Individualization of Radionuclide Therapies: Comparison
Please note this is a comparison between Version 4 by Jessie Wu and Version 3 by Jessie Wu.

Evidence shows that better and more predictable outcomes can be achieved with patient-individualized dose assessment. Therefore, the incorporation of individual planning into radionuclide therapies is a high priority for nuclear medicine physicians and medical physicists alike. Internal dosimetry is used in tumor therapy to optimize the absorbed dose to the target tissue.  For a nuclear medicine therapy to be considered personalized, treatment planning is essential, including the activity chosen individually for a given patient. The first step in individual planning of radioisotope therapy is to perform a series of diagnostic images, which allows visualizing the distribution and measuring how the activity decreased in time in different organs. The next step is to perform dosimetric measurements. It provides information on the degree of uptake of an administered radiopharmaceutical in pathological tissues and critical organs. The obtained dosimetric report is the foundation for planning the maximum activity on tumors, with a safe level of irradiation of critical organs in a given patient. The last step is to obtain a series of images of the patient recorded after the administration of the therapeutic radiopharmaceutical. 

  • internal dosimetry
  • radiopharmaceuticals
  • radionuclide therapy

1. Introduction

Nuclear medicine uses radiopharmaceuticals, which are various molecules labeled with radioactive isotopes, for diagnosis and therapy. Radiopharmaceuticals are sources of radiation, and when introduced into the patient’s body (by injection, oral administration, or inhalation), they target specific organs, tissues, or cells. Subsequently, the activity of radiopharmaceuticals in tissues decreases due to their elimination from the body and radioactive decay. Administration of the same activity of a given radiopharmaceutical to different patients can distribute in their bodies differently, and therefore it is important to consider each patient individually. The determination of the total number of nuclear disintegrations that occur in a particular organ allows calculating the mean energy absorbed per kilogram of tissue. This parameter is known as the mean absorbed dose. The knowledge of the absorbed ionizing radiation dose after administration of a radioactive preparation is of great importance both for the patient’s safety and for the proper course of diagnostics or radioisotope therapy. The activity of radioisotopes, administered to patients for diagnostic imaging studies, must ensure the correct image quality while minimizing the dose that will be absorbed. Due to the increase in sensitivity of modern gamma cameras, the reported diagnostic activities are low. However, in the case of radioisotope therapy, the activity of the therapeutic radioisotope should be as high as possible to effectively destroy tumor cells, and at the same time, low enough not to damage critical organs. Therapy using radioactive isotopes is an extremely important and rapidly developing part of nuclear medicine. Modern radioisotope treatments are based on the idea of theranostics [1][2], according to which a diagnostic examination should be performed with the use of a radiopharmaceutical with the same distribution as the therapeutic radiopharmaceutical. Only when the result of the primary examination shows a sufficiently high accumulation of diagnostic radiopharmaceutical is the patient eligible for the treatment procedure. In every clinical situation that requires the administration of a radioactive substance to the patient, it is important to know the absorbed dose. Moreover, it is of special importance when the activity is very high, as is the case with radioisotope therapies. Individualized therapy plans, created based on images of a given patient, allow for the optimization of therapy and the minimization of toxic effects [2][3][4][5][6][7]. Both nuclear medicine and external beam radiotherapy (EBRT) use ionizing radiation to treat malignant tissue. EBRT requires advanced equipment that shapes the external beam to conform to the tumor, and nuclear medicine uses radiopharmaceuticals that are introduced directly into the body. Both treatment techniques should follow the guidelines contained in COUNCIL DIRECTIVE 2013/5/EURATOM from 5 December 2013, concerning the safety of patients diagnosed and treated with ionizing radiation [78]. In Article 56 of the Directive, the following is written: “For all medical exposure of patients for radiotherapeutic purposes, exposures of target volumes shall be individually planned, and their delivery appropriately verified taking into account that doses to non-target volumes and tissues shall be as low as reasonably achievable and consistent with the intended radiotherapeutic purpose of the exposure.” This implies the necessity to personalize the treatment, i.e., the selection of the suitable pharmaceutical, in the right dosage and time. Individual EBRT planning is a common practice that has been developed and used for many years. Teams of physicists involved in treatment planning and clinical dosimetry for each and every patient are the standard in radiotherapy centers. Radiation treatment planning is performed with the use of advanced computer programs using computed tomography (CT), magnetic resonance (MR), or positron emission tomography (PET) images. Modern planning methods include the three-dimensional (3D) technique, which allows for the spatial shaping of radiation beams and the protection of critical organs [89][910]. The situation in nuclear medicine is completely different. Few physicists work in nuclear medicine departments, and radioisotope therapies are usually performed according to standard clinical procedures. Individual calculations of radiopharmaceutical doses for patients are not routinely performed in most nuclear medicine facilities across the world. Nuclear medicine specialists most often use standard activities of radiopharmaceuticals during therapy, considering the patient’s weight or body surface area. In some cases, administration of standard radiopharmaceutical activities does not provide a sufficiently high dose per tumor to destroy it. On the other hand, giving too much activity could have harmful effects on critical organs. A small fraction of patients receives optimal activity, while the vast majority receive lower doses. This conservative approach provides “radiation safety” to healthy tissues, but also delivers a lower dose than indicated to the neoplastic tissue, resulting in a low response rate and a higher rate of disease relapse. Individualized treatment planning would provide higher absorbed doses to most patients without risking toxicity. “Personalized dosimetry is a must for appropriate molecular radiotherapy”—this is the title of the article by Stabin (one of the pioneers of internal dosimetry) et al. published in 2019 in the Medical Physics  journal [1011].
 

2. Radionuclides for Therapies

Due to the intensive development of pharmacology, the number of new radiopharmaceuticals that can be used in therapy is increasing every year. A particular advantage of radioisotope therapies is that they can be used in situations where all other forms of treatment have failed. Most radionuclides used in therapy emit β− particles, and rarely α particles, which are highly potent. Table 1 contains information on the radionuclides used in radioisotope therapies. Table 2, on the contrary, presents the radionuclides currently being tested, which provides the evidence of the intensive development of this method of treatment.
Table 1. Radionuclides used in particular types of radioisotope therapies.
Radionuclides used in particular types of radioisotope therapies.
RadionuclideBasic Radiation

Type for

Therapy
Chemical and Dosage FormIndicationsAdministration RouteReferences
RadionuclideBasic Radiation

Type for Therapy
IndicationsReferences
Iodine 131IβSodium iodide
Yttrium 90YβThyroid carcinomaOral 
Breast cancer[35]Hyperthyroidism[12][13]
Lutetium 177LuβPancreatic cancer[36][37]Iodine 131Iβ PheochromocytomaIntravenous 
Iodine 131IβNeuroblastoma Central Nervous System/Leptomeningeal Metastases[38]IobenguaneParaganglioma
Phosphorus 32P[14][15]β[16][17]
Pancreatic cancer[39 Neuroblastoma

Carcinoid
 
Iodine 131IβApamistamabLeukemiaIntravenous[18]
Iodine 131IβTositumomabnon-Hodgkin’s lymphomaIntravenous[19][20]
Iodine 131IβLipiodolHCC, liver metastasisIntra-arterial

infusion
[21][22]Samarium 153SmβLexidronamPainful skeletal metastasesIntravenous[23]
Strontium 89SrβStrontium chloridePainful skeletal metastasesIntravenous[24]
Yttrium 90YβIbritumomabtiuxetannon-Hodgkin’s lymphomaIntravenous[25]
Yttrium 90Y

Therasphere
β90Y glass spheresUnresectable HCC

Liver metastasis
Intra-arterial

infusion
[26]
]
Copper 67CuβRadioimmunotherapy[40]
Holmium 166HoβHCC, liver metastasis[29]
Indium 111InAuger eGEP-NETs, lung and bladder cancer[41][42][43]
Tin 117mSnInternal conversion ePainful skeletal metastases[44]
Bismuth 213BiαGlioblastoma, prostate and bladder cancer[45][46][47]
Astatine 211AtALung cancer, glioblastoma, radioimmunotherapy[48][49][50][51]Yttrium 90Y

SIR-Spheres
β90Y resin spheresUnresectable HCC

Liver metastasis
Intra-arterial

infusion
[27]
Lutetium 177Lu or

Yttrium 90Y
β[177Lu]Lu-DOTATATE

[90Y]Y or [177Lu]Lu-DOTATOC
Unresectable or metastasized NETsIntravenous[28][29]
Lutetium 177Lu or Actinium225Acβ

α
[177Lu]Lu-PSMAProstate cancerIntravenous 
[225Ac]Ac-PSMA(mCRPC)[30][31]
Phosphorus 32P

Yttrium 90Y

Rhenium 186Re
βColloidsRadiosynovectomyIntra-articular

injection
[32]
Radium 223RaARadium dichloridePainful skeletal metastasesIntravenous[33][34]
RadionuclideBasic Radiation

Type for

Therapy
Chemical and Dosage FormIndicationsAdministration RouteReferences
HCC: hepatocellular carcinoma; SSTR2: Somatostatin receptor type 2; PSMA: prostate-specific membrane antigen; NET: neuroendocrine tumor; mCRPC: metastatic castration-resistant prostate cancer.
Table 2. Radionuclides currently introduced into radioisotope therapies, at the stage of research.
Radionuclides currently introduced into radioisotope therapies, at the stage of research.
RadionuclideBasic Radiation

