O2 sensing and extended references on the methods to achieve it are reported in excellent reviews [27,28,29][27][28][29].
The different physical/chemical mechanisms for the detection and concentration measurements of the gaseous species correspond, of course, to different classes/families of materials. However, gas-sensing materials shall ideally share some key characteristics, regardless of the transduction mechanism, the main and most obvious one being a large specific surface area (SSA). An exhaustive (although incomplete) list of possible approaches to gas sensing can be summarized as in Table 1.

References

  1. Gas and Particle Sensors–Technology and Market Trends 2021. Available online: https://www.i-micronews.com/products/gas-and-particle-sensors-technology-and-market-trends-2021/ (accessed on 9 April 2022).
  2. Fortune Business Insights Industrial Gas Sensors Market Size, Growth|Industry Report 2026. Available online: https://www.fortunebusinessinsights.com/industry-reports/industrial-gas-sensors-market-101064 (accessed on 9 April 2022).
  3. Barsan, N.; Koziej, D.; Weimar, U. Metal Oxide-Based Gas Sensor Research: How to? Sens. Actuators B Chem. 2007, 121, 18–35.
  4. Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167.
  5. Korotcenkov, G. The Role of Morphology and Crystallographic Structure of Metal Oxides in Response of Conductometric-Type Gas Sensors. Mater. Sci. Eng. R Rep. 2008, 61, 1–39.
  6. Baron, R.; Saffell, J. Amperometric Gas Sensors as a Low Cost Emerging Technology Platform for Air Quality Monitoring Applications: A Review. ACS Sens. 2017, 2, 1553–1566.
  7. Lin, R.; Liu, S.; Ye, J.; Li, X.; Zhang, J. Photoluminescent Metal–Organic Frameworks for Gas Sensing. Adv. Sci. 2016, 3, 1500434.
  8. Wagner, T.; Haffer, S.; Weinberger, C.; Klaus, D.; Tiemann, M. Mesoporous Materials as Gas Sensors. Chem. Soc. Rev. 2013, 42, 4036–4053.
  9. Stetter, J.R.; Li, J. Amperometric Gas SensorsA Review. Chem. Rev. 2008, 108, 352–366.
  10. Malik, R.; Tomer, V.K.; Mishra, Y.K.; Lin, L. Functional Gas Sensing Nanomaterials: A Panoramic View. Appl. Phys. Rev. 2020, 7, 021301.
  11. Ghosh, R.; Gardner, J.W.; Guha, P.K. Air Pollution Monitoring Using Near Room Temperature Resistive Gas Sensors: A Review. IEEE Trans. Electron. Devices 2019, 66, 3254–3264.
  12. Halfaya, Y.; Bishop, C.; Soltani, A.; Sundaram, S.; Aubry, V.; Voss, P.L.; Salvestrini, J.-P.; Ougazzaden, A. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems. Sensors 2016, 16, 273.
  13. Wales, D.J.; Grand, J.; Ting, V.P.; Burke, R.D.; Edler, K.J.; Bowen, C.R.; Mintova, S.; Burrows, A.D. Gas Sensing Using Porous Materials for Automotive Applications. Chem. Soc. Rev. 2015, 44, 4290–4321.
  14. Kang, X.; Yip, S.; Meng, Y.; Wang, W.; Li, D.; Liu, C.; Ho, J.C. High-Performance Electrically Transduced Hazardous Gas Sensors Based on Low-Dimensional Nanomaterials. Nanoscale Adv. 2021, 3, 6254–6270.
  15. Horsfall, L.A.; Pugh, D.C.; Blackman, C.S.; Parkin, I.P. An Array of WO3 and CTO Heterojunction Semiconducting Metal Oxide Gas Sensors Used as a Tool for Explosive Detection. J. Mater. Chem. A 2017, 5, 2172–2179.
  16. Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review. Ceram. Int. 2016, 42, 15119–15141.
  17. Leidinger, M.; Sauerwald, T.; Reimringer, W.; Ventura, G.; Schütze, A. Selective Detection of Hazardous VOCs for Indoor Air Quality Applications Using a Virtual Gas Sensor Array. J. Sens. Sens. Syst. 2014, 3, 253–263.
