Genetic Improvement of Wheat for Drought Tolerance: Comparison
Please note this is a comparison between Version 2 by Beatrix Zheng and Version 1 by Theresa Bapela.

Wheat production and productivity are challenged by recurrent droughts associated with climate change globally. Drought and heat stress resilient cultivars can alleviate yield loss in marginal production agro-ecologies. The ability of some crop genotypes to thrive and yield in drought conditions is attributable to the inherent genetic variation and environmental adaptation, presenting opportunities to develop drought-tolerant varieties. Understanding the underlying

genetic, physiological, biochemical, and environmental mechanisms and their interactions is key critical opportunity for drought tolerance improvement. Therefore, the objective of this review is to document the progress, challenges, and opportunities in breeding for drought tolerance in wheat. The paper outlines the following key aspects: (1) challenges associated with breeding for adaptation to drought-prone environments, (2) opportunities such as genetic variation in wheat for drought tolerance, selection methods, the interplay between above-ground phenotypic traits and root attributes in drought adaptation and drought-responsive attributes and (3) approaches, technologies and innovations in drought tolerance breeding. In the end, the paper summarises genetic gains and perspectives in drought tolerance breeding in wheat. The review will serve as baseline information for wheat breeders and agronomists to guide the development and deployment of drought-adapted and high-performing new-generation wheat varieties.

  • drought-tolerance
  • genetic resources
  • selection indices
  • breeding technologies
  • Triticum aestivum L.
Please wait, diff process is still running!

References

  1. David Tilman; Christian Balzer; Jason Hill; Belinda L. Befort; Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences 2011, 108, 20260-20264, 10.1073/pnas.1116437108.Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264.
  2. Stefani Daryanto; Lixin Wang; Pierre-André Jacinthe; Global Synthesis of Drought Effects on Maize and Wheat Production. PLOS ONE 2016, 11, e0156362, 10.1371/journal.pone.0156362.Daryanto, S.; Wang, L.; Jacinthe, P.-A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362.
  3. Lawton Nalley; Bruce Dixon; Petronella Chaminuka; Zwiafhela Naledzani; Matthew James Coale; The role of public wheat breeding in reducing food insecurity in South Africa. PLOS ONE 2018, 13, e0209598, 10.1371/journal.pone.0209598.Nalley, L.; Dixon, B.; Chaminuka, P.; Naledzani, Z.; Coale, M.J. The role of public wheat breeding in reducing food insecurity in South Africa. PLoS ONE 2018, 13, e0209598.
  4. Kamal Khadka; Manish N. Raizada; Alireza Navabi; Recent Progress in Germplasm Evaluation and Gene Mapping to Enable Breeding of Drought-Tolerant Wheat. Frontiers in Plant Science 2020, 11, 1149, 10.3389/fpls.2020.01149.Khadka, K.; Raizada, M.N.; Navabi, A. Recent progress in germplasm evaluation and gene mapping to enable breeding of drought-tolerant wheat. Front. Plant Sci. 2020, 11, 1149.
  5. T.Y Bayoumi, M.H Eid, E.M Metwali; Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. African Journal of Biotechnology 2008, 7, 2341-2352.Bayoumi, T.Y.; Eid, M.H.; Metwali, E.M. Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. Afr. J. Biotechnol. 2008, 7, 2341–2352.
  6. Fakiha Afzal; Bharath Reddy; Alvina Gul; Maria Khalid; Abid Subhani; Kanwal Shazadi; Umar Masood Quraishi; Amir M. H. Ibrahim; Awais Rasheed; Physiological, biochemical and agronomic traits associated with drought tolerance in a synthetic-derived wheat diversity panel. Crop and Pasture Science 2017, 68, 213-224, 10.1071/cp16367.Afzal, F.; Reddy, B.; Gul, A.; Khalid, M.; Subhani, A.; Shazadi, K.; Quraishi, U.M.; Ibrahim, A.M.; Rasheed, A. Physiological, biochemical and agronomic traits associated with drought tolerance in a synthetic-derived wheat diversity panel. Crop Pasture Sci. 2017, 68, 213–224.
  7. Karine Chenu; Reza Deihimfard; Scott C. Chapman; Large‐scale characterization of drought pattern: a continent‐wide modelling approach applied to the Australian wheatbelt – spatial and temporal trends. New Phytologist 2013, 198, 801-820, 10.1111/nph.12192.Chenu, K.; Deihimfard, R.; Chapman, S.C. Large-scale characterization of drought pattern: A continent-wide modelling approach applied to the Australian wheatbelt-spatial and temporal trends. New Phatol. 2013, 198, 801–820.