Type for Therapy
IndicationsReferences
Iodine 131IβSodium iodideThyroid carcinoma
Yttrium 90YβBreast cancerOral[34 
]Hyperthyroidism[11
Lutetium 177Lu][12]
βPancreatic cancer[35]Iodine 131Iβ 
Iodine 131PheochromocytomaIIntravenous 
βNeuroblastoma Central Nervous System/Leptomeningeal Metastases[36]IobenguaneParaganglioma[13][14][15][16]
 Neuroblastoma

Carcinoid
 
Iodine 131
Phosphorus 32PβPancreatic cancer[37]IβApamistamabLeukemiaIntravenous[17]
Iodine 131IβTositumomab
Copper 67CuβRadioimmunotherapy[38]
Holmium 166HoβHCC, liver metastasis[non-Hodgkin’s lymphomaIntravenous[18][19]
39]
Indium 111InAuger eGEP-NETs, lung and bladder cancer[40Iodine 131IβLipiodolHCC, liver metastasisIntra-arterial

infusion
[20][21]
][41][42]
Tin 117mSnInternal conversion ePainful skeletal metastases[43]Samarium 153SmβLexidronamPainful skeletal metastases
Bismuth 213BiIntravenousαGlioblastoma, prostate and bladder cancer[44][45][46[22]
]Strontium 89SrβStrontium chloridePainful skeletal metastasesIntravenous[23]
Astatine 211AtALung cancer, glioblastoma, radioimmunotherapy[47][48][49][50]Yttrium 90YβIbritumomabtiuxetannon-Hodgkin’s lymphomaIntravenous[24]
Yttrium 90Y

Therasphere
β90Y glass spheresUnresectable HCC

Liver metastasis
Intra-arterial

infusion
[25]
Yttrium 90Y

SIR-Spheres
β90Y resin spheresUnresectable HCC

Liver metastasis
Intra-arterial

infusion
[26]
Lutetium 177Lu or

Yttrium 90Y
β[177Lu]Lu-DOTATATE

[90Y]Y or [177Lu]Lu-DOTATOC
Unresectable or metastasized NETsIntravenous[27][28]
Lutetium 177Lu or Actinium225Acβ

α
[177Lu]Lu-PSMAProstate cancerIntravenous 
[225Ac]Ac-PSMA(mCRPC)[29][30]
Phosphorus 32P

Yttrium 90Y

Rhenium 186Re
βColloidsRadiosynovectomyIntra-articular

injection
[31]
Radium 223RaARadium dichloridePainful skeletal metastasesIntravenous[32][33]
GEP-NET: gastroenteropancreatic neuroendocrine tumor; EC: electron capture.