  18. Chaisiwamongkhol, K.; Batchelor-McAuley, C.; Compton, R.G. Optimising Amperometric PH Sensing in Blood Samples: An Iridium Oxide Electrode for Blood PH Sensing. Analyst 2019, 144, 1386–1393.
  19. Landini, N.; Anania, G.; Fabbri, B.; Gaiardo, A.; Gherardi, S.; Guidi, V.; Rispoli, G.; Scagliarini, L.; Zonta, G.; Malagù, C. Neoplasms and Metastasis Detection in Human Blood Exhalations with a Device Composed by Nanostructured Sensors. Sens. Actuators B Chem. 2018, 271, 203–214.
  20. Galstyan, V.; Bhandari, M.P.; Sberveglieri, V.; Sberveglieri, G.; Comini, E. Metal Oxide Nanostructures in Food Applications: Quality Control and Packaging. Chemosensors 2018, 6, 16.
  21. Pallotti, D.; Orabona, E.; Amoruso, S.; Maddalena, P.; Lettieri, S. Modulation of Mixed-Phase Titania Photoluminescence by Oxygen Adsorption. Appl. Phys. Lett. 2014, 105, 031903.
  22. Gaiardo, A.; Fabbri, B.; Guidi, V.; Bellutti, P.; Giberti, A.; Gherardi, S.; Vanzetti, L.; Malagù, C.; Zonta, G. Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors. Sensors 2016, 16, 296.
  23. Ambrosone, G.; Coscia, U.; Lettieri, S.; Maddalena, P.; Privato, C.; Ferrero, S. Hydrogenated Amorphous Silicon Carbon Alloys for Solar Cells. Thin Solid Film. 2002, 403, 349–353.
  24. Comini, E. Metal Oxide Nano-Crystals for Gas Sensing. Anal. Chim. Acta 2006, 568, 28–40.
  25. Setaro, A.; Bismuto, A.; Lettieri, S.; Maddalena, P.; Comini, E.; Bianchi, S.; Baratto, C.; Sberveglieri, G. Optical Sensing of NO2 in Tin Oxide Nanowires at Sub-Ppm Level. Sens. Actuators B Chem. 2008, 130, 391–395.
  26. Setaro, A.; Lettieri, S.; Diamare, D.; Maddalena, P.; Malagù, C.; Carotta, M.C.; Martinelli, G. Nanograined Anatase Titania-Based Optochemical Gas Detection. New J. Phys. 2008, 10, 053030.
  27. Bittig, H.C.; Körtzinger, A.; Neill, C.; van Ooijen, E.; Plant, J.N.; Hahn, J.; Johnson, K.S.; Yang, B.; Emerson, S.R. Oxygen Optode Sensors: Principle, Characterization, Calibration, and Application in the Ocean. Front. Mar. Sci. 2018, 4, 429.
  28. Wang, X.; Wolfbeis, O.S. Optical Methods for Sensing and Imaging Oxygen: Materials, Spectroscopies and Applications. Chem. Soc. Rev. 2014, 43, 3666–3761.
  29. Quaranta, M.; Borisov, S.M.; Klimant, I. Indicators for Optical Oxygen Sensors. Bioanal. Rev. 2012, 4, 115–157.
  30. Zhuang, W.; Hachem, K.; Bokov, D.; Javed Ansari, M.; Taghvaie Nakhjiri, A. Ionic Liquids in Pharmaceutical Industry: A Systematic Review on Applications and Future Perspectives. J. Mol. Liq. 2022, 349, 118145.
  31. Tanner, E.E.L. Ionic Liquids Charge Ahead. Nat. Chem. 2022, 14, 842.
  32. Buettner, C.S.; Cognigni, A.; Schröder, C.; Bica-Schröder, K. Surface-Active Ionic Liquids: A Review. J. Mol. Liq. 2022, 347, 118160.
  33. Plechkova, N.V.; Seddon, K.R. Applications of Ionic Liquids in the Chemical Industry. Chem. Soc. Rev. 2008, 37, 123–150.