  8. Marcos Vinicius Mansano Sarto; Jaqueline Rocha Wobeto Sarto; Leandro Rampim; Jean Sérgio Rosset; Doglas Bassegio; Poliana Ferreira Da Costa; Adriano Mitio Inagaki; State University of Mato Grosso do Sul - UEMS; Wheat phenology and yield under drought: A review. Australian Journal of Crop Science 2017, 11, 941-946, 10.21475/ajcs.17.11.08.pne351.Sarto, M.V.M.; Sarto, J.R.W.; Rampim, L.; Bassegio, D.; da Costa, P.F.; Inagaki, A.M. Wheat phenology and yield under drought: A review. Aust. J. Crop. Sci. 2017, 11, 941–946.
  9. M. T. Hoffman; P. J. Carrick; L. Gillson; A. G. West; Drought, climate change and vegetation response in the succulent karoo, South Africa. South African Journal of Science 2009, 105, 54-60, 10.4102/sajs.v105i1/2.40.Hoffman, M.T.; Carrick, P.J.; Gillson, L.; West, A.G. Drought, climate change and vegetation response in the succulent karoo, South Africa. S. Afr. J. Sci. 2009, 105, 54–60.
  10. Learnmore Mwadzingeni; Hussein Shimelis; Jasper Rees; Toi J. Tsilo; Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLOS ONE 2017, 12, e0171692, 10.1371/journal.pone.0171692.Mwadzingeni, L.; Shimelis, H.; Rees, D.J.G.; Tsilo, T.J. Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS ONE 2017, 12, e0171692.
  11. Rudy Dolferus; To grow or not to grow: A stressful decision for plants. Plant Science 2014, 229, 247-261, 10.1016/j.plantsci.2014.10.002.Dolferus, R. To grow or not to grow: A stressful decision for plants. Plant Sci. 2014, 229, 247–261.
  12. M Aslam; M.A Maqbool; R Cengiz. Mechanisms of drought resistance. In Drought Stress in Maize (Zea mays L.); Springer: Cham: Switzerland, 2015; pp. 19-36.Aslam, M.; Maqbool, M.A.; Cengiz, R. Mechanisms of drought resistance. In Drought Stress in Maize (Zea mays L.); Springer: Cham, Switzerland, 2015; pp. 19–36.
  13. Muhammad Kashif Naeem; Munir Ahmad; Muhammad Kamran; Muhammad Kausar Nawaz Shah; Muhammad Shahid Iqbal; Physiological Responses of Wheat (Triticum aestivum L.) to Drought Stress. International Journal of Plant & Soil Science 2015, 6, 1-9, 10.9734/ijpss/2015/9587.Naeem, M.K.; Ahmad, M.; Kamran, M.; Shah, M.K.N.; Iqbal, M.S. Physiological responses of wheat (Triticum aestivum L.) to drought stress. Int. J. Plant Soil Sci. 2015, 6, 1–9.
  14. Kwame Wilson Shamuyarira; Hussein Shimelis; Terence Tapera; Toi John Tsilo; Genetic Advancement of Newly Developed Wheat Populations Under Drought-Stressed and Non-Stressed Conditions. Journal of Crop Science and Biotechnology 2019, 22, 169-176, 10.1007/s12892-018-0262-0.Shamuyarira, K.W.; Shimelis, H.; Tapera, T.; Tsilo, T.J. Genetic advancement of newly developed wheat populations under drought-stressed and non-stressed conditions. J. Crop Sci. Biotechnol. 2019, 22, 169–176.
  15. SE Ibrahim; A Schubert; K Pillen; J Lèon; QTL analysis of drought tolerance for seedling root morphological traits in an advanced backcross of spring wheat. International Journal of Agricultural Sciences 2012, 2, 619-626.Ibrahim, S.E.; Schubert, A.; Pillen, K.; Lèon, J. QTL analysis of drought tolerance for seedling root morphological traits in an advanced backcross of spring wheat. Int. J. Agric. Sci. 2012, 2, 619–626.
  16. Yongzhe Ren; Xue He; Dongcheng Liu; Jingjuan Li; Xueqiang Zhao; Bin Li; Yiping Tong; Aimin Zhang; Zhensheng Li; Major quantitative trait loci for seminal root morphology of wheat seedlings. Molecular Breeding 2011, 30, 139-148, 10.1007/s11032-011-9605-7.Ren, Y.; He, X.; Liu, D.; Li, J.; Zhao, X.; Li, B.; Tong, Y.; Zhang, A.; Li, Z. Major quantitative trait loci for seminal root morphology of wheat seedlings. Mol. Breed. 2012, 30, 139–148.
  17. Jairus Bowne; Tim A. Erwin; Juan Juttner; Thorsten Schnurbusch; Peter Langridge; Antony Bacic; Ute Roessner; Drought Responses of Leaf Tissues from Wheat Cultivars of Differing Drought Tolerance at the Metabolite Level. Molecular Plant 2012, 5, 418-429, 10.1093/mp/ssr114.Bowne, J.B.; Erwin, T.A.; Juttner, J.; Schnurbusch, T.; Langridge, P.; Bacic, A.; Roessner, U. Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol. Plant 2012, 5, 418–429.
