Applications of Electrosorption Technology in Water Treatment: Comparison
Please note this is a comparison between Version 2 by Youliang Cheng and Version 1 by Youliang Cheng.

Electrosorb技术由于消耗低、环保、简单易再生等优点,在海水淡化和水污染治理领域引起了广泛的关注。自20世纪60年代以来,人们一直在研究使用电吸附从水中除盐的方法,该技术的应用始于20世纪90年代中期,当时劳伦斯利弗莫尔国家实验室于1996年开发了第一套电吸附应用装置。

  • electrosorption
  • water treatment
  • adsorption mechanism

1. 通过电吸附去除水中的盐离子Removal of Salt Ions from Water by Electrosorption

为确保工业和生活供水安全,海水淡化技术引起了许多研究人员的关注。“电化学海水淡化”的概念是由Evans和Hamilton提出的[90]。与反渗透(RO)和多级闪蒸(MSF)相比,电吸附海水淡化技术具有能耗低,操作方便等特点。为了提高石墨烯的电吸附脱盐能力,Ahmed小组采用微波法制备了石墨烯/SnO2 NPs复合材料作为CDI电极,该能力明显优于原始石墨烯[91]。此外,Zhang等人制备了石墨烯/碳气凝胶(GCCAs),在500 mg/L NaCl的条件下,其盐吸附容量(SAC)达到26.9 mg/g的最佳[92]。此外,通过碳化PANI和GO复合材料制备了碳气凝胶,其吸附容量为15.7 mg/g,在500 mg/L NaCl和1.2 V施加电压的条件下[93]。Wang组以秸秆废料为电极材料活化和石墨化制备石墨多孔碳纳米片(GPCS),当施加1.2 V电压时,样品对500 mg/L NaCl溶液的电吸附容量为19.3 mg/g[94]。由于生物质衍生物成本低廉,Lu的研究小组通过碳化以木糖为碳源合成了多孔碳纳米片(PCNs),当施加1.2 V电压时,PCNS CDI电极1000 mg/L NaCl溶液的最大SAC达到16.29 mg/g[95]。此外,Li等人以细菌纤维素为原料,通过冷冻干燥和热处理,制得磷(P)掺杂的碳纳米纤维气凝胶(P-CNFA),在−1.2 V的工作电压下,P-CNFA的SAC达到16.20 mg/g,适用于1000 mg/L NaCl溶液[96]。因此,我们可以推断出盐离子将通过电吸附技术被有效地去除。

  To ensure the safety of industrial and domestic water supply, desalination technology has attracted the attention of many researchers. This concept of “electrochemical desalination” was put forward by Evans and Hamilton [90]. Compared with reverse osmosis (RO) and multi-stage flash (MSF), the electrosorption desalination technology shows low energy consumption, easy operation, and so on. To improve the electrosorption desalination ability of graphene, Ahmed’s group prepared graphene/SnO2 NPs composite materials by microwave method as CDI electrodes, and this ability was significantly better than that of original graphene [91]. In addition, Zhang et al. prepared graphene/carbon aerogels (GCCAs), which achieved the best salt adsorption capacity (SAC) of 26.9 mg/g under the condition of 500 mg/L NaCl [92]. Furthermore, carbon aerogels were also prepared by carbonizing the composite of PANI and GO, whose adsorption capacity was 15.7 mg/g under the conditions of 500 mg/L NaCl and 1.2 V applied voltage [93]. Wang’s group prepared graphite porous carbon nanosheets (GPCSs) by activating and graphitizing straw waste as the electrode material, and the electrosorption capacity of the sample for 500 mg/L NaCl solution is 19.3 mg/g when 1.2 V voltage was applied [94]. Due to the low cost of biomass derivatives, Lu’s team synthesized porous carbon nanoflakes (PCNs) by using xylose as the carbon source through the carbonization, and the maximum SAC of PCNS CDI electrode for 1000 mg/L NaCl solution reached to 16.29 mg/g when the voltage of 1.2 V was applied [95]. Additionally, Li et al. obtained phosphorus (P)-doped carbon nanofiber aerogel (P-CNFA) by using bacterial cellulose as the raw material via freeze-drying and heat treatment, and the SAC of P-CNFA reached 16.20 mg/g for 1000 mg/L NaCl solution under working voltage of −1.2 V [96]. Therefore, we can infer that salt ions will be removed efficiently via electrosorption technology.

2. 通过电吸附去除废水中的重金属离子和其他有害离子

工业的快速发展导致重金属造成的水污染日益严重,不仅毒害水中的水生生物,而且危害人体健康。废水中重金属的传统处理方法主要包括化学沉淀,凝结 - 絮凝,浮选,离子交换,膜过滤和吸附[97]。但是,上述方法有一些局限性。1997年,农民等人利用电容法去除Cr。

工业的快速发展导致重金属造成的水污染日益严重,不仅毒害水中的水生生物,而且危害人体健康。废水中重金属的传统处理方法主要包括化学沉淀,凝结 - 絮凝,浮选,离子交换,膜过滤和吸附[97]。但是,上述方法有一些局限性。1997年,Farmer等人利用电容法去除Cr。

6+

有效[98]。随后,Oda的团队调查了Cu的去除效果。

2+

和锌

2+

通过使用交流电极,然后成功地将CDI技术引入重金属离子去除领域[99]。为研究表面改性对ACF布重金属离子吸附/电吸附容量的影响,黄等对Cu进行了吸附和电吸附。

2+

通过使用不同的改性ACF布电极在废水中[100]。结果表明,电吸附的去除度是吸附的2.2倍。此外,戴氏研究小组使用AC作为电极,用于水溶液中As(III)的电吸附,并发现电吸附容量随着电压,初始As(III)浓度和pH值的增加而增加[101]。此外,黄氏小组调查了Cd的去除率。