  34. Schreiner, C.; Zugmann, S.; Hartl, R.; Gores, H.J. Fractional Walden Rule for Ionic Liquids: Examples from Recent Measurements and a Critique of the So-Called Ideal KCl Line for the Walden Plot. J. Chem. Eng. Data 2010, 55, 1784–1788.
  35. Ignat’ev, N.V.; Welz-Biermann, U.; Kucheryna, A.; Bissky, G.; Willner, H. New Ionic Liquids with Tris(Perfluoroalkyl)Trifluorophosphate (FAP) Anions. J. Fluor. Chem. 2005, 126, 1150–1159.
  36. Tang, Y.; Zeng, X. Electrochemical Oxidation of Hydrogen in Bis(Trifluoromethylsulfonyl)Imide Ionic Liquids under Anaerobic and Aerobic Conditions. J. Phys. Chem. C 2016, 120, 23542–23551.
  37. Lee, J.; Arrigan, D.W.M.; Silvester, D.S. Achievement of Prolonged Oxygen Detection in Room-Temperature Ionic Liquids on Mechanically Polished Platinum Screen-Printed Electrodes. Anal. Chem. 2016, 88, 5104–5111.
  38. Hussain, G.; O’Mullane, A.P.; Silvester, D.S. Modification of Microelectrode Arrays with High Surface Area Dendritic Platinum 3D Structures: Enhanced Sensitivity for Oxygen Detection in Ionic Liquids. Nanomaterials 2018, 8, 735.
  39. Lee, J.; Silvester, D.S. Low-Cost Microarray Thin-Film Electrodes with Ionic Liquid Gel-Polymer Electrolytes for Miniaturised Oxygen Sensing. Analyst 2016, 141, 3705–3713.
  40. Gondosiswanto, R.; Gunawan, C.A.; Hibbert, D.B.; Harper, J.B.; Zhao, C. Microcontact Printing of Thiol-Functionalized Ionic Liquid Microarrays for “Membrane-Less” and “Spill-Less” Gas Sensors. ACS Appl. Mater. Interfaces 2016, 8, 31368–31374.
  41. Liu, X.; Chen, X.; Xu, Y.; Chen, T.; Zeng, X. Effects of Water on Ionic Liquid Electrochemical Microsensor for Oxygen Sensing. Sens. Actuators B Chem. 2019, 285, 350–357.
  42. Wan, H.; Yin, H.; Mason, A.J. Rapid Measurement of Room Temperature Ionic Liquid Electrochemical Gas Sensor Using Transient Double Potential Amperometry. Sens. Actuators B Chem. 2017, 242, 658–666.
  43. Lee, J.; Hussain, G.; Banks, C.E.; Silvester, D.S. Screen-Printed Graphite Electrodes as Low-Cost Devices for Oxygen Gas Detection in Room-Temperature Ionic Liquids. Sensors 2017, 17, 2734.
  44. Gondosiswanto, R.; Hibbert, D.B.; Fang, Y.; Zhao, C. Ionic Liquid Microstrips Impregnated with Magnetic Nanostirrers for Sensitive Gas Sensors. ACS Appl. Mater. Interfaces 2017, 9, 43377–43385.
  45. Lin, L.; Zeng, X. Toward Continuous Amperometric Gas Sensing in Ionic Liquids: Rationalization of Signal Drift Nature and Calibration Methods. Anal. Bioanal. Chem. 2018, 410, 4587–4596.
  46. Gondosiswanto, R.; Hibbert, D.B.; Fang, Y.; Zhao, C. Redox Recycling Amplification Using an Interdigitated Microelectrode Array for Ionic Liquid-Based Oxygen Sensors. Anal. Chem. 2018, 90, 3950–3957.
  47. Liu, Y.; Liu, J.; Liu, Q.; Zhang, H.; Li, Z.; Jing, X.; Yuan, Y.; Zhang, H.; Liu, P.; Wang, J. Ionic Liquids Combined with Pt-Modified Ordered Mesoporous Carbons as Electrolytes for the Oxygen Sensing. Sens. Actuators B Chem. 2018, 254, 490–501.