  18. Yan Dong; Jindong Liu; Yan Zhang; Hongwei Geng; Awais Rasheed; Yonggui Xiao; Shuanghe Cao; Luping Fu; Jun Yan; Weie Wen; et al.Yong ZhangRuilian JingXianchun XiaZhonghu He Genome-Wide Association of Stem Water Soluble Carbohydrates in Bread Wheat. PLoS ONE 2016, 11, e0164293, 10.1371/journal.pone.0164293.Dong, Y.; Liu, J.; Geng, H.; Rasheed, A.; Xiao, Y.; Cao, S.; Fu, L.; Yan, J.; Wen, W.; Zhang, Y.; et al. Genome-wide association of stem water soluble carbohydrates in bread wheat. PLoS ONE 2016, 11, e0164293.
  19. Shenkui Shi; Farooq I. Azam; Huihui Li; Xiaoping Chang; Baoyun Li; Ruilian Jing; Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes. Euphytica 2017, 213, 246, 10.1007/s10681-017-2002-5.Shi, S.; Azam, F.I.; Li, H.; Chang, X.; Li, B.; Jing, R. Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes. Euphytica 2017, 213, 246.
  20. Learnmore Mwadzingeni; Hussein Shimelis; Samson Tesfay; Toi J. Tsilo; Screening of Bread Wheat Genotypes for Drought Tolerance Using Phenotypic and Proline Analyses. Frontiers in Plant Science 2016, 7, 1276-1276, 10.3389/fpls.2016.01276.Mwadzingeni, L.; Shimelis, H.; Tesfay, S.; Tsilo, T.J. Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front. Plant Sci. 2016, 7, 1276.
  21. Sonto Silindile Mkhabela; Hussein Shimelis; Alfred O. Odindo; Jacob Mashilo; Response of selected drought tolerant wheat (Triticum aestivum L.) genotypes for agronomic traits and biochemical markers under drought-stressed and non-stressed conditions. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 2019, 69, 674-689, 10.1080/09064710.2019.1641213.Mkhabela, S.S.; Shimelis, H.; Odindo, A.O.; Mashilo, J. Response of selected drought tolerant wheat (Triticum aestivum L.) genotypes for agronomic traits and biochemical markers under drought-stressed and non-stressed conditions. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2019, 69, 674–689.
  22. D.K Ray; N.D Mueller; P.C West; J.A Foley; Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428.. PLos ONE 2013, 8, e66428.Mwadzingeni, L.; Shimelis, H.; Tsilo, T.J. Combining ability and gene action controlling yield and yield components in bread wheat (Triticum aestivum L.) under drought-stressed and nonstressed conditions. Plant Breed. 2018, 137, 502–513.
  23. Rachel Brenchley; Manuel Spannagl; Matthias Pfeifer; Gary Barker; Rosalinda D’Amore; Alexandra M. Allen; Neil McKenzie; Melissa Kramer; Arnaud Kerhornou; Dan Bolser; et al.Suzanne KayDarren WaiteMartin TrickIan BancroftYong GuNaxin HuoMing-Cheng LuoSunish SehgalBikram GillSharyar KianianOlin AndersonPaul KerseyJan DvorakW. Richard McCombieAnthony HallKlaus F. X. MayerKeith J. EdwardsMichael W. BevanNeil Hall Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 2012, 491, 705-710, 10.1038/nature11650.Zhang, J.; Zhang, S.; Cheng, M.; Jiang, H.; Zhang, X.; Peng, C.; Lu, X.; Zhang, M.; Jin, J. Effect of drought on agronomic traits of rice and wheat: A meta-analysis. Int. J. Environ. Res. Public Health 2018, 15, 839.
  24. M.R Farzamipour, M.R.; Moghaddam, M.; Aharizad, S.; Rashidi, V.; Genetic variation for agronomic characters and drought tolerance among the recombinant inbred lines of wheat from the Norstar × Zagross cross. International Journal of Biosciences (IJB) 2013, 3, 76-86, 10.12692/ijb/3.8.76-86.Mkhabela, S.S.; Shimelis, H.; Mashilo, J. Genetic differentiation of selected drought and heat tolerant wheat genotypes using simple sequence repeat markers and agronomic traits. S. Afr. J. Plant Soil 2020, 37, 211–219.
  25. Learnmore Mwadzingeni; Sandiswa Figlan; Hussein Shimelis; Suchismita Mondal; Toi J. Tsilo; Genetic resources and breeding methodologies for improving drought tolerance in wheat. Journal of Crop Improvement 2017, 31, 648-672, 10.1080/15427528.2017.1345816.Praba, M.L.; Cairns, J.E.; Babu, R.C.; Lafitte, H.R. Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J. Agron. Crop Sci. 2009, 195, 30–46.