References

  1. Ken Herrmann; Steven M. Larson; Wolfgang A. Weber; Theranostic Concepts: More Than Just a Fashion Trend—Introduction and Overview. Journal of Nuclear Medicine 2017, 58, 1S-2S, 10.2967/jnumed.117.199570.Ballal, S.; Yadav, M.; Kramer, V.; Moon, E.; Roesch, F.; Tripathi, M.; Mallick, S.; ArunRaj, S.T.; Bal, C. A theranostic approach of Ga-DOTA.SA.FAPi PET/CT-guided Lu-DOTA.SA.FAPi radionuclide therapy in an end-stage breast cancer patient: New frontier in targeted radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 942–944.
  2. Lidia Strigari; Mark Konijnenberg; Carlo Chiesa; Manuel Bardies; Yong Du; Katarina Sjögreen Gleisner; Michael Lassmann; Glenn Flux; The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. European Journal of Pediatrics 2014, 41, 1976-1988, 10.1007/s00259-014-2824-5.Herrmann, K.; Larson, S.; Weber, W. Theranostic Concepts: More Than Just a Fashion Trend—Introduction and Overview. J. Nucl. Med. 2017, 58, 1S–2S.
  3. Sofie Van Binnebeek; Kristof Baete; Bert Vanbilloen; Christelle Terwinghe; Michel Koole; Felix M. Mottaghy; Paul M. Clement; Luc Mortelmans; Karin Haustermans; Eric Van Cutsem; et al.Alfons VerbruggenKris BogaertsChris VerslypeChristophe Deroose Individualized dosimetry-based activity reduction of 90Y-DOTATOC prevents severe and rapid kidney function deterioration from peptide receptor radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging 2014, 41, 1141-1157, 10.1007/s00259-013-2670-x.Strigari, L.; Konijnenberg, M.; Chiesa, C.; Bardies, M.; Du, Y.; Gleisner, K.S.; Lassmann, M.; Flux, G. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1976–1988.
  4. K. Reichmann; C. Yong-Hing; M. Damm; J. Risse; H. Ahmadzadehfar; T. Logvinski; S. Guhlke; H.-J. Biersack; A. Sabet; S. Ezziddin; et al. Early prediction of tumour response to PRRT. Nuklearmedizin - NuclearMedicine 2013, 52, 170-177, 10.3413/nukmed-0581-13-05.Binnebeek, S.; Baete, K.; Vanbilloen, B.; Terwinghe, C.; Koole, M.; Mottaghy, F.; Clement, P.M.; Mortelmans, L.; Haustermans, K.; Van Cutsem, E.; et al. Individualized dosimetry-based activity reduction of 90Y-DOTATOC prevents severe and rapid kidney function deterioration from peptide receptor radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1141–1157.
  5. Anna Sundlöv; Katarina Sjögreen-Gleisner; Johanna Svensson; Michael Ljungberg; Tomas Olsson; Peter Bernhardt; Jan Tennvall; Individualised 177Lu-DOTATATE treatment of neuroendocrine tumours based on kidney dosimetry. European Journal of Pediatrics 2017, 44, 1480-1489, 10.1007/s00259-017-3678-4.Ezziddin, S.; Reichmann, K.; Yong-Hing, C.; Damm, M.; Risse, J.; Ahmadzadehfar, H.; Logvinski, T.; Guhlke, S.; Biersack, H.J.; Sabet, A. Early prediction of tumour response to PRRT. Nukl. Nucl. Med. 2013, 52, 170–177.
  6. Raffaella Barone; Françoise Borson-Chazot; Roelf Valkema; Stéphan Walrand; Franck Chauvin; Lida Gogou; Larry K Kvols; Eric P Krenning; François Jamar; Stanislas Pauwels; et al. Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship.. Journal of Nuclear Medicine 2005, 46, 99S-106S.Sundlov, A.; SjogreenGleisner, K.; Svensson, J.; Ljungberg, M.; Olsson, T.; Bernhardt, P.; Tennvall, J. Individualised 177Lu-DOTATATE treatment of neuroendocrine tumours based on kidney dosimetry. Eur. J. Nucl. Med. Mol. Imaging. 2017, 44, 1480–1489.
  7. Mark Konijnenberg; Ken Herrmann; Carsten Kobe; Frederik Verburg; Cecilia Hindorf; Roland Hustinx; Michael Lassmann; EANM position paper on article 56 of the Council Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy. null 2020, 48, 67-72.Barone, R.; Borson-Chazot, F.; Valkema, R.; Walrand, S.; Chauvin, F.; Gogou, L.; Kvols, L.K.; Krenning, E.P.; Jamar, F.; Pauwels, S. Patient-Specific Dosimetry in Predicting Renal Toxicity with 90Y-DOTATOC: Relevance of Kidney Volume and Dose Rate in Finding a Dose–Effect Relationship. J. Nucl. Med. 2005, 46 (Suppl. 1), 99S–106S.
  8. Ravi A Chandra; Florence K Keane; Francine E M Voncken; Charles R Thomas; Contemporary radiotherapy: present and future. The Lancet 2021, 398, 171-184, 10.1016/s0140-6736(21)00233-6.Konijnenberg, M.; Herrmann, K.; Kobe, C.; Verburg, F.; Hindorf, C.; Hustinx, R.; Lassmann, M. EANM position paper on article 56 of the Council Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 67–72.
  9. Mareike K Thompson; Philip Poortmans; Anthony J Chalmers; Corinne Faivre-Finn; Emma Hall; Robert A Huddart; Yolande Lievens; David Sebag-Montefiore; Charlotte Coles; Practice-changing radiation therapy trials for the treatment of cancer: where are we 150 years after the birth of Marie Curie?. Br. J. Cancer 2018, 119, 389-407, 10.17863/cam.31556.Chandra, R.; Keane, F.; Voncken, F.; Thomas, C. Contemporary radiotherapy: Present and future. Lancet 2021, 06, 171–184.
  10. Michael G. Stabin; Mark T. Madsen; Habib Zaidi; Personalized dosimetry is a must for appropriate molecular radiotherapy. Medical Physics 2019, 46, 4713-4716, 10.1002/mp.13820.Thompson, M.; Poortmans, P.; Chalmers, A.; Faivre-Finn, C.; Hall, E.; Huddart, R.; Lievens, Y.; Sebag-Montefiore, D.; Coles, C.E. Practice-changing radiation therapy trials for the treatment of cancer: Where are we 150 years after the birth of Marie Curie? Br. J. Cancer 2018, 119, 389–407.
  11. H R Maxon; E E Englaro; S R Thomas; V S Hertzberg; J D Hinnefeld; L S Chen; H Smith; D Cummings; M D Aden; Radioiodine-131 therapy for well-differentiated thyroid cancer--a quantitative radiation dosimetric approach: outcome and validation in 85 patients.. Journal of Nuclear Medicine 1992, 33, 1132-6.Stabin, M.G.; Madsen, M.T.; Zaidi, H. Personalized dosimetry is a must for appropriate molecular radiotherapy. Med. Phys. 2019, 09, 4713–4716.
  12. R S Benua; N R Cicale; M Sonenberg; R W Rawson; The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer.. The American journal of roentgenology, radium therapy, and nuclear medicine 1962, 87, 171-82.Maxon, H.R.; Englaro, E.; Thomas, S.; Hertzberg, V.; Hinnefeld, J.; Chen, L.; Smith, H.; Cummings, D.; Aden, M.D. Radioiodine-131 therapy for well-differentiated thyroid cancer-A quantitative radiation dosimetric approach: Outcome and validation in 85 patients. J. Nucl. Med. 1992, 33, 1132–1136.
  13. P. A Fitzgerald; R. E Goldsby; J. P Huberty; D. C Price; R. A Hawkins; J. J Veatch; F. D. Cruz; T. M Jahan; C. A Linker; L. Damon; et al.K. K Matthay Malignant Pheochromocytomas and Paragangliomas: A Phase II Study of Therapy with High-Dose 131I-Metaiodobenzylguanidine (131I-MIBG). Annals of the New York Academy of Sciences 2006, 1073, 465-490, 10.1196/annals.1353.050.Benua, R.; Cicale, N.; Sonenberg, M.; Rawson, R. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1962, 87, 171–182.
  14. Richard B Noto; Daniel A Pryma; Jessica Jensen; Tess Lin; Nancy Stambler; Thomas Strack; Vivien Wong; Stanley J Goldsmith; Phase 1 Study of High-Specific-Activity I-131 MIBG for Metastatic and/or Recurrent Pheochromocytoma or Paraganglioma. The Journal of Clinical Endocrinology & Metabolism 2017, 103, 213-220, 10.1210/jc.2017-02030.Fitzgerald, P.; Goldsby, R.; Huberty, J.; Price, D.; Hawkins, R.; Veatch, J.; Dela Cruz, F.; Jahan, T.M.; Linker, C.A.; Damon, L.; et al. Malignant Pheochromocytomas and Paragangliomas: A Phase II Study of Therapy with High-Dose 131I-Metaiodobenzylguanidine (131I- MIBG). Ann. N. Y. Acad. Sci. 2006, 1073, 465–490.
  15. Sally L. George; Nadia Falzone; Sarah Chittenden; Stephanie J. Kirk; Donna Lancaster; Sucheta J. Vaidya; Henry Mandeville; Frank Saran; Andrew D.J. Pearson; Yong Du; et al.Simon T. MellerAna M. Denis-BacelarGlenn D. Flux Individualized 131I-mIBG therapy in the management of refractory and relapsed neuroblastoma. Nuclear Medicine Communications 2016, 37, 466-472, 10.1097/mnm.0000000000000470.Noto, R.; Pryma, D.; Jensen, J.; Lin, T.; Stambler, N.; Strack, T.; Wong, V.; Goldsmith, S.J. Phase 1 Study of High-Specific-Activity I-131 MIBG for Metastatic and/or Recurrent Pheochromocytoma or Paraganglioma. J. Clin. Endocrinol. Metab. 2017, 3, 213–220.