  48. Zhang, H.; Liu, J.; Liu, Q.; Chen, R.; Zhang, H.; Yu, J.; Song, D.; Jing, X.; Zhang, M.; Wang, J. Electrochemical Oxygen Sensor Based on the Interaction of Double-Layer Ionic Liquid Film (DLILF). J. Electrochem. Soc. 2018, 165, B779.
  49. Yu, L.; Liu, J.; Yin, W.; Yu, J.; Chen, R.; Song, D.; Liu, Q.; Li, R.; Wang, J. Ionic Liquid Combined with NiCo2O4/RGO Enhances Electrochemical Oxygen Sensing. Talanta 2020, 209, 120515.
  50. Yin, W.; Liu, J.; Liu, Q.; Chen, R.; Yu, J.; Zhang, H.; Song, D.; Fan, M.; Zhang, M.; Wang, J. Ag-CS Enhanced Performance of Pyrrolidone-Based Ionic Liquid Oxygen Sensor. J. Electrochem. Soc. 2020, 167, 067522.
  51. Wan, H.; Liu, X.; Wang, X.; Chen, Y.; Wang, P.P. Facile Screen-Printed Carbon Nanotube Electrode on Porous Substrate with Gold Nanoparticle Modification for Rapid Electrochemical Gas Sensing. J. Electrochem. Soc. 2021, 168, 067514.
  52. Yin, W.; Alali, K.T.; Zhang, M.; Liu, J.; Song, D.; Liu, Q.; Yu, J.; Chen, R.; Zhang, H.; Wang, J. A−Fe2O3/RGO Cooperated with Tri-Alkyl-Substituted-Imidazolium Ionic Liquids for Enhancing Oxygen Sensing. Sens. Actuators B Chem. 2021, 341, 130029.
  53. Doblinger, S.; Hay, C.E.; Tomé, L.C.; Mecerreyes, D.; Silvester, D.S. Ionic Liquid/Poly(Ionic Liquid) Membranes as Non-Flowing, Conductive Materials for Electrochemical Gas Sensing. Anal. Chim. Acta 2022, 1195, 339414.
  54. Lee, J.; Hussain, G.; López-Salas, N.; MacFarlane, D.R.; Silvester, D.S. Thin Films of Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)-Ionic Liquid Mixtures as Amperometric Gas Sensing Materials for Oxygen and Ammonia. Analyst 2020, 145, 1915–1924.
  55. Liu, X.; Chen, X.; Ju, J.; Wang, X.; Mei, Z.; Qu, H.; Xu, Y.; Zeng, X. Platinum–Nickel Bimetallic Nanosphere–Ionic Liquid Interface for Electrochemical Oxygen and Hydrogen Sensing. ACS Appl. Nano Mater. 2019, 2, 2958–2968.
  56. Tang, Y.; He, J.; Gao, X.; Yang, T.; Zeng, X. Continuous Amperometric Hydrogen Gas Sensing in Ionic Liquids. Analyst 2018, 143, 4136–4146.
  57. Jayanthi, E.; Murugesan, N.; Suneesh, A.S.; Ramesh, C.; Anthonysamy, S. Sensing Behavior of Room Temperature Amperometric H2 Sensor with Pd Electrodeposited from Ionic Liquid Electrolyte as Sensing Electrode. J. Electrochem. Soc. 2017, 164, H5210.
  58. Zhi, Z.; Gao, W.; Yang, J.; Geng, C.; Yang, B.; Tian, C.; Fan, S.; Li, H.; Li, J.; Hua, Z. Amperometric Hydrogen Gas Sensor Based on Pt/C/Nafion Electrode and Ionic Electrolyte. Sens. Actuators B Chem. 2022, 367, 132137.
  59. Hussain, G.; Ge, M.; Zhao, C.; Silvester, D.S. Fast Responding Hydrogen Gas Sensors Using Platinum Nanoparticle Modified Microchannels and Ionic Liquids. Anal. Chim. Acta 2019, 1072, 35–45.