  26. Isack Mathew; Hussein Shimelis; Admire Isaac Tichafa Shayanowako; Mark Laing; Vincent Chaplot; Genome-wide association study of drought tolerance and biomass allocation in wheat. PLOS ONE 2019, 14, e0225383, 10.1371/journal.pone.0225383.Prasad, G.P.; Pisipati, S.R.; Momčilovié, I.; Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agron. Crop Sci. 2011, 197, 430–441.
  27. Paulina Ballesta; Freddy Mora; Alejandro Del Pozo; Association mapping of drought tolerance indices in wheat: QTL-rich regions on chromosome 4A. Scientia Agricola 2020, 77, e20180153, 10.1590/1678-992x-2018-0153.Becker, S.R.; Byrne, P.F.; Reid, S.D.; Bauerle, W.L.; McKay, J.K.; Haley, S.D. Root traits contributing to drought tolerance of synthetic hexaploid wheat in a greenhouse study. Euphytica 2016, 207, 213–224.
  28. Learnmore Mwadzingeni; Hussein Shimelis; Toi J. Tsilo; Combining ability and gene action controlling yield and yield components in bread wheat (Triticum aestivum L.) under drought-stressed and nonstressed conditions. Plant Breeding 2018, 137, 502-513, 10.1111/pbr.12609.Mathew, I.; Shimelis, H.; Mutema, M.; Clulow, A.; Zengeni, R.; Mbava, N.; Chaplot, V. Selection of wheat genotypes for biomass allocation to improve drought tolerance and carbon sequestration into soils. J. Agron. Crop Sci. 2019, 205, 385–400.
  29. Jinmeng Zhang; Shiqiao Zhang; Min Cheng; Hong Jiang; Xiuying Zhang; Changhui Peng; Xuehe Lu; Minxia Zhang; Jiaxin Jin; Effect of Drought on Agronomic Traits of Rice and Wheat: A Meta-Analysis. International Journal of Environmental Research and Public Health 2018, 15, 839, 10.3390/ijerph15050839.Rojas, O.; Vrieling, A.; Rembold, F. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens. Environ. 2011, 115, 343–352.
  30. Sonto Silindile Mkhabela; Hussein Shimelis; Jacob Mashilo; Genetic differentiation of selected drought and heat tolerant wheat genotypes using simple sequence repeat markers and agronomic traits. South African Journal of Plant and Soil 2020, 37, 211-219, 10.1080/02571862.2020.1718787.Keneni, G.; Bekele, E.; Imtiaz, M.; Dagne, K.; Alemaw, G. Challenges associated with crop breeding for adaptation to drought-prone environments. Ethiop. J. Agric. Sci. 2016, 27, 1–24.
  31. M. L. Praba; J. E. Cairns; R. C. Babu; H. R. Lafitte; Identification of Physiological Traits Underlying Cultivar Differences in Drought Tolerance in Rice and Wheat. Journal of Agronomy and Crop Science 2009, 195, 30-46, 10.1111/j.1439-037x.2008.00341.x.Baloch, M.J.; Dunwell, J.; Dennet, M.; Rajpar, I.; Jatoi, W.A.; Veesar, N.F. Evaluating spring wheat cultivars for drought tolerance through yield and physiological parameters at booting and anthesis. Afr. J. Biotechnol. 2012, 11, 11559–11565.
  32. P.V. Vara Prasad; S. R. Pisipati; Ivana Momčilović; Zoran Ristic; Independent and Combined Effects of High Temperature and Drought Stress During Grain Filling on Plant Yield and Chloroplast EF-Tu Expression in Spring Wheat. Journal of Agronomy and Crop Science 2011, 197, 430-441, 10.1111/j.1439-037x.2011.00477.x.Ayalew, H.; Liu, H.; Börner, A.; Kobiljski, B.; Liu, C.; Yan, G. Genome-wide association mapping of major root length QTLs under PEG induced water stress in wheat. Front. Plant Sci. 2018, 9, 1–9.
  33. Steven R. Becker; Patrick F. Byrne; Scott D. Reid; William L. Bauerle; John McKay; Scott Haley; Root traits contributing to drought tolerance of synthetic hexaploid wheat in a greenhouse study. Euphytica 2015, 207, 213-224, 10.1007/s10681-015-1574-1.Farooq, M.; Hussain, M.; Siddique, K.H. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci. 2014, 33, 331–349.
  34. Isack Mathew; Hussein Shimelis; Macdex Mutema; Alistair Clulow; Rebecca Zengeni; Nozibusiso Mbava; Vincent Chaplot; Selection of wheat genotypes for biomass allocation to improve drought tolerance and carbon sequestration into soils. Journal of Agronomy and Crop Science 2019, 205, 385-400, 10.1111/jac.12332.Allahverdiyev, T.I.; Talai, J.M.; Huseynova, I.M.; Aliyev, J.A. Effect of drought stress on some physiological parameters, yield, yield components of durum (Triticum durum desf.) and bread (Triticum aestivum L.) wheat genotypes. Ekin J. Crop Breed. Genet. 2015, 1, 50–62.