  16. R. Edward Coleman; James B. Stubbs; John A. Barrett; Miguel De La Guardia; Norman Lafrance; John W. Babich; Radiation Dosimetry, Pharmacokinetics, and Safety of Ultratrace™ Iobenguane I-131 in Patients with Malignant Pheochromocytoma/Paraganglioma or Metastatic Carcinoid. Cancer Biotherapy and Radiopharmaceuticals 2009, 24, 469-475, 10.1089/cbr.2008.0584.George, S.; Falzone, N.; Chittenden, S.; Kirk, S.; Lancaster, D.; Vaidya, S.; Mandeville, H.; Saran, F.; Pearson, A.D.; Du, Y.; et al. Individualized 131I-mIBG therapy in the management of refractory and relapsed neuroblastoma. Nucl. Med. Commun. 2016, 37, 466–472.
  17. Benjamin K. Tomlinson; Vijay Reddy; Mark S. Berger; Jennifer Spross; Renee Lichtenstein; Boglarka Gyurkocza; Rapid Reduction of Peripheral Blasts in Older Patients with Refractory Acute Myeloid Leukemia (AML) Using Re-Induction with Single Agent Anti-CD45 Targeted Iodine (131I) Apamistamab [Iomab-B] Radioimmunotherapy in the Phase III SIERRA Trial. Clinical Lymphoma Myeloma and Leukemia 2019, 19, S232, 10.1016/j.clml.2019.07.117.Coleman, R.; Stubbs, J.; Barrett, J.; de la Guardia, M.; LaFrance, N.; Babich, J. Radiation Dosimetry, Pharmacokinetics, and Safety of Ultratrace (TM) Iobenguane I-131 in Patients with Malignant Pheochromocytoma/Paraganglioma or Metastatic Carcinoid. Cancer Biother. Radiopharm. 2009, 24, 469–475.
  18. Julie M. Vose; Richard L. Wahl; Mansoor Saleh; Ama Z. Rohatiner; Susan J. Knox; John A. Radford; Andrew D. Zelenetz; George F. Tidmarsh; Robert J. Stagg; Mark S. Kaminski; et al. Multicenter Phase II Study of Iodine-131 Tositumomab for Chemotherapy-Relapsed/Refractory Low-Grade and Transformed Low-Grade B-Cell Non-Hodgkin’s Lymphomas. Journal of Clinical Oncology 2000, 18, 1316-1323, 10.1200/jco.2000.18.6.1316.Tomlinson, B.; Reddy, V.; Berger, M.; Spross, J.; Lichtenstein, R.; Gyurkocza, B. Rapid reduction of peripheral blasts in older patients with refractory acute myeloid leukemia (AML) using reinduction with single agent anti-CD45 targeted iodine ( 131 I) apamistamab radioim- munotherapy in the phase III SIERRA trial. J. Clin. Oncol. 2019, 37, 7048.
  19. Sandra J. Horning; Anas Younes; Vinay Jain; Stewart Kroll; Jennifer Lucas; Donald Podoloff; Michael Goris; Efficacy and Safety of Tositumomab and Iodine-131 Tositumomab (Bexxar) in B-Cell Lymphoma, Progressive After Rituximab. Journal of Clinical Oncology 2005, 23, 712-719, 10.1200/jco.2005.07.040.Vose, J.; Wahl, R.; Saleh, M.; Rohatiner, A.; Knox, S.; Radford, J.; Zelenetz, A.D.; Tidmarsh, G.F.; Stagg, R.J.; Kaminski, M.S. Multicenter Phase II Study of Iodine-131 Tositumomab for Chemotherapy- Relapsed/Refractory Low-Grade and Transformed Low-Grade B-Cell Non-Hodgkin’s Lymphomas. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2000, 18, 1316–1323.
  20. Hyung Sik Yoo; Chan Hee Park; Jong Tae Lee; Ki Whang Kim; Chun Sik Yoon; Jung Ho Suh; Chang Yun Park; Byung Soo Kim; Heung Jai Choi; Kyong Sik Lee; et al. Small hepatocellular carcinoma: high dose internal radiation therapy with superselective intra-arterial injection of I-131-labeled Lipiodol. Cancer Chemotherapy and Pharmacology 1994, 33, S128-S133, 10.1007/bf00686684.Horning, S.; Younes, A.; Jain, V.; Kroll, S.; Lucas, J.; Podoloff, D.; Goris, M. Efficacy and Safety of Tositumomab and Iodine-131 Tositumomab (Bexxar) in B-Cell Lymphoma, Progressive After Rituximab. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 712–719.
  21. J L Raoul; D Guyader; J F Bretagne; R Duvauferrier; P Bourguet; D Bekhechi; Y M Deugnier; M Gosselin; Randomized controlled trial for hepatocellular carcinoma with portal vein thrombosis: intra-arterial iodine-131-iodized oil versus medical support.. Journal of Nuclear Medicine 1994, 35, 1782-7.Yoo, H.S.; Park, C.; Lee, J.; Kim, K.; Yoon, C.; Suh, J.; Park, C.Y.; Kim, B.S.; Choi, H.J.; Lee, K.S.; et al. Small hepatocellular carcinoma: High dose internal radiation therapy with superselective intra-arterial injection of I-131-labeled Lipiodol. Cancer Chemother. Pharmacol. 1994, 33, S128–S133.
  22. J F Eary; C Collins; M Stabin; C Vernon; S Petersdorf; M Baker; S Hartnett; S Ferency; S J Addison; F Appelbaum; et al. Samarium-153-EDTMP biodistribution and dosimetry estimation.. Journal of Nuclear Medicine 1993, 34, 1031-6.Raoul, J.; Guyader, D.; Bretagne, J.; Duvauferrier, R.; Bourguet, P.; Bekhechi, D.; Deugnier, Y.M.; Gosselin, M. Randomized Controlled Trial for Hepatocellular Carcinoma with Portal Vein Thrombosis: Intra-arterial Iodine131Iodized Oil Versus Medical Support. J. Nucl. Med. 1994, 35, 1782–1787.
  23. R G Robinson; D F Preston; M Schiefelbein; K G Baxter; Strontium 89 therapy for the palliation of pain due to osseous metastases.. JAMA 1995, 274, 420–424.Eary, J.; Collins, C.; Stabin, M.; Vernon, C.; Petersdorf, S.; Baker, M.; Hartnett, S.; Ferency, S.; Addison, S.J.; Appelbaum, F.; et al. Samarium Sm-EDTMP biodistribution and dosimetry estimation. J. Nucl. Med. 1993, 34, 1031–1036.
  24. Thomas E. Witzig; Ian W. Flinn; Leo I. Gordon; Christos Emmanouilides; Myron S. Czuczman; Mansoor N. Saleh; Larry Cripe; Gregory Wiseman; Teresa Olejnik; Pratik S. Multani; et al.Christine A. White Treatment With Ibritumomab Tiuxetan Radioimmunotherapy in Patients With Rituximab-Refractory Follicular Non-Hodgkin’s Lymphoma. Journal of Clinical Oncology 2002, 20, 3262-3269, 10.1200/jco.2002.11.017.Robinson, R.; Preston, D.; Schiefelbein, M.; Baxter, K. Strontium 89 therapy for the palliation of pain due to osseous metastases. JAMA J. Am. Med. Assoc. 1995, 274, 420–424.
  25. Riad Salem; Robert Lewandowski; Carol Roberts; James Goin; Kenneth Thurston; Marwan Abouljoud; Angi Courtney; Use of Yttrium-90 Glass Microspheres (TheraSphere) for the Treatment of Unresectable Hepatocellular Carcinoma in Patients with Portal Vein Thrombosis. Journal of Vascular and Interventional Radiology 2004, 15, 335-345, 10.1097/01.rvi.0000123319.20705.92.Witzig, T.; Flinn, I.; Gordon, L.; Emmanouilides, C.; Czuczman, M.; Saleh, M.; Cripe, L.; Wiseman, G.; Olejnik, T.; Multani, P.S.; et al. Treatment With IbritumomabTiuxetanRadioimmunotherapy in Patients With Rituximab-Refractory Follicular Non-Hodgkin’s Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2002, 20, 3262–3269.
  26. W.Y. Lau; S. Ho; T.W.T. Leung; M. Chan; R. Ho; P.J. Johnson; A.K.C. Li; Selective internal radiation therapy for nonresectable hepatocellular carcinoma with intraarterial infusion of 90yttrium microspheres. International Journal of Radiation Oncology*Biology*Physics 1998, 40, 583-592, 10.1016/s0360-3016(97)00818-3.Salem, R.; Lewandowski, R.; Roberts, C.; Goin, J.; Thurston, K.; Abouljoud, M.; Courtney, A. Use of Yttrium-90 Glass Microspheres (TheraSphere) for the Treatment of Unresectable Hepatocellular Carcinoma in Patients with Portal Vein Thrombosis. J. Vasc. Interv. Radiol. JVIR 2004, 15, 335–345.
  27. Jonathan Strosberg; Ghassan El-Haddad; Edward Wolin; Andrew Hendifar; James Yao; Beth Chasen; Erik Mittra; Pamela L. Kunz; Matthew H. Kulke; Heather Jacene; et al.David BushnellThomas M. O’DorisioRichard P. BaumHarshad R. KulkarniMartyn CaplinRachida LebtahiTimothy HobdayEbrahim DelpassandEric Van CutsemAl BensonRajaventhan SrirajaskanthanMarianne PavelJaime MoraJordan BerlinEnrique GrandeNicholas ReedEttore SeregniKjell ÖbergMaribel Lopera SierraPaola SantoroThomas ThevenetJack L. ErionPhilippe RuszniewskiDik KwekkeboomEric Krenning Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. New England Journal of Medicine 2017, 376, 125-135, 10.1056/nejmoa1607427.Lau, W.Y.; Ho, S.; Leung, T.W.T.; Chan, M.; Ho, R.; Johnson, P.; Li, A.K. Selective internal radiation therapy for nonresectable hepatocellular carcinoma with intraarterial infusion of 90yttrium microspheres. Int. J. Radiat. Oncol. Biol. Phys. 1998, 40, 583–592.
  28. A. Otte; R. Herrmann; A. Heppeler; M. Behe; E. Jermann; P. Powell; H. R. Maecke; J. Muller; Yttrium-90 DOTATOC: first clinical results. European Journal of Pediatrics 1999, 26, 1439-1447, 10.1007/s002590050476.Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of 177 Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135.