  60. Hussain, G.; Silvester, D.S. Comparison of Voltammetric Techniques for Ammonia Sensing in Ionic Liquids. Electroanalysis 2018, 30, 75–83.
  61. Hussain, G.; Silvester, D.S. Detection of Sub-Ppm Concentrations of Ammonia in an Ionic Liquid: Enhanced Current Density Using “Filled” Recessed Microarrays. Anal. Chem. 2016, 88, 12453–12460.
  62. Hussain, G.; Aldous, L.; Silvester, D.S. Preparation of Platinum-Based ‘cauliflower Microarrays’ for Enhanced Ammonia Gas Sensing. Anal. Chim. Acta 2019, 1048, 12–21.
  63. Ge, M.; Hussain, G.; Hibbert, D.B.; Silvester, D.S.; Zhao, C. Ionic Liquid-Based Microchannels for Highly Sensitive and Fast Amperometric Detection of Toxic Gases. Electroanalysis 2019, 31, 66–74.
  64. Chi, X.; Tang, Y.; Zeng, X. Electrode Reactions Coupled with Chemical Reactions of Oxygen, Water and Acetaldehyde in an Ionic Liquid: New Approaches for Sensing Volatile Organic Compounds. Electrochim. Acta 2016, 216, 171–180.
  65. Ge, M.; Gondosiswanto, R.; Zhao, C. Electrodeposited Copper Nanoparticles in Ionic Liquid Microchannels Electrode for Carbon Dioxide Sensor. Inorg. Chem. Commun. 2019, 107, 107458.
  66. Toniolo, R.; Dossi, N.; Bortolomeazzi, R.; Bonazza, G.; Daniele, S. Volatile Aldehydes Sensing in Headspace Using a Room Temperature Ionic Liquid-Modified Electrochemical Microprobe. Talanta 2019, 197, 522–529.
  67. Gil-González, N.; Benito-Lopez, F.; Castaño, E.; Morant-Miñana, M.C. Imidazole-Based Ionogel as Room Temperature Benzene and Formaldehyde Sensor. Microchim. Acta 2020, 187, 638.
  68. Doblinger, S.; Lee, J.; Gurnah, Z.; Silvester, D.S. Detection of Sulfur Dioxide at Low Parts-per-Million Concentrations Using Low-Cost Planar Electrodes with Ionic Liquid Electrolytes. Anal. Chim. Acta 2020, 1124, 156–165.
  69. Esteves, C.; Palma, S.I.C.J.; Costa, H.M.A.; Alves, C.; Santos, G.M.C.; Ramou, E.; Carvalho, A.L.; Alves, V.; Roque, A.C.A. Tackling Humidity with Designer Ionic Liquid-Based Gas Sensing Soft Materials. Adv. Mater. 2022, 34, 2107205.
  70. Zuliani, I.; Fattori, A.; Svigelj, R.; Dossi, N.; Grazioli, C.; Bontempelli, G.; Toniolo, R. Amperometric Detection of Ethanol Vapors by Screen Printed Electrodes Modified by Paper Crowns Soaked with Room Temperature Ionic Liquids. Electroanalysis 2022, 34, 1–11.
  71. Gao, J.; Hua, Z.; Xu, S.; Wan, H.; Zhi, Z.; Chen, X.; Fan, S. Amperometric Gas Sensors Based on Screen Printed Electrodes with Porous Ceramic Substrates. Sens. Actuators B Chem. 2021, 342, 130045.
  72. Luo, R.; Wu, Y.; Li, Q.; Du, B.; Zhou, S.; Li, H. Rational Synthesis and Characterization of IL-CNTs-PANI Microporous Polymer Electrolyte Film. Synth. Met. 2021, 274, 116720.
  73. Kuberský, P.; Navrátil, J.; Syrový, T.; Sedlák, P.; Nešpůrek, S.; Hamáček, A. An Electrochemical Amperometric Ethylene Sensor with Solid Polymer Electrolyte Based on Ionic Liquid. Sensors 2021, 21, 711.
  74. Zhang, S.-Y.; Zhuang, Q.; Zhang, M.; Wang, H.; Gao, Z.; Sun, J.-K.; Yuan, J. Poly(Ionic Liquid) Composites. Chem. Soc. Rev. 2020, 49, 1726–1755.
  75. Silvester, D.S. New Innovations in Ionic Liquid–Based Miniaturised Amperometric Gas Sensors. Curr. Opin. Electrochem. 2019, 15, 7–17.
  76. Raptopoulou, C.P. Metal-Organic Frameworks: Synthetic Methods and Potential Applications. Materials 2021, 14, 310.
  77. Andirova, D.; Cogswell, C.F.; Lei, Y.; Choi, S. Effect of the Structural Constituents of Metal Organic Frameworks on Carbon Dioxide Capture. Microporous Mesoporous Mater. 2016, 219, 276–305.
  78. Yulia, F.; Nasruddin; Zulys, A.; Ruliandini, R. Metal-Organic Framework Based Chromium Terephthalate (MIL-101 Cr) Growth for Carbon Dioxide Capture: A Review. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 57, 158–174.
  79. Ding, M.; Cai, X.; Jiang, H.-L. Improving MOF Stability: Approaches and Applications. Chem. Sci. 2019, 10, 10209–10230.
  80. Jiao, L.; Seow, J.Y.R.; Skinner, W.S.; Wang, Z.U.; Jiang, H.-L. Metal–Organic Frameworks: Structures and Functional Applications. Mater. Today 2019, 27, 43–68.
  81. Lee, Y.-R.; Kim, J.; Ahn, W.-S. Synthesis of Metal-Organic Frameworks: A Mini Review. Korean J. Chem. Eng. 2013, 30, 1667–1680.
  82. Silva, P.; Vilela, S.M.F.; Tomé, J.P.C.; Almeida Paz, F.A. Multifunctional Metal–Organic Frameworks: From Academia to Industrial Applications. Chem. Soc. Rev. 2015, 44, 6774–6803.
  83. Safaei, M.; Foroughi, M.M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A Review on Metal-Organic Frameworks: Synthesis and Applications. TrAC Trends Anal. Chem. 2019, 118, 401–425.
  84. Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J.; et al. The Current Status of MOF and COF Applications. Angew. Chem. Int. Ed. 2021, 60, 23975–24001.
  85. Song, Y.; Li, X.; Sun, L.; Wang, L. Metal/Metal Oxide Nanostructures Derived from Metal–Organic Frameworks. RSC Adv. 2015, 5, 7267–7279.
  86. Alfè, M.; Gargiulo, V.; Amati, M.; Maraloiu, V.-A.; Maddalena, P.; Lettieri, S. Mesoporous TiO2 from Metal-Organic Frameworks for Photoluminescence-Based Optical Sensing of Oxygen. Catalysts 2021, 11, 795.
  87. Tan, X.; Wu, Y.; Lin, X.; Zeb, A.; Xu, X.; Luo, Y.; Liu, J. Application of MOF-Derived Transition Metal Oxides and Composites as Anodes for Lithium-Ion Batteries. Inorg. Chem. Front. 2020, 7, 4939–4955.
  88. Li, H.-Y.; Zhao, S.-N.; Zang, S.-Q.; Li, J. Functional Metal–Organic Frameworks as Effective Sensors of Gases and Volatile Compounds. Chem. Soc. Rev. 2020, 49, 6364–6401.
  89. Li, Y.; Xiao, A.-S.; Zou, B.; Zhang, H.-X.; Yan, K.-L.; Lin, Y. Advances of Metal–Organic Frameworks for Gas Sensing. Polyhedron 2018, 154, 83–97.
  90. Huang, B.; Li, Y.; Zeng, W. Application of Metal-Organic Framework-Based Composites for Gas Sensing and Effects of Synthesis Strategies on Gas-Sensitive Performance. Chemosensors 2021, 9, 226.
  91. Sosa, J.; Bennett, T.; Nelms, K.; Liu, B.; Tovar, R.; Liu, Y. Metal–Organic Framework Hybrid Materials and Their Applications. Crystals 2018, 8, 325.
  92. Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A. Post-Synthetic Modification of Metal–Organic Frameworks Toward Applications. Adv. Funct. Mater. 2021, 31, 2006291.
  93. Alfe, M.; Policicchio, A.; Lisi, L.; Gargiulo, V. Solid Sorbents for CO2 and CH4 Adsorption: The Effect of Metal Organic Framework Hybridization with Graphene-like Layers on the Gas Sorption Capacities at High Pressure. Renew. Sustain. Energy Rev. 2021, 141, 110816.
  94. Lei, J.; Qian, R.; Ling, P.; Cui, L.; Ju, H. Design and Sensing Applications of Metal–Organic Framework Composites. TrAC Trends Anal. Chem. 2014, 58, 71–78.
  95. Zhu, Q.-L.; Xu, Q. Metal–Organic Framework Composites. Chem. Soc. Rev. 2014, 43, 5468–5512.
  96. Kalaj, M.; Bentz, K.C.; Ayala, S.; Palomba, J.M.; Barcus, K.S.; Katayama, Y.; Cohen, S.M. MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures. Chem. Rev. 2020, 120, 8267–8302.
  97. Wang, X.; Wang, Y.; Ying, Y. Recent Advances in Sensing Applications of Metal Nanoparticle/Metal–Organic Framework Composites. TrAC Trends Anal. Chem. 2021, 143, 116395.
  98. Chen, C.; Li, B.; Zhou, L.; Xia, Z.; Feng, N.; Ding, J.; Wang, L.; Wan, H.; Guan, G. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal–Organic Framework with Mesoporous Silica for CO2 Adsorption. ACS Appl. Mater. Interfaces 2017, 9, 23060–23071.
  99. Chronopoulos, D.D.; Saini, H.; Tantis, I.; Zbořil, R.; Jayaramulu, K.; Otyepka, M. Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications. Small 2022, 18, 2104628.
  100. Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Metal-Organic Frameworks/Graphene-Based Materials: Preparations and Applications. Adv. Funct. Mater. 2018, 28, 1804950.
  101. Alfè, M.; Gargiulo, V.; Lisi, L.; Di Capua, R. Synthesis and Characterization of Conductive Copper-Based Metal-Organic Framework/Graphene-like Composites. Mater. Chem. Phys. 2014, 147, 744–750.
  102. Aguilera-Sigalat, J.; Bradshaw, D. Synthesis and Applications of Metal-Organic Framework–Quantum Dot () Composites. Coord. Chem. Rev. 2016, 307, 267–291.
  103. Li, S.; Huo, F. Metal–Organic Framework Composites: From Fundamentals to Applications. Nanoscale 2015, 7, 7482–7501.
  104. Jahan, M.; Bao, Q.; Yang, J.-X.; Loh, K.P. Structure-Directing Role of Graphene in the Synthesis of Metal–Organic Framework Nanowire. J. Am. Chem. Soc. 2010, 132, 14487–14495.
  105. Li, X.; Zhang, Z.; Xiao, W.; Deng, S.; Chen, C.; Zhang, N. Mechanochemistry-Assisted Encapsulation of Metal Nanoparticles in MOF Matrices via a Sacrificial Strategy. J. Mater. Chem. A 2019, 7, 14504–14509.
  106. Chen, L.; Chen, H.; Luque, R.; Li, Y. Metal−organic Framework Encapsulated Pd Nanoparticles: Towards Advanced Heterogeneous Catalysts. Chem. Sci. 2014, 5, 3708–3714.
  107. Hu, M.-L.; Razavi, S.A.A.; Piroozzadeh, M.; Morsali, A. Sensing Organic Analytes by Metal–Organic Frameworks: A New Way of Considering the Topic. Inorg. Chem. Front. 2020, 7, 1598–1632.
  108. Small, L.J.; Schindelholz, M.E.; Nenoff, T.M. Hold on Tight: MOF-Based Irreversible Gas Sensors. Ind. Eng. Chem. Res. 2021, 60, 7998–8006.