  35. O. Rojas; A. Vrieling; F. Rembold; Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sensing of Environment 2011, 115, 343-352, 10.1016/j.rse.2010.09.006.Iqbal, J. Morphological, physiological and molecular markers for the adaptation of wheat in drought condition. Asian J. Biotechnol. Genet. Eng. 2019, 2, 1–13.
  36. G Keneni; E Beleke; M Imtiaz; K Dagne; G Alemav; Challenges associated with crop breeding for adaptation to droughtprone environments. Ethiopian Journal of Agricultural Sciences 2016, 27, 1-24.Sobhaninan, N.; Heidari, B.; Tahmasebi, S.; Dadkhodale, A.; McIntyre, C.L. Response of quantitative and physiological traits to drought stress in the SeriM82/Babax wheat population. Euphytica 2019, 215, 1–15.
  37. M.J. Baloch; J Dunwell; M Dennet; I Rajpar; W.A Jatoi; N.F Veesar; Evaluating spring wheat cultivars for drought tolerance through yield and physiological parameters at booting and anthesis. African Journal of Biotechnology 2012, 11, 11559-11565, 10.5897/ajb12.1700.Pradhan, G.P.; Prasad, P.V.; Fritz, A.K.; Kirkham, M.B.; Gill, B.S. Effects of drought and high temperature stress on synthetic hexaploid wheat. Funct. Plant Biol. 2012, 39, 190–198.
  38. Habtamu Ayalew; Hui Liu; Andreas Börner; Borislav Kobiljski; Chunji Liu; Guijun Yan; Genome-Wide Association Mapping of Major Root Length QTLs Under PEG Induced Water Stress in Wheat. Frontiers in Plant Science 2018, 9, 1-9, 10.3389/fpls.2018.01759.Weldearegay, D.F.; Yan, F.; Jiang, D.; Liu, F. Independent and combined effects of soil warming and drought stress during anthesis on seed set and grain yield in two spring wheat varieties. J. Agron. Crop Sci. 2012, 198, 245–253.
  39. Muhammad Farooq; Mubshar Hussain; Kadambot H. M. Siddique; Drought Stress in Wheat during Flowering and Grain-filling Periods. Critical Reviews in Plant Sciences 2014, 33, 331-349, 10.1080/07352689.2014.875291.Bennett, D.; Reynolds, M.; Mullan, D.; Izanloo, A.; Kuchel, H.; Langridge, P.; Schnurbusch, T. Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor. Appl. Genet. 2012, 125, 1473–1485.
  40. T.I Allahverdiyev; J.M Talai; I.M Huseynova; J.A Aliyev; Effect of drought stress on some physiological parameters, yield, yield components of durum (Triticum durum desf.) and bread (Triticum aestivum L.) wheat genotypes. Ekin Journal of Crop Breeding and Genetics 2015, 1, 60-62.Havrlentová, M.; Kraic, J.; Gregusová, V.; Kovácsová, B. Drought Stress in Cereals—A Review. Agriculture (Pol’nohospodárstvo) 2021, 67, 47–60.
  41. J Iqbal; Morphological, physiological and molecular markers for the adaptation of wheat in drought condition. Asian Journal of Biotechnology and Genetic Engineering 2019, 2, 1-13.Siddiqui, M.N.; Leon, J.; Naz, A.A.; Balivora, A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. J. Exp. Bot. 2021, 72, 1007–1019.
  42. Neda Sobhaninan; Bahram Heidari; Sirous Tahmasebi; Ali Dadkhodaie; C. Lynne McIntyre; Response of quantitative and physiological traits to drought stress in the SeriM82/Babax wheat population. Euphytica 2019, 215, 32, 10.1007/s10681-019-2357-x.Abdolshahi, R.; Nazari, M.; Safarian, A.; Sadathossini, T.S.; Salarpour, M.; Amiri, H. Integrated selection criteria for drought tolerance in wheat (Triticum aestivum L.) breeding programs using discriminant analysis. Field Crops Res. 2015, 174, 20–29.
  43. Gautam Pradhan; P. V. Vara Prasad; Allan K. Fritz; Mary B. Kirkham; Bikram S. Gill; Effects of drought and high temperature stress on synthetic hexaploid wheat. Functional Plant Biology 2012, 39, 190-198, 10.1071/fp11245.Khodaee, S.M.M.; Hashemi, M.; Mirlohi, A.; Majidi, M.M.; Sukumaran, S.; Moghaddam, M.E.; Abdollahi, M. Root characteristics of an elite spring wheat panel under contrasting water treatments and their genome-wide association study. Rhizosphere 2021, 19, 100413.