  29. Oliver Sartor; Johann de Bono; Kim N. Chi; Karim Fizazi; Ken Herrmann; Kambiz Rahbar; Scott T. Tagawa; Luke T. Nordquist; Nitin Vaishampayan; Ghassan El-Haddad; et al.Chandler H. ParkTomasz M. BeerAlison ArmourWendy J. Pérez-ContrerasMichelle DeSilvioEuloge KpameganGermo GerickeRichard A. MessmannMichael J. MorrisBernd J. Krause Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. New England Journal of Medicine 2021, 385, 1091-1103, 10.1056/nejmoa2107322.Otte, A.; Herrmann, R.; Heppeler, A.; Behe, M.; Jermann, E.; Powell, P.; Maecke, H.; Muller, J. Yttrium-90 DOTATOC: First clinical results. Eur. J. Nucl. Med. 1999, 26, 1439–1447.
  30. Benedikt Feuerecker; Robert Tauber; Karina Knorr; Matthias Heck; Ali Beheshti; Christof Seidl; Frank Bruchertseifer; Anja Pickhard; Andrei Gafita; Clemens Kratochwil; et al.Margitta RetzJürgen E. GschwendWolfgang A. WeberCalogero D’AlessandriaAlfred MorgensternMatthias Eiber Activity and Adverse Events of Actinium-225-PSMA-617 in Advanced Metastatic Castration-resistant Prostate Cancer After Failure of Lutetium-177-PSMA. European Urology 2020, 79, 343-350, 10.1016/j.eururo.2020.11.013.Sartor, O.; Bono, J.; Chi, K.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103.
  31. Knut Liepe; John J. Zaknun; Ajit Padhy; Emerita Barrenechea; Victoria Soroa; Solav Shrikant; Paijit Asavatanabodee; Ming J. Jeong; Maurizio Dondi; Radiosynovectomy using yttrium-90, phosphorus-32 or rhenium-188 radiocolloids versus corticoid instillation for rheumatoid arthritis of the knee. Annals of Nuclear Medicine 2011, 25, 317-323, 10.1007/s12149-011-0467-1.Feuerecker, B.; Tauber, R.; Knorr, K.; Heck, M.; Beheshti, A.; Seidl, C.; Bruchertseifer, F.; Pickhard, A.; Gafita, A.; Kratochwil, C.; et al. Activity and Adverse Events of Actinium-225-PSMA-617 in Advanced Metastatic Castration-resistant Prostate Cancer After Failure of Lutetium-177-PSMA. Eur. Urol. 2020, 79, 343–350.
  32. S. Nilsson; P. Strang; A.K. Aksnes; L. Franzèn; P. Olivier; A. Pecking; J. Staffurth; S. Vasanthan; C. Andersson; Ø.S. Bruland; et al. A randomized, dose–response, multicenter phase II study of radium-223 chloride for the palliation of painful bone metastases in patients with castration-resistant prostate cancer. European Journal of Cancer 2012, 48, 678-686, 10.1016/j.ejca.2011.12.023.Liepe, K.; Zaknun, J.; Padhy, A.; Barrenechea, E.; Soroa, V.; Shrikant, S.; Asavatanabodee, P.; Jeong, M.J.; Dondi, M. Radiosynovectomy using yttrium-90, phosphorus-32 or rhenium- 188 radiocolloids versus corticoid instillation for rheumatoid arthritis of the knee. Ann. Nucl. Med. 2011, 25, 317–323.
  33. Christopher C. Parker; Robert E. Coleman; Oliver Sartor; Nicholas J. Vogelzang; David Bottomley; Daniel Heinrich; Svein I. Helle; Joe M. O'Sullivan; Sophie D. Fosså; Aleš Chodacki; et al.Paweł WiechnoJohn LogueMihalj SekeAnders WidmarkDag Clement JohannessenPeter HoskinNicholas D. JamesArne SolbergIsabel SyndikusJan KlimentSteffen WedelSibylle BoehmerMarcos Dall’OglioLars FranzénØyvind S. BrulandOana PetrenciucKarin StaudacherRui LiSten Nilsson Three-year Safety of Radium-223 Dichloride in Patients with Castration-resistant Prostate Cancer and Symptomatic Bone Metastases from Phase 3 Randomized Alpharadin in Symptomatic Prostate Cancer Trial. European Urology 2017, 73, 427-435, 10.1016/j.eururo.2017.06.021.Nilsson, S.; Strang, P.; Aksnes, A.K.; Franzèn, L.; Olivier, P.; Pecking, A.; Staffurth, J.; Vasanthan, S.; Andersson, C.; Bruland, Ø.S. A randomized, dose-response, multicenter phase II study of radium-223 chloride for the palliation of painful bone metastases in patients with castration-resistant prostate cancer. Eur. J. Cancer 2012, 48, 678–686.
  34. Thomas Lindner; Anastasia Loktev; Annette Altmann; Frederik Giesel; Clemens Kratochwil; Jürgen Debus; Dirk Jäger; Walter Mier; Uwe Haberkorn; Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. Journal of Nuclear Medicine 2018, 59, 1415-1422, 10.2967/jnumed.118.210443.Parker, C.; Coleman, R.; Sartor, O.; Vogelzang, N.; Bottomley, D.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; et al. Three-year Safety of Radium-223 Dichloride in Patients with Castration-resistant Prostate Cancer and Symptomatic Bone Metastases from Phase 3 Randomized Alpharadin in Symptomatic Prostate Cancer Trial. Eur. Urol. 2018, 73, 427–435.
  35. Richard P. Baum; Aviral Singh; Christiane Schuchardt; Harshad Rajaram Kulkarni; Ingo Klette; Stefan Wiessalla; Frank Osterkamp; Ulrich Reineke; Christiane Smerling; 177Lu-3BP-227 for Neurotensin Receptor 1–Targeted Therapy of Metastatic Pancreatic Adenocarcinoma: First Clinical Results. Journal of Nuclear Medicine 2017, 59, 809-814, 10.2967/jnumed.117.193847.Lindner, T.; Loktev, A.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Jäger, D.; Mier, W.; Haberkorn, U. Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. J. Nucl. Med. 2018, 59, 1415–1422.
  36. 131I-Omburtamab Radioimmunotherapy for Neuroblastoma Central Nervous System/Leptomeningeal Metastases. . https://clinicaltrials.gov. Retrieved 2022-8-4Baum, R.P.; Singh, A.; Schuchardt, C.; Kulkarni, H.; Klette, I.; Wiessalla, S.; Osterkamp, F.; Reineke, U.; Smerling, C. 177Lu-3BP-227 for Neurotensin Receptor 1-Targeted Therapy of Metastatic Pancreatic Adenocarcinoma: First Clinical Results. J. Nucl. Med. 2018, 59, 809–814.
  37. Manoop S. Bhutani; Irina M. Cazacu; Alexandra A. Luzuriaga Chavez; Ben S. Singh; Franklin C.L. Wong; William D. Erwin; Eric P. Tamm; Geena G. Mathew; Dao B. Le; Eugene J. Koay; et al.Cullen M. TaniguchiBruce D. MinskyShubham PantChing-Wei D. TzengAlbert C. KoongGauri R. VaradhacharyMatthew H.G. KatzRobert A. WolffDavid R. FogelmanJoseph M. Herman Novel EUS-guided brachytherapy treatment of pancreatic cancer with phosphorus-32 microparticles: first United States experience. VideoGIE 2019, 4, 223-225, 10.1016/j.vgie.2019.02.009.131I-Omburtamab Radioimmunotherapy for Neuroblastoma Central Nervous System/Leptomeningeal Metastases. Available online: https://clinicaltrials.gov/ct2/show/NCT03275402 (accessed on 30 December 2021).
  38. DeNardo, S.; DeNardo, G.; Kukis, D.; Shen, S.; Kroger, L.; DeNardo, D.; Goldstein, D.S.; Mirick, G.R.; Salako, Q.; Mausner, L.F.; et al.et al. 67Cu-21T-BAT-Lym-1 pharmacokinetics, radiation dosimetry, toxicity and tumor regression in patients with lymphoma. J. Nucl. Med. 1999, 40, 302–310.Bhutani, M.; Cazacu, I.; Chavez, A.; Singh, B.; Wong, F.; Erwin, W.; Tamm, E.P.; Mathew, G.G.; Le, D.B.; Koay, E.J.; et al. Novel EUS-guided brachytherapy treatment of pancreatic cancer with phosphorus-32 microparticles: First United States experience. VideoGIE 2019, 4, 223–225.
  39. Maarten Lj Smits; Johannes Fw Nijsen; Maurice Aaj Van Den Bosch; Marnix Geh Lam; Maarten Ad Vente; Willem Ptm Mali; Alfred D Van Het Schip; Bernard A Zonnenberg; Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. The Lancet Oncology 2012, 13, 1025-1034, 10.1016/s1470-2045(12)70334-0.DeNardo, S.; DeNardo, G.; Kukis, D.; Shen, S.; Kroger, L.; DeNardo, D.; Goldstein, D.S.; Mirick, G.R.; Salako, Q.; Mausner, L.F.; et al. Cu-2IT-BAT-Lym-1 Pharmacokinetics, Radiation Dosimetry, Toxicity and Tumor Regression in Patients with Lymphoma. J. Nucl. Med. 1999, 40, 302–310.
  40. Andrey Rosenkranz; Tatiana A. Slastnikova; Tatiana A. Karmakova; Maria S. Vorontsova; Natalya Morozova; Vasiliy M. Petriev; Alexey S. Abrosimov; Yuri V. Khramtsov; Tatiana N. Lupanova; Alexey V. Ulasov; et al.Raisa I. YakubovskayaGeorgii P. GeorgievAlexander Sobolev Antitumor Activity of Auger Electron Emitter 111In Delivered by Modular Nanotransporter for Treatment of Bladder Cancer With EGFR Overexpression. Frontiers in Pharmacology 2018, 9, 1331, 10.3389/fphar.2018.01331.Smits, M.; Nijsen, J.; Bosch, M.; Lam, M.; Vente, M.; Mali, W.; van Het Schip, A.D.; Zonnenberg, B.A. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): A phase 1, dose-escalation study. Lancet Oncol. 2012, 13, 1025–1034.
  41. Ebrahim S. Delpassand; Jennifer Sims-Mourtada; Hitomi Saso; Ali Azhdarinia; Faramarz Ashoori; Farzad Torabi; Gregory Espenan; Warren H. Moore; Eugene Woltering; Lowell Anthony; et al. Safety and Efficacy of Radionuclide Therapy with High-Activity In-111 Pentetreotide in Patients with Progressive Neuroendocrine Tumors. Cancer Biotherapy and Radiopharmaceuticals 2008, 23, 292-300, 10.1089/cbr.2007.0448.Rosenkranz, A.; Slastnikova, T.; Karmakova, T.; Vorontsova, M.; Morozova, N.; Petriev, V.; Abrosimov, A.S.; Khramtsov, Y.V.; Lupanova, T.N.; Ulasov, A.V.; et al. Antitumor Activity of Auger Electron Emitter 111In Delivered by Modular Nanotransporter for Treatment of Bladder Cancer With EGFR Overexpression. Front. Pharmacol. 2018, 9, 1331.
  42. C. R. Divgi; S. Welt; M. Kris; Francisco X Real; S. D. J. Yeh; R. Gralla; B. Merchant; S. Schweighart; M. Unger; S. M. Larson; et al.J. Mendelsohn Phase I and Imaging Trial of Indium 111-Labeled Anti-Epidermal Growth Factor Receptor Monoclonal Antibody 225 in Patients With Squamous Cell Lung Carcinoma. JNCI: Journal of the National Cancer Institute 1991, 83, 97-104, 10.1093/jnci/83.2.97.Delpassand, E.; Sims-Mourtada, J.; Saso, H.; Azhdarinia, A.; Ashoori, F.; Torabi, F.; Espenan, G.; Moore, W.H.; Woltering, E.; Anthony, L. Safety and Efficacy of Radionuclide Therapy with High-Activity In-111 Pentetreotide in Patients with Progressive Neuroendocrine Tumors. Cancer Biother. Radiopharm. 2008, 23, 292–300.
  43. Treatment of Cancer-Related Bone Pain by Using Bone-Targeted Radiation-Based Therapy (Sn-117m-DTPA) in Patients With Prostate Cancer That Has Spread to Bones . Clinical Trials. Retrieved 2022-8-4Divgi, C.; Welt, S.; Kris, M.; Real, F.X.; Yeh, S.; Gralla, R.; Merchant, B.; Schweighart, S.; Unger, M.; Larson, S.M.; et al. Phase I and Imaging Trial of Indium 111-Labeled Anti-Epidermal Growth Factor Receptor Monoclonal Antibody 225 in Patients With Squamous Cell Lung Carcinoma. J. Natl. Cancer Inst. 1991, 83, 97–104.
  44. Clemens Kratochwil; Karl Schmidt; Ali Afshar-Oromieh; Frank Bruchertseifer; Hendrik Rathke; Alfred Morgenstern; Uwe Haberkorn; Frederik L. Giesel; Targeted alpha therapy of mCRPC: Dosimetry estimate of 213Bismuth-PSMA-617. Eur J Nucl Med Mol Imaging 2017, 45, 31-37, 10.1007/s00259-017-3817-y.Treatment of Cancer-Related Bone Pain by Using Bone-Targeted Radiation-Based Therapy (Sn-117m-DTPA) in Patients WITH Prostate Cancer That Has Spread to Bones. Available online: https://clinicaltrials.gov/ct2/show/NCT04616547 (accessed on 30 December 2021).
  45. Leszek Krolicki; Frank Bruchertseifer; Jolanta Kunikowska; Henryk Koziara; Bartosz Królicki; Maciej Jakuciński; Dariusz Pawlak; Christos Apostolidis; Saed Mirzadeh; Rafał Rola; et al.Adrian MerloAlfred Morgenstern Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with 213Bi-substance P analogue. European Journal of Nuclear Medicine and Molecular Imaging 2018, 45, 1636-1644, 10.1007/s00259-018-4015-2.Kratochwil, C.; Schmidt, K.; Afshar-Oromieh, A.; Bruchertseifer, F.; Rathke, H.; Morgenstern, A.; Haberkorn, U.; Giesel, F.L. Targeted alpha therapy of mCRPC: Dosimetry estimate of 213Bismuth-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 31–37.
  46. Michael E. Autenrieth; Christof Seidl; Frank Bruchertseifer; Thomas Horn; Florian Kurtz; Benedikt Feuerecker; Calogero D’Alessandria; Christian Pfob; Stephan Nekolla; Christos Apostolidis; et al.Saed MirzadehJürgen E. GschwendMarkus SchwaigerKlemens ScheidhauerAlfred Morgenstern Treatment of carcinoma in situ of the urinary bladder with an alpha-emitter immunoconjugate targeting the epidermal growth factor receptor: a pilot study. European Journal of Nuclear Medicine and Molecular Imaging 2018, 45, 1364-1371, 10.1007/s00259-018-4003-6.Krolicki, L.; Bruchertseifer, F.; Kunikowska, J.; Koziara, H.; Królicki, B.; Jakuciński, M.; Pawlak, D.; Apostolidis, C.; Mirzadeh, S.; Rola, R.; et al. Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with 213Bi-substance P analogue. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1636–1644.
  47. Kazuko Kaneda‐Nakashima; Zijian Zhang; Yoshiyuki Manabe; Atsushi Shimoyama; Kazuya Kabayama; Tadashi Watabe; Yoshikatsu Kanai; Kazuhiro Ooe; Atsushi Toyoshima; Yoshifumi Shirakami; et al.Takashi YoshimuraMitsuhiro FukudaJun HatazawaTakashi NakanoKoichi FukaseAtsushi Shinohara α‐Emitting cancer therapy using 211 At‐AAMT targeting LAT1. Cancer Science 2020, 112, 1132-1140, 10.1111/cas.14761.Autenrieth, M.; Seidl, C.; Bruchertseifer, F.; Horn, T.; Kurtz, F.; Feuerecker, B.; D’Alessandria, C.; Pfob, C.; Nekolla, S.; Apostolidis, C.; et al. Treatment of carcinoma in situ of the urinary bladder with an alpha-emitter immunoconjugate targeting the epidermal growth factor receptor: A pilot study. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1364–1371.
  48. Huizi Keiko Li; Yukie Morokoshi; Satoshi Kodaira; Tamon Kusumoto; Katsuyuki Minegishi; Hiroaki Kanda; Kotaro Nagatsu; Sumitaka Hasegawa; Utility of 211At-Trastuzumab for the Treatment of Metastatic Gastric Cancer in the Liver: Evaluation of a Preclinical α-Radioimmunotherapy Approach in a Clinically Relevant Mouse Model. Journal of Nuclear Medicine 2021, 62, 1468-1474, 10.2967/jnumed.120.249300.Kaneda-Nakashima, K.; Zhang, Z.; Manabe, Y.; Shimoyama, A.; Kabayama, K.; Watabe, T.; Kanai, Y.; Ooe, K.; Toyoshima, A.; Shirakami, Y.; et al. α-Emitting cancer therapy using 211 At-AAMT targeting LAT1. Cancer Sci. 2021, 112, 1132–1140.
  49. Michael R. Zalutsky; David A. Reardon; Gamal Akabani; R. Edward Coleman; Allan H. Friedman; Henry S. Friedman; Roger E. McLendon; Terence Z. Wong; Darell D. Bigner; Clinical Experience with α-Particle–Emitting 211At: Treatment of Recurrent Brain Tumor Patients with 211At-Labeled Chimeric Antitenascin Monoclonal Antibody 81C6. Journal of Nuclear Medicine 2007, 49, 30-38, 10.2967/jnumed.107.046938.Li, H.; Morokoshi, Y.; Kodaira, S.; Kusumoto, T.; Minegishi, K.; Kanda, H.; Nagatsu, K.; Hasegawa, S. Utility of 211 At-Trastuzumab for the Treatment of Metastatic Gastric Cancer in the Liver: Evaluation of a Preclinical-Radioimmunotherapy Approach in a Clinically Relevant Mouse Model. J. Nucl. Med. 2021, 62, 1468–1474.
  50. Håkan Andersson; Elin Cederkrantz; Tom Bäck; Chaitanya Divgi; Jörgen Elgqvist; Jakob Himmelman; György Horvath; Lars Jacobsson; Holger Jensen; Sture Lindegren; et al.Stig PalmRagnar Hultborn Intraperitoneal α-Particle Radioimmunotherapy of Ovarian Cancer Patients: Pharmacokinetics and Dosimetry of 211At-MX35 F(ab′)2—A Phase I Study. Journal of Nuclear Medicine 2009, 50, 1153-1160, 10.2967/jnumed.109.062604.Zalutsky, M.; Reardon, D.; Akabani, G.; Coleman, R.; Friedman, A.; Friedman, H.S.; McLendon, R.E.; Wong, T.Z.; Bigner, D.D. Clinical Experience with -Particle Emitting 211At: Treatment of Recurrent Brain Tumor Patients with 211At-Labeled Chimeric Antitenascin Monoclonal Antibody 81C6. J. Nucl. Med. 2008, 49, 30–38.
  51. Clemens Kratochwil; Karl Schmidt; Ali Afshar-Oromieh; Frank Bruchertseifer; Hendrik Rathke; Alfred Morgenstern; Uwe Haberkorn; Frederik L. Giesel; Targeted alpha therapy of mCRPC: Dosimetry estimate of 213Bismuth-PSMA-617. European Journal of Pediatrics 2017, 45, 31-37, 10.1007/s00259-017-3817-y.Andersson, H.; Cederkrantz, E.; Back, T.; Divgi, C.; Elgqvist, J.; Himmelman, J.; Horvath, G.; Jacobsson, L.; Jensen, H.; Lindegren, S.; et al. Intraperitoneal -Particle Radioimmunotherapy of Ovarian Cancer Patients: Pharmacokinetics and Dosimetry of 211At-MX35 F(ab’)2–A Phase I Study. J. Nucl. Med. 2009, 50, 1153–1160.
  52. Nanette Freedman; Mattias Sandström; Jonathan Kuten; Natan Shtraus; Inna Ospovat; Albert Schlocker; Einat Even-Sapir; Personalized radiation dosimetry for PRRT—how many scans are really required?. EJNMMI Physics 2020, 7, 1-15, 10.1186/s40658-020-00293-z.Freedman, N.; Sandström, M.; Kuten, J.; Shtraus, N.; Ospovat, I.; Schlocker, A.; Even-Sapir, E. Personalized radiation dosimetry for PRRT—how many scans are really required? EJNMMI Phys. 2020, 7, 26.
  53. Ernesto Amato; Alfredo Campennì; Rosaria M. Ruggeri; Lucrezia Auditore; Sergio Baldari; Comment on: “Technical note: Single time point dose estimate for exponential clearance” [Med. Phys. 45(5), 2318‐2324 (2018)]. Medical Physics 2019, 46, 2776-2779, 10.1002/mp.13540.Amato, E.; Campennı, A.; Ruggeri, R.; Auditore, L.; Baldari, S. Comment on: “Technical note: Single time point dose estimate for exponential clearance” . Med. Phys. 2019, 46, 2776–2779.
  54. Heribert Hänscheid; Michael Lassmann; Will SPECT/CT Cameras Soon Be Able to Display Absorbed Doses? Dosimetry from Single-Activity-Concentration Measurements. Journal of Nuclear Medicine 2020, 61, 1028-1029, 10.2967/jnumed.119.239970.Hanscheid, H.; Lassmann, M. Will SPECT/CT Cameras Soon Be Able to Display Absorbed Doses? Dosimetry from Single-Activity- Concentration Measurements. J. Nucl. Med. 2020, 61, 1028–1029.
  55. Xinchi Hou; Julia Brosch; Carlos Uribe; Alessandro Desy; Guido Boning; Jean-Mathieu Beauregard; Anna Celler; Arman Rahmim; Feasibility of single-time-point dosimetry for radiopharmaceutical therapies. Journal of Nuclear Medicine 2020, 62, 1006-1011, 10.2967/jnumed.120.254656.Hou, X.; Brosch-Lenz, J.; Uribe, C.; Desy, A.; Boening, G.; Beauregard, J.M.; Celler, A.; Rahmim, A. Feasibility of Single-Time-Point Dosimetry for Radiopharmaceutical Therapies. J. Nucl. Med. 2020, 62, 1006–1011.
  56. Price A. Jackson; Michael S. Hofman; Rodney J. Hicks; Mark Scalzo; John A Violet; Radiation Dosimetry in 177Lu-PSMA-617 Therapy Using a Single Posttreatment SPECT/CT Scan: A Novel Methodology to Generate Time- and Tissue-Specific Dose Factors. Journal of Nuclear Medicine 2019, 61, 1030-1036, 10.2967/jnumed.119.233411.Jackson, P.; Hofman, M.; Hicks, R.; Scalzo, M.; Violet, J. Radiation Dosimetry in 177 Lu-PSMA-617 Therapy Using a Single Post-treatment SPECT/CT: A Novel Methodology to Generate Time and Tissue-specific Dose Factors. J. Nucl. Med. 2019, 61, 1030–1036.
  57. A Bockisch; T Jamitzky; R Derwanz; H J Biersack; Optimized dose planning of radioiodine therapy of benign thyroidal diseases.. Journal of Nuclear Medicine 1993, 34, 1632-1638.Bockisch, A.; Jamitzky, T.; Derwanz, R.; Biersack, H.J. Optimized dose planning of radioiodine therapy of benign thyroidal diseases. J. Nucl. Med. 1993, 34, 1632–1638.
  58. Heribert Hänscheid; Michael Laßmann; Christoph Reiners; Dosimetry prior to I-131-therapy of benign thyroid disease. Zeitschrift für Medizinische Physik 2011, 21, 250-257, 10.1016/j.zemedi.2011.01.006.Hanscheid, H.; Lassmann, M.; Reiners, C. Dosimetry prior to I-131-therapy of benign thyroid disease. Z. Med. 2011, 21, 250–257.
  59. Heribert Hänscheid; Constantin Lapa; Andreas K. Buck; Michael Lassmann; Rudolf A. Werner; Dose Mapping After Endoradiotherapy with 177Lu-DOTATATE/DOTATOC by a Single Measurement After 4 Days. Journal of Nuclear Medicine 2017, 59, 75-81, 10.2967/jnumed.117.193706.Hanscheid, H.; Lapa, C.; Buck, A.; Lassmann, M.; Werner, R. Dose Mapping after Endoradiotherapy with 177 Lu-DOTATATE/-TOC by One Single Measurement after Four Days. J. Nucl. Med. 2017, 59, 75–81.
  60. Mark T. Madsen; Yusuf Menda; Thomas M. O'dorisio; M. Sue O'dorisio; Technical Note: Single time point dose estimate for exponential clearance.. Medical Physics 2018, 45, 2318-2324, 10.1002/mp.12886.Madsen, M.; Menda, Y.; O’Dorisio, T.; O’Dorisio, M.S. Technical Note: Single time point dose estimate for exponential clearance. Med. Phys. 2018, 45, 2318–2324.
  61. Pedro L. Esquinas; Ajit Shinto; Koramadai K. Kamaleshwaran; Jephy Joseph; Anna Celler; Biodistribution, pharmacokinetics, and organ-level dosimetry for 188Re-AHDD-Lipiodol radioembolization based on quantitative post-treatment SPECT/CT scans. EJNMMI Physics 2018, 5, 30, 10.1186/s40658-018-0227-6.Esquinas, P.; Shinto, A.; Kamaleshwaran, K.; Joseph, J.; Celler, A. Biodistribution, pharmacokinetics, and organ-level dosimetry for 188Re-AHDD- Lipiodol radioembolization based on quantitative post-treatment SPECT/CT scans. EJNMMI Phys. 2018, 5, 30.
  62. Alexandre Chicheportiche; Simona Ben-Haim; Simona Grozinsky-Glasberg; Kira Oleinikov; Amichay Meirovitz; David J. Gross; Jeremy Godefroy; Dosimetry after peptide receptor radionuclide therapy: impact of reduced number of post-treatment studies on absorbed dose calculation and on patient management.. EJNMMI Physics 2020, 7, 5-15, 10.1186/s40658-020-0273-8.Chicheportiche, A.; Ben-Haim, S.; Grozinsky-Glasberg, S.; Oleinikov, K.; Meirovitz, A.; Gross, D.; Godefroy, J. Dosimetry after peptide receptor radionuclide therapy: Impact of reduced number of post-treatment studies on absorbed dose calculation and on patient management. EJNMMI Phys. 2020, 7, 5.
  63. Wei Zhao; Pedro Luis Esquinas; Andrea Frezza; Xinchi Hou; Jean-Mathieu Beauregard; Anna Celler; Accuracy of kidney dosimetry performed using simplified time activity curve modelling methods: a 177Lu-DOTATATE patient study. Physics in Medicine & Biology 2019, 64, 175006, 10.1088/1361-6560/ab3039.Zhao, W.; Esquinas, P.; Frezza, A.; Hou, X.; Beauregard, J.M.; Celler, A. Accuracy of kidney dosimetry performed using simplified time activity curve modelling methods: A 177Lu-DOTATATE patient study. Phys. Med. Biol. 2019, 64, 175006.
  64. Michela Del Prete; Frédéric Arsenault; Nassim Saighi; Wei Zhao; François-Alexandre Buteau; Anna Celler; Jean-Mathieu Beauregard; Accuracy and reproducibility of simplified QSPECT dosimetry for personalized 177Lu-octreotate PRRT. EJNMMI Physics 2018, 5, 25, 10.1186/s40658-018-0224-9.Del Prete, M.; Arsenault, F.; Saighi, N.; Zhao, W.; Buteau, F.A.; Celler, A.; Beauregard, J.M. Accuracy and reproducibility of simplified QSPECT dosimetry for personalized 177Lu-octreotate PRRT. EJNMMI Phys. 2018, 5, 25.
  65. Mattias Sandström; Ulrike Garske-Román; Dan Granberg; Silvia Johansson; Charles Widström; Barbro Eriksson; Anders Sundin; Hans Lundqvist; Mark Lubberink; Individualized Dosimetry of Kidney and Bone Marrow in Patients Undergoing 177Lu-DOTA-Octreotate Treatment. Journal of Nuclear Medicine 2012, 54, 33-41, 10.2967/jnumed.112.107524.Sandstrom, M.; Garske-Roman, U.; Granberg, D.; Johansson, S.; Widstom, C.; Eriksson, B.; Sundin, A.; Lundqvist, H.; Lubberink, M. Individualized Dosimetry of Kidney and Bone Marrow in Patients Undergoing Lu-177-DOTA-Octreotate Treatment. J. Nucl. Med. 2012, 54, 33–41.
  66. Mattias Sandström; Ezgi Ilan; Anna Karlberg; Silvia Johansson; Nanette Freedman; Ulrike Garske-Román; Method dependence, observer variability and kidney volumes in radiation dosimetry of (177)Lu-DOTATATE therapy in patients with neuroendocrine tumours.. EJNMMI Physics 2015, 2, 24, 10.1186/s40658-015-0127-y.Sandstrom, M.; Ilan, E.; Karlberg, A.; Johansson, S.; Freedman, N.; Garske- Romann, U. Method dependence, observer variability and kidney volumes in radiation dosimetry of (177)Lu-DOTATATE therapy in patients with neuroendocrine tumours. EJNMMI Phys. 2015, 2, 24.
  67. Jorma Heikkonen; Hanna Mäenpää; Eero Hippeläinen; Vappu Reijonen; Mikko Tenhunen; Effect of calculation method on kidney dosimetry in 177Lu-octreotate treatment. Acta Oncologica 2016, 55, 1069-1076, 10.1080/0284186x.2016.1182642.Heikkonen, J.; Maenpaa, H.; Hippelainen, E.; Reijonen, V.; Tenhunen, M. Effect of calculation method on kidney dosimetry in 177 Lu-octreotate treatment. Acta Oncol. 2016, 55, 1069–1076.
  68. Xinchi Hou; Wei Zhao; Jean-Mathieu Beauregard; Anna Celler; Personalized kidney dosimetry in 177Lu-octreotate treatment of neuroendocrine tumours: a comparison of kidney dosimetry estimates based on a whole organ and small volume segmentations. Physics in Medicine and Biology 2019, 64, 175004, 10.1088/1361-6560/ab32a1.Hou, X.; Zhao, W.; Beauregard, J.M.; Celler, A. Personalized kidney dosimetry in 177Lu-octreotate treatment of neuroendocrine tumours: A comparison of kidney dosimetry estimates based on a whole organ and small volume segmentations. Phys. Med. Biol. 2019, 64, 175004.
  69. Lore Santoro; Laurine Pitalot; Dorian Trauchessec; Erick Mora-Ramirez; Pierre-Olivier Kotzki; Manuel Bardiès; Emmanuel Deshayes; Clinical implementation of PLANET®Dose for dosimetric assessment after [177Lu]Lu-DOTA-TATE : comparison with Dosimetry Toolkit® and OLINDA/EXM® V1.0. EJNMMI Res. 2021, 11, 1, 10.21203/rs.3.rs-36998/v2.Santoro, L.; Pitalot, L.; Trauchessec, D.; Mora Ramirez, E.; Kotzki, P.O.; Bardies, M.; Deshayes, E. Clinical implementation of PLANET®Dose for dosimetric assessment after Lu-DOTA-TATE: Comparison with Dosimetry Toolkit® and OLINDA/EXM® V1.0. EJNMMI Res. 2021, 11, 1.
  70. Tiantian Li; Licheng Zhu; Zhonglin Lu; Na Song; Ko-Han Lin; Greta S. P. Mok; BIGDOSE: software for 3D personalized targeted radionuclide therapy dosimetry. Quantitative Imaging in Medicine and Surgery 2020, 10, 160-170, 10.21037/qims.2019.10.09.Li, T.; Zhu, L.; Lu, Z.; Song, N.; Lin, K.H.; Mok, G. BIGDOSE: Software for 3D personalized targeted radionuclide therapy dosimetry. Quant. Imaging Med. Surg. 2020, 10, 160–170.
  71. Daphne M. V. Huizing; Steffie M. B. Peters; Michelle W. J. Versleijen; Esther Martens; Marcel Verheij; Michiel Sinaasappel; Marcel P. M. Stokkel; Berlinda J. De Wit-Van Der Veen; A head-to-head comparison between two commercial software packages for hybrid dosimetry after peptide receptor radionuclide therapy. EJNMMI Physics 2020, 7, 36, 10.1186/s40658-020-00308-9.De VriesHuizing, D.; Peters, S.; Versleijen, M.; Martens, E.; Verheij, M.; Sinaasappel, M.; Stokkel, M.P.M.; de Wit-van der Veen, B.J. A head-to-head comparison between two commercial software packages for hybrid dosimetry after peptide receptor radionuclide therapy. EJNMMI Phys. 2020, 7, 36.
  72. Jacek Capala; Stephen A. Graves; Aaron Scott; George Sgouros; Sara St. James; Pat Zanzonico; Brian E. Zimmerman; Dosimetry for Radiopharmaceutical Therapy: Current Practices and Commercial Resources. Journal of Nuclear Medicine 2021, 62, 3S-11S, 10.2967/jnumed.121.262749.Capala, J.; Graves, S.; Scott, A.; Sgouros, G.; St James, S.; Zanzonico, P.; Zimmerman, B.E. Dosimetry for Radiopharmaceutical Therapy: Current Practices and Commercial Resources. J. Nucl. Med. 2021, 62, 3–11.
  73. Maxime Chauvin; Damian Borys; Francesca Botta; Pawel Bzowski; Jeremie Dabin; Ana Denis-Bacelar; Aurélie Desbrée; Nadia Falzone; Boon Lee; Andrea Mairiani; et al.Alessandra MalarodaGilles MathieuErin McKayErick Mora-RamirezAndrew P. RobinsonDavid SarrutLara StruelensAlex Vergara GilManuel Bardiès OpenDose: Open-Access Resource for Nuclear Medicine Dosimetry. Journal of Nuclear Medicine 2020, 61, 1514-1519, 10.2967/jnumed.119.240366.Chauvin, M.; Borys, D.; Botta, F.; Bzowski, P.; Dabin, J.; Denis-Bacelar, A.; Desbrée, A.; Falzone, N.; Lee, B.Q.; Mairani, A.; et al. OpenDose: Open-Access Resource for Nuclear Medicine Dosimetry. J. Nucl. Med. 2020, 61, 1514–1519.
  74. James R Ballinger; Theranostic radiopharmaceuticals: established agents in current use. The British Journal of Radiology 2018, 91, 20170969, 10.1259/bjr.20170969.Ballinger, J. Theranostic radiopharmaceuticals: Established agents in current use. Br. J. Radiol. 2018, 91, 20170969.
  75. George Sgouros; Lisa Bodei; Michael R. McDevitt; Jessie R. Nedrow; Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nature Reviews Drug Discovery 2020, 19, 589-608, 10.1038/s41573-020-0073-9.Sgouros, G.; Bodei, L.; McDevitt, M.; Nedrow, J. Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat. Rev. Drug Discov. 2020, 19, 589–608.
  76. Jacek Capala; Charles A. Kunos; A New Generation of “Magic Bullets” for Molecular Targeting of Cancer. Clinical Cancer Research 2021, 27, 377-379, 10.1158/1078-0432.ccr-20-3690.Capala, J.; Kunos, C. A New Generation of “Magic Bullets” for Molecular Targeting of Cancer. Clin. Cancer Res. 2020, 11, 377–379.
  77. Francesco Cicone; Silvano Gnesin; Thibaut Denoël; Thierry Stora; Nicholas P. Van Der Meulen; Cristina Müller; Christiaan Vermeulen; Martina Benešová; Ulli Köster; Karl Johnston; et al.Ernesto AmatoLucrezia AuditoreGeorge CoukosMichael StabinNiklaus SchaeferDavid ViertlJohn O. Prior Internal radiation dosimetry of a 152Tb-labeled antibody in tumor-bearing mice. EJNMMI Research 2019, 9, 1-10, 10.1186/s13550-019-0524-7.Cicone, F.; Gnesin, S.; Denoël, T.; Stora, T.; van der Meulen, N.P.; Müller, C.; Vermeulen, C.; Benešová, M.; Köster, U.; Johnston, K.; et al. Internal radiation dosimetry of a 152Tb-labeled antibody in tumor-bearing mice. EJNMMI Res. 2019, 9, 53.
  78. Arun Gupta; Min Sun Lee; Joong Hyun Kim; Dong Soo Lee; Jae Sung Lee; Preclinical Voxel-Based Dosimetry in Theranostics: a Review. Nuclear Medicine and Molecular Imaging 2020, 54, 86-97, 10.1007/s13139-020-00640-z.Gupta, A.; Lee, M.S.; Kim, J.H.; Lee, D.S.; Lee, J.S. Preclinical Voxel-Based Dosimetry in Theranostics: A Review. Nucl. Med. Mol. Imaging 2020, 54, 86–97.
  79. Naoyuki Ukon; Songji Zhao; Kohshin Washiyama; Noboru Oriuchi; Chengbo Tan; Saki Shimoyama; Miho Aoki; Hitoshi Kubo; Kazuhiro Takahashi; Hiroshi Ito; et al. Human dosimetry of free 211At and meta-[211At]astatobenzylguanidine (211At-MABG) estimated using preclinical biodistribution from normal mice. EJNMMI Physics 2020, 7, 1-14, 10.1186/s40658-020-00326-7.Ukon, N.; Zhao, S.; Washiyama, K.; Oriuchi, N.; Tan, C.; Shimoyama, S.; Aoki, M.; Kubo, H.; Takahashi, K.; Ito, H. Human dosimetry of free 211At and meta-astatobenzylguanidine (211At-MABG) estimated using preclinical biodistribution from normal mice. EJNMMI Phys. 2020, 7, 58.
  80. Sahafi-Pour SA, Shirmardi SP, Saeedzadeh E, Baradaran S, Sadeghi M.; Internal dosimetry studies of 177 Lu-BBN-GABA-DOTA, as a cancer therapy agent, in human tissues based on animal data. Appl Radiat Isot 2022, 186, 110273, 10.1016/j.apradiso.2022.110273.Sahafi-Pour, S.A.; Shirmardi, S.P.; Saeedzadeh, E.; Baradaran, S.; Sadeghi, M. Internal dosimetry studies of 177Lu-BBN-GABA-DOTA, as a cancer therapy agent, in human tissues based on animal data. Appl. Radiat. Isot. 2022, 186, 110273.
  81. E Courtney Henry; Matthew Strugari; George Mawko; Kimberly Brewer; David Liu; Andrew C. Gordon; Jeffrey N. Bryan; Charles Maitz; Robert Abraham; S Cheenu Kappadath; et al.Alasdair Syme Precision Dosimetry in Yttrium-90 Radioembolization through CT Imaging of Radiopaque Microspheres in a Rabbit Liver Model. EJNMMI Phys . 2021, 21, 9(1), 10.21203/rs.3.rs-806070/v1.Henry, E.C.; Strugari, M.; Mawko, G.; Brewer, K.; Liu, D.; Gordon, A.C.; Bryan, J.N.; Maitz, C.; Abraham, R.; Kappadath, S.C.; et al. Precision dosimetry in yttrium-90 radioembolization through CT imaging of radiopaque microspheres in a rabbit liver model. EJNMMI Phys. 2022, 9, 21.
  82. G. D. Flux; K. Sjogreen Gleisner; C. Chiesa; M. Lassmann; N. Chouin; J. Gear; M. Bardiès; S. Walrand; K. Bacher; U. Eberlein; et al.M. LjungbergLidia StrigariE. VisserM. W. Konijnenberg From fixed activities to personalized treatments in radionuclide therapy: lost in translation?. European Journal of Pediatrics 2017, 45, 152-154, 10.1007/s00259-017-3859-1.Flux, G.; Sjogreen Gleisner, K.; Chiesa, C.; Lassmann, M.; Chouin, N.; Gear, J.; Bardiès, M.; Walrand, S.; Bacher, K.; Eberlein, U.; et al. From fixed activities to personalized treatments in radionuclide therapy: Lost in translation? Eur. J. Nucl. Med. Mol. Imaging 2017, 45, 152–154.
  83. Michael R. Zalutsky; David A. Reardon; Gamal Akabani; R. Edward Coleman; Allan H. Friedman; Henry S. Friedman; Roger E. McLendon; Terence Z. Wong; Darell D. Bigner; Clinical Experience with α-Particle–Emitting 211At: Treatment of Recurrent Brain Tumor Patients with 211At-Labeled Chimeric Antitenascin Monoclonal Antibody 81C6. Journal of Nuclear Medicine 2007, 49, 30-38, 10.2967/jnumed.107.046938.The European School of Multimodality Imaging Therapy Website. Available online: https://www.eanm.org/esmit/7 (accessed on 3 January 2022).
  84. Håkan Andersson; Elin Cederkrantz; Tom Bäck; Chaitanya Divgi; Jörgen Elgqvist; Jakob Himmelman; György Horvath; Lars Jacobsson; Holger Jensen; Sture Lindegren; et al.Stig PalmRagnar Hultborn Intraperitoneal α-Particle Radioimmunotherapy of Ovarian Cancer Patients: Pharmacokinetics and Dosimetry of 211At-MX35 F(ab′)2—A Phase I Study. Journal of Nuclear Medicine 2009, 50, 1153-1160, 10.2967/jnumed.109.062604.
More
Video Production Service