  109. Zhang, R.; Lu, L.; Chang, Y.; Liu, M. Gas Sensing Based on Metal-Organic Frameworks: Concepts, Functions, and Developments. J. Hazard. Mater. 2022, 429, 128321.
  110. Kumar, P.; Deep, A.; Kim, K.-H. Metal Organic Frameworks for Sensing Applications. TrAC Trends Anal. Chem. 2015, 73, 39–53.
  111. Bhardwaj, S.K.; Bhardwaj, N.; Kaur, R.; Mehta, J.; Sharma, A.L.; Kim, K.-H.; Deep, A. An Overview of Different Strategies to Introduce Conductivity in Metal–Organic Frameworks and Miscellaneous Applications Thereof. J. Mater. Chem. A 2018, 6, 14992–15009.
  112. Na Songkhla, S.; Nakamoto, T. Overview of Quartz Crystal Microbalance Behavior Analysis and Measurement. Chemosensors 2021, 9, 350.
  113. Wang, L. Metal-Organic Frameworks for QCM-Based Gas Sensors: A Review. Sens. Actuators A Phys. 2020, 307, 111984.
  114. Ma, Z.; Yuan, T.; Fan, Y.; Wang, L.; Duan, Z.; Du, W.; Zhang, D.; Xu, J. A Benzene Vapor Sensor Based on a Metal-Organic Framework-Modified Quartz Crystal Microbalance. Sens. Actuators B Chem. 2020, 311, 127365.
  115. Mandal, D.; Banerjee, S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. Sensors 2022, 22, 820.
  116. Paschke, B.; Wixforth, A.; Denysenko, D.; Volkmer, D. Fast Surface Acoustic Wave-Based Sensors to Investigate the Kinetics of Gas Uptake in Ultra-Microporous Frameworks. ACS Sens. 2017, 2, 740–747.
  117. Devkota, J.; Greve, D.W.; Hong, T.; Kim, K.-J.; Ohodnicki, P.R. An 860 MHz Wireless Surface Acoustic Wave Sensor with a Metal-Organic Framework Sensing Layer for CO2 and CH4. IEEE Sens. J. 2020, 20, 9740–9747.
  118. Vanotti, M.; Poisson, S.; Blondeau-Patissier, V.; André, L.; Brandès, S.; Desbois, N.; Gros, C.P. SAW Based CO2 Sensor: Influence of Functionalizing MOF Crystal Size on the Sensor’s Selectivity. In Proceedings of the International Conference on Advances in Sensors, Actuators, Metering and Sensing, Nice, France, 18–22 July 2021.
  119. Vashist, D.S.K.; Tewari, R.; Bajpai, D.R.P.; Bharadwaj, D.L.M.; Raiteri, R. A Review of Microcantilevers for Sensing Applications. J. Nanotechnol. 2007, 3, 15.
  120. Wang, H.; Lustig, W.P.; Li, J. Sensing and Capture of Toxic and Hazardous Gases and Vapors by Metal–Organic Frameworks. Chem. Soc. Rev. 2018, 47, 4729–4756.
  121. Cai, S.; Li, W.; Xu, P.; Xia, X.; Yu, H.; Zhang, S.; Li, X. In Situ Construction of Metal–Organic Framework (MOF) UiO-66 Film on Parylene-Patterned Resonant Microcantilever for Trace Organophosphorus Molecules Detection. Analyst 2019, 144, 3729–3735.
  122. Yim, C.; Lee, M.; Yun, M.; Kim, G.-H.; Kim, K.T.; Jeon, S. CO2-Selective Nanoporous Metal-Organic Framework Microcantilevers. Sci. Rep. 2015, 5, 10674.
  123. Ellern, I.; Venkatasubramanian, A.; Lee, J.H.; Hesketh, P.J.; Stavilla, V.; Allendorf, M.D.; Robinson, A.L. Characterization of Piezoresistive Microcantilever Sensors with Metal Organic Frameworks for the Detection of Volatile Organic Compounds. ECS Trans. 2013, 50, 469–476.
More
Video Production Service