  44. D. F. Weldearegay; Feng Yan; Desheng Jiang; Fulai Liu; Independent and Combined Effects of Soil Warming and Drought Stress During Anthesis on Seed Set and Grain Yield in Two Spring Wheat Varieties. Journal of Agronomy and Crop Science 2012, 198, 245-253, 10.1111/j.1439-037x.2012.00507.x.Ashraf, M. Inducing drought tolerance in plants: Recent advances. Biotechnol. Adv. 2010, 28, 169–183.
  45. Dion Bennett; Matthew Reynolds; Daniel Mullan; Ali Izanloo; Haydn Kuchel; Peter Langridge; Thorsten Schnurbusch; Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theoretical and Applied Genetics 2012, 125, 1473-1485, 10.1007/s00122-012-1927-2.Pinto, R.S.; Reynolds, M.P.; Mathews, K.L.; McIntyre, C.L.; Olivares-Villegas, J.J.; Chapman, S.C. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor. Appl. Genet. 2010, 121, 1001–1021.
  46. Michaela Havrlentová; Ján Kraic; Veronika Gregusová; Bernadett Kovácsová; Drought Stress in Cereals – A Review. Agriculture (Pol'nohospodárstvo) 2021, 67, 47-60, 10.2478/agri-2021-0005.Tahmasebi, S.; Heidari, B.; Pakniyat, H.; McIntyre, L. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome 2017, 60, 26–45.
  47. Nurealam Siddiqui; Jens Léon; Ali A Naz; Agim Ballvora; Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. Journal of Experimental Botany 2020, 72, 1007-1019, 10.1093/jxb/eraa487.Li, L.; Mao, X.; Wang, J.; Chang, X.; Reynolds, M.; Jing, R. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell Environ. 2019, 42, 2540–2553.
  48. R. Abdolshahi; M. Nazari; A. Safarian; T.S. Sadathossini; M. Salarpour; H. Amiri; Integrated selection criteria for drought tolerance in wheat (Triticum aestivum L.) breeding programs using discriminant analysis. Field Crops Research 2015, 174, 20-29, 10.1016/j.fcr.2015.01.009.Langridge, P.; Reynolds, M.P. Genomic tools to assist breeding for drought tolerance. Curr. Opin. Biotechnol. 2015, 32, 130–135.
  49. Sayyed Mohammad Mehdi Khodaee; Maryam Hashemi; Aghafakhr Mirlohi; Mohammad Mahdi Majidi; Sivakumar Sukumaran; Mohsen Esmaelzaeh Moghaddam; Mohammad Abdollahi; Root characteristics of an elite spring wheat panel under contrasting water treatments and their genome-wide association study. Rhizosphere 2021, 19, 100413, 10.1016/j.rhisph.2021.100413.Semahegn, Y.; Shimelis, H.; Laing, M.; Mathew, I. Evaluation of bread wheat (Triticum aestivum L.) genotypes for yield and related traits under drought stress conditions. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2020, 70, 474–484.
  50. M. Ashraf; Inducing drought tolerance in plants: Recent advances. Biotechnology Advances 2010, 28, 169-183, 10.1016/j.biotechadv.2009.11.005.Luo, L.; Xia, H.; Lu, B.-R. Editorial: Crop breeding for drought resistance. Front. Plant Sci. 2019, 10, 314.
  51. R. Suzuky Pinto; Matthew P. Reynolds; Ky Mathews; Cathrine McIntyre; Juan-Jose Olivares-Villegas; Scott Chapman; Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theoretical and Applied Genetics 2010, 121, 1001-1021, 10.1007/s00122-010-1351-4.Ma, J.; Li, R.; Wang, H.; Li, D.; Wang, X.; Zhang, Y.; Zhen, W.; Duan, H.; Yan, G.; Li, Y. Transcriptomics analyses reveal wheat responses to drought stress during reproductive stages under field conditions. Front. Plant Sci. 2017, 8, 592.
  52. Sirous Tahmasebi; Bahram Heidari; Hassan Pakniyat; C. Lynne McIntyre; Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome 2017, 60, 26-45, 10.1139/gen-2016-0017.Guo, X.; Xin, Z.; Yang, T.; Ma, X.; Zhang, Y.; Wang, Z.; Ren, Y.; Lin, T. Metabolomics response for drought stress tolerance in chinese wheat genotypes (Triticum aestivum). Plants 2020, 9, 520.
  53. Long Li; Xinguo Mao; Jingyi Wang; Xiaoping Chang; Matthew Paul Reynolds; Ruilian Jing; Genetic dissection of drought and heat‐responsive agronomic traits in wheat. Plant, Cell & Environment 2019, 42, 2540-2553, 10.1111/pce.13577.Sun, C.; Ali, K.; Yan, K.; Fiaz, S.; Dormatey, R.; Bi, Z.; Bai, J. Exploration of epigenetics for improvement of drought and other stress resistance in crops: A review. Plants 2021, 10, 1226.
  54. Peter Langridge; Matthew Paul Reynolds; Genomic tools to assist breeding for drought tolerance. Current Opinion in Biotechnology 2015, 32, 130-135, 10.1016/j.copbio.2014.11.027.Nezhad, K.Z.; Weber, W.E.; Röder, M.S.; Sharma, S.; Lohwasser, U.; Meyer, R.C.; Saal, B.; Börner, A. QTL analysis for thousand-kernel weight under terminal drought stress in bread wheat (Triticum aestivum L.). Euphytica 2012, 186, 127–138.
  55. Yared Semahegn; Hussein Shimelis; Mark Laing; Isack Mathew; Evaluation of bread wheat (Triticum aestivum L.) genotypes for yield and related traits under drought stress conditions. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 2020, 70, 474-484, 10.1080/09064710.2020.1767802.Shavrukov, Y.; Kurishbayev, A.; Jatayev, S.; Shvidchenko, V.; Zotova, L.; Koekemoer, F.; De Groot, S.; Soole, K.; Langridge, P. Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Front. Plant Sci. 2017, 8, 1–8.
  56. Lijun Luo; Hui Xia; Bao-Rong Lu; Editorial: Crop Breeding for Drought Resistance. Frontiers in Plant Science 2019, 10, 314, 10.3389/fpls.2019.00314.Kashiwagi, J.; Krishnamurthy, L.; Upadhyaya, H.D.; Krishna, H.; Chandra, S.; Vadez, V.; Serraj, R. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 2005, 146, 213–222.
  57. Jun Ma; Ruiqi Li; Hongguang Wang; Dongxiao Li; Xingyi Wang; Yuechen Zhang; Wenchao Zhen; Huijun Duan; Guijun Yan; Yanming Li; et al. Transcriptomics Analyses Reveal Wheat Responses to Drought Stress during Reproductive Stages under Field Conditions. Frontiers in Plant Science 2017, 8, 592, 10.3389/fpls.2017.00592.Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Appl. Sci. 2020, 10, 5692.
  58. Xiaoyang Guo; Zeyu Xin; Tiegang Yang; Xingli Ma; Yang Zhang; Zhiqiang Wang; Yongzhe Ren; Tongbao Lin; Metabolomics Response for Drought Stress Tolerance in Chinese Wheat Genotypes (Triticum aestivum). Plants 2020, 9, 520, 10.3390/plants9040520.Monneveux, P.; Jing, R.; Misra, S. Phenotyping for drought adaptation in wheat using physiological traits. Front. Physiol. 2012, 3, 429.
  59. Chao Sun; KaziM Ali; Kan Yan; Sajid Fiaz; Richard Dormatey; Zhenzhen Bi; Jiangping Bai; Exploration of Epigenetics for Improvement of Drought and Other Stress Resistance in Crops: A Review. Plants 2021, 10, 1226, 10.3390/plants10061226.Farzamipour, M.R.; Moghaddam, M.; Aharizad, S.; Rashidi, V. Genetic variation for agronomic characters and drought tolerance among the recombinant inbred lines of wheat from the Norstar × Zagross cross. Int. J. Biosci. 2013, 3, 76–86.
  60. K.Z Nezhad; W.E Weber; M.S Röder; S Sharma; U Lohwasser; R.C Meyer; B Saal; A Börner.; QTL analysis for thousandkernel weight under terminal drought stress in bread wheat (Triticum aestivum L.).. Euphytica 2012, 186, 127-138.Mathew, I.; Shimelis, H.; Shayanowako, A.I.T.; Laing, M.; Chaplot, V. Genome-wide association study of drought tolerance and biomass allocation in wheat. PLoS ONE 2019, 14, e0225383.
  61. Yuri Shavrukov; Akhylbek Kurishbayev; Satyvaldy Jatayev; Vladimir Shvidchenko; Lyudmila Zotova; Francois Koekemoer; Stephan De Groot; Kathleen Soole; Peter Langridge; Early Flowering as a Drought Escape Mechanism in Plants: How Can It Aid Wheat Production?. Frontiers in Plant Science 2017, 8, 1950, 10.3389/fpls.2017.01950.Farshadfar, E.; Jamshidi, B.; Aghaee, M. Biplot analysis of drought tolerance indicators in bread wheat landraces of Iran. Int. J. Agric. Crop Sci. 2012, 4, 226–233.
  62. Junichi Kashiwagi; L. Krishnamurthy; Hari D. Upadhyaya; Hari Krishna; S. Chandra; Vincent Vadez; Rachid Serraj; Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.).. Euphytica 2005, 146, 213-222, 10.1007/s10681-005-9007-1.Bilal, M.; Rashid, R.M.; Rehman, S.U.; Iqbal, F.; Ahmed, J.; Abid, M.A.; Ahmed, Z.; Hayat, A. Evaluation of wheat genotypes for drought tolerance. J. Green Physiol. Genet. Genom. 2015, 1, 11–21.
  63. Dhriti Kapoor; Savita Bhardwaj; Marco Landi; Arti Sharma; Muthusamy Ramakrishnan; Anket Sharma; The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Applied Sciences 2020, 10, 5692, 10.3390/app10165692.Sheoran, S.; Jaiswal, S.; Kumar, D.; Raghav, N.; Sharma, R.; Pawar, S.; Paul, S.; Iquebal, M.A.; Jaiswar, A.; Sharma, P.; et al. Uncovering genomic regions associated with 36 agro-morphological traits in Indian spring wheat using GWAS. Front. Plant Sci. 2019, 10, 1–20.
  64. Philippe Monneveux; Ruilian Jing; Satish C. Misra; Phenotyping for drought adaptation in wheat using physiological traits. Frontiers in Physiology 2012, 3, 429, 10.3389/fphys.2012.00429.Sallam, A.; Alqudah, A.M.; Dawood, M.F.; Baenziger, P.S.; Börner, A. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. Int. J. Mol. Sci. 2019, 20, 3137.
  65. E Farshadfar; B Jamshidi; M Aghaee; Biplot analysis of drought tolerance indicators in bread wheat landraces of Iran.. International Journal of Agriculture and Crop Sciences 2012, 4, 226-233.Christopher, J.T.; Christopher, M.J.; Borrell, A.K.; Fletcher, S.; Chenu, K. Stay-green traits to improve wheat adaptation in well-watered and water-limited environments. J. Exp. Bot. 2016, 67, 5159–5172.
  66. Sundeep Kumar; Jyoti Kumari; Ruchi Bansal; B. R. Kuri; D. Upadhyay; Ashutosh Srivastava; Bhakti Rana; Manoj K. Yadav; R. S. Sengar; Amit K. Singh; et al.Rakesh Singh Multi-environmental evaluation of wheat genotypes for drought tolerance. Indian Journal of Genetics and Plant Breeding (The) 2017, 78, 26, 10.5958/0975-6906.2018.00004.4.Calderini, D.F.; Reynolds, M.P. Changes in grain weight as a consequence of de-graining treatments at pre-and post-anthesis in synthetic hexaploid lines of wheat (Triticum durum x T. tauschii). Funct. Plant Biol. 2000, 27, 183–191.
  67. Sonia Sheoran; Sarika Jaiswal; Deepender Kumar; Nishu Raghav; Ruchika Sharma; Sushma Pawar; Surinder Paul; M. A. Iquebal; Akanksha Jaiswar; Pradeep Sharma; et al.Rajender SinghC. P. SinghArun GuptaNeeraj KumarU. B. AngadiAnil RaiDinesh KumarRatan Tiwari Uncovering Genomic Regions Associated With 36 Agro-Morphological Traits in Indian Spring Wheat Using GWAS. Frontiers in Plant Science 2019, 10, 1-20, 10.3389/fpls.2019.00527.Chen, J.; Liang, Y.; Hu, X.; Wang, X.; Tan, F.; Zhang, H.; Ren, Z.; Luo, P. Physiological characterization of ‘stay green’wheat cultivars during the grain filling stage under field growing conditions. Acta Physiol. Plant. 2010, 32, 875–882.
  68. Ahmed Sallam; Ahmad M. Alqudah; Mona F. A. Dawood; P. Stephen Baenziger; Andreas Börner; Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research. International Journal of Molecular Sciences 2019, 20, 3137, 10.3390/ijms20133137.Christopher, J.T.; Manschadi, A.M.; Hammer, G.L.; Borrell, A.K. Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Aust. J. Agric. Res. 2008, 59, 354–364.
  69. John T. Christopher; Mandy J. Christopher; Andrew K. Borrell; Susan Fletcher; Karine Chenu; Stay-green traits to improve wheat adaptation in well-watered and water-limited environments. Journal of Experimental Botany 2016, 67, 5159-5172, 10.1093/jxb/erw276.Babar, M.A.; Reynolds, M.P.; Van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Sci. 2006, 46, 1046–1057.
  70. Daniel F. Calderini; Matthew P. Reynolds; Changes in grain weight as a consequence of de-graining treatments at pre- and post-anthesis in synthetic hexaploid lines of wheat (Triticum durum x T. tauschii). Functional Plant Biology 2000, 27, 183-191, 10.1071/pp99066.Lopes, M.S.; Reynolds, M.P. Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Funct. Plant Biol. 2010, 37, 147–156.
  71. Junbo Chen; Yun Liang; Xueyun Hu; Xianxiang Wang; Feiquan Tan; Huaiqiong Zhang; Zhenglong Ren; Peigao Luo; Physiological characterization of ‘stay green’ wheat cultivars during the grain filling stage under field growing conditions. Acta Physiologiae Plantarum 