2+

2+

和铬

3+

以及通过使用CDI体系的混合物,发现电吸附能有效地除去这些金属离子,并且除去率与施加的电压呈正相关[102]。据我们所知,锰

2

/碳复合材料对废水中的重金属离子具有高吸附能力。因此,胡的小组准备了MnO。

2

/CF复合材料经电镀法作为电吸附电极[103]。铜的吸附能力

2+

对于锰

2

/CF复合电极在0.8 V的工作电压下达到172.88 mg/g,是普通MnO的两倍以上

2

在没有电场的情况下吸附剂。此外,刘和同事通过真空过滤工艺制造了活性炭布/氧化石墨烯复合材料(ACC/GO),用作CDI电极以去除Co

2+

和水中的C。当对复合电极施加1.2 V电压时,Co的最大吸附容量

+2+在CoCl的条件下,C和C可分别达到16.7 mg / g和22.9

在CoCl的条件下,C和C可分别达到16.7 mg / g和22.9 mg / g

+2

溶液浓度和CsCl溶液浓度为20mg/L[67]。由于MnO的低成本和高电容

2

,李氏组合成α-MnO

2纳米颗粒经水热法,结合碳纤维纸(CFP),得到α-Mno

纳米颗粒经水热法,结合碳纤维纸(CFP),得到α-MnO

2/CFP作为CDI电极材料[104]。结果表明,在相同电吸附条件下,复合材料的镍离子去除能力达到16.4 mg/g,是活性炭的两倍多。因此,CDI系统对不同金属离子和有害离子的电吸附行为表现出明显的差异。

/CFP作为CDI电极材料[104]。结果表明,在相同电吸附条件下,复合材料的镍离子去除能力达到16.4 mg/g,是活性炭的两倍多。因此,CDI系统对不同金属离子和有害离子的电吸附行为表现出明显的差异。

3. 通过电吸附去除废水中的各种有机化合物

由于农业的需求,该领域使用的各种除草剂和肥料都造成了水污染。此外,亚甲基蓝(MB)、其他着色剂和尿素磷化合物广泛用于印染行业,这些有机物会对水环境造成破坏。因此,电吸附法还应用于废水中各种有机化合物的去除。Yue和同事们报道了一种rGO/SWCNTs薄膜作为去除MB的CDI电极[105]。对于该系统,PS被用作模板,引入GO片材以产生大孔隙,并在薄膜之间分布单壁碳纳米管以产生有效的离子扩散途径。因此,当施加−1.2 V电压时,rGO/SWCNTs薄膜的最大吸附容量达到13,014.3 mg/g,并且在五次循环后容量保持接近100%。此外,该研究组合成了多孔MXene/SWCNTs薄膜作为CDI电极去除废水中的有机染料,当施加−2.4 V电压时,最大吸附容量高达28,403.7 mg/g[106]。此外,本研究小组制备了源自废烟过滤器/沸石-咪唑酸盐框架-8(ZIF-8)复合材料[678910,107]的碳泡沫电极,发现当施加−1.2 V电压时,MB电的最大吸附能力达到1846.7 mg/g。在大多数条件下,使用大多数水处理方法的甲基橙(MO)溶液的吸附时间超过1 h,而Liu及其同事使用一步水热法制备的多孔石墨烯水凝胶(R-HGH)作为CDI电极[108]。当对R-HGH施加0.6 V电压时,100 mg/L MO溶液的电吸附容量为57 mg/g,吸附平衡时间可在200 s以内。因此,电吸附可以为去除典型的有机化合物提供有效的途径。

由于农业的需求,该领域使用的各种除草剂和肥料都造成了水污染。此外,亚甲基蓝(MB)、其他着色剂和尿素磷化合物广泛用于印染行业,这些有机物会对水环境造成破坏。因此,电吸附法还应用于废水中各种有机化合物的去除。Yue和同事们报道了一种rGO/SWCNTs薄膜作为去除MB的CDI电极(图5a–e)[105]。对于该系统,PS被用作模板,引入GO片材以产生大孔隙,并在薄膜之间分布单壁碳纳米管以产生有效的离子扩散途径。因此,当施加−1.2 V电压时,rGO/SWCNTs薄膜的最大吸附容量达到13,014.3 mg/g,并且在五次循环后容量保持接近100%。此外,该组合成了多孔MXene/SWCNTs薄膜作为CDI电极,用于去除废水中的有机染料(图5f–j),当施加−2.4 V电压时,最大吸附容量高达28,403.7 mg/g [106]。此外,本研究小组制备了源自废烟过滤器/沸石-咪唑酸盐框架-8(ZIF-8)复合材料[6-10,107]的碳泡沫电极,发现当施加−1.2 V电压时,这些碳泡沫的最大电吸附容量MB达到1846.7 mg/g。在大多数条件下,使用大多数水处理方法的甲基橙(MO)溶液的吸附时间超过1 h,而Liu及其同事使用一步水热法制备的多孔石墨烯水凝胶(R-HGH)作为CDI电极[108]。当对R-HGH施加0.6 V电压时,100 mg/L MO溶液的电吸附容量为57 mg/g,吸附平衡时间可在200 s以内。因此,电吸附可以为去除典型的有机化合物提供有效的途径。

Video Production Service