Ever since the antiquity, random number generation has played an important role both in common everyday life activities, such as leisure games, as well as in the advancement of science. Such means as dice and coins have been employed since the ancient times in order to generate random numbers that were used for gambling, dispute resolution, leisure games, and perhaps even fortune-telling. The theory behind the generation of random numbers, as well as the ability to potentially predict the outcome of this process, has been heavily studied and exploited by mathematics, in an attempt to either ensure the randomness of the process, to gain an advantage in correctly predicting its future outcomes, or to approximate the results of rather complicated computations. EspeciRally in cryptography, ranndom numbers are used due to the aforementioned properties, so that attackers have no other option but to guess the secrethave also been employed in cryptography, exactly due to their properties. This fact, in conjunction with the ongoing digitalisation of our world, has led to an interest in random number generation within the framework of computer science. In this context, random number generation systems are classified into two main categories: pseudorandom number generators and true random number generators, with the former generating sequences of numbers that appear to be random, but are in fact completely predictable when the initial value (being referred to as the seed) and conditions used for the number generation process are known, and with the latter generating truly random sequences of numbers that can only be predicted (correctly) with negligible probability, even if the initial value and conditions are known.
The term "random number generation" refers to the production of numbers (in a very broad sense) in such a manner that there is, ideally, no way in which the outcome of this production process can be predicted. Ever since the antiquity, random number generation has played an important role both in common everyday life activities, such as leisure games, as well as in the advancement of science. One of the oldest ways in which humans generated random numbers has been through the use of dice. It does not seem to be known when dice were invented, but they have been employed since ancient times, alongside with coin flipping, for predicting the future, decision-making, fortune-telling, gambling, dispute resolution, and leisure games. However, coin tosses are known to have a certain bias, whichThe bias in the case of coin tossing has been studied extensively[1]. In addition, coins co
Culd even rarely land on the edge, rendering the result useless[2].rently used for all Modthern usages of random numbers include se and also Monte Carlo experimentsimulations, game decisions, and even Cryptography (see also Cryptographically-Secure Pseudorandom Number Generator).
Random Numbecr Generayptors, graphy
which arfie usually maclds of cryptography?
Thines, hardware, and/or software that automate t theory behind the generation of random numbers, are often abbreviated and referred to as RNGs. To this end, the ancient method of coin tossing to produce a, most usually, binary outcome, can essentially be viewed as a forerunner of modern binary RNGs, whereas dice throwing can be considered as a forerunner of high-entropy RNGs that allow for an even higher number of outcomes. It is also important to note here that in the context of random number generation, the term "number" does not exclusively refer to a mathematical number, but rather to the actual outcoms well as the ability to potentially predict the outcome of this process, has been heavily studied by mathematics, in an attempt to either ensure the randomness of the process or gain an advantage in correctly predicting its future outcomes. In particular, probability theory is one of the hard (and, ideally, impossible) to predict process that is referred to as "main mathematical fields relevant to random number generation",.
cryptographically secure random number generator
Random in the sense that a coin toss or a die throw would still be considered as random number generation, especially if the outcome of these processes was unbiased, even if the sides of the relevant coin(s) and di(c)e did not depict any numbers.
Anumbers have also been employed in cryptography, exactly due to their properties. This fact, in conjunction with the ongoing digitalisation of our RNG shwould have four desirable properties:
The coirld, has, more recen toss mentioned above does not fully exhibit these characteristics, but can still provide sufficientlyly, led to an interest in random numbers for everyday use.
The generatwio main types of RNGs are called True RNGs (TRNGs) and Pseudo-RNGs (PRNGs). These two types of RNGs can, usually, only be distinguished through the study of a high amount of the numbers that they produce as outcomes.
A TRNG is able n within the framework of computer science. In this conto generatext, random numbers that can only be predicted (correctly) with negligible probability, even if the initial value and conditions are known. TRNG generation systems are typically slower than PRNGs and may additionally be biased. For debiasing, most often von Neumann correction is deployeclassified into two main categories: Pseud[3]. It is worth meRantioning that most quantum effects appear to be truly unpredictable and random, leading to TRNGs that are based on quantum mechanics.
A PRNG can dom Number Generators (PRNGs) and True Random Number Generators, with the former generateing sequences of numbers that appear to be random, but are in fact completely predictable when the initial value (being referred to as the seed) and conditions used for the number generation process are known., PRNGs are usually algorithms or simple mathematical formulae, making them faster than TRNGs at the cost of determinism.
On a more and with the latter general note, the concepts of determinism and ing truly randomness are rather hard to fully define. In particular, most processes that appear to be random are rather dependent on the unpredictability of their initial conditions and of the overall physical system. For example, the movement of a leaf in the wind should be fully sequences of numbers that can only be predictable, if all the relevant parameters are known with extremely high detail, yet in practice, it is rather unpredictable in the general case. In the same fashion, the output of PRNGs may sometimes successfully pass even the most rigorous statistical tests, even though it is completely deterministic. For example, a coin toss and a die throw are also rather fully deterministic processes, at least in the general case, which, however, are most often considered as randomed (correctly) with negligible probability, even if the initial value and conditions are known. To t
Chis end, one should refer to chaos theory, and the way in which minor variations affect the overall time progression of a system in such a way that two or more entirely different outcomes are possible due to them. A similar example from the digital world wo, deterministic, yet rather "random"
Quld be a hash function that exhibits the avalanche effect: for slightly different inputs, it produces totally different outputs. If such a hash function is employed for the production of a series of numbers, by feeding it its output to produce a new number, the outcome may appear as random, especially if this function produces really long numbers, but it will always be fully deterministic and predicntum effects, truly random and unpredictable.
A concRept somehow similar to that etition[1]
Cof a PRNG is that of a Physical Unclonable Function, where mn tossinorg variations lead the system to reach a rather stable state, which appears leads to bits...
Ras unpredictable, and thus "unclonable". In this case, every time the physical system is queried, the result is almost the same; thus, a PUF produces an output that can be considerdom Number Generation Systems in Computer Scienced as similar to that of a
PRNG that is not biased towards a particular digit (a particular outcome that would occur almost every time), but is extremely biased towards a particular series of digits (a series of outcomes that occurs almoeudorandom number generation, based on algorithmst every time).
This section lists some commonly rused and newly proposed RNGs.
Most RNGs are random number Ge prone to some kind of attack. Attacks on PRNGrators include, but are not limited to[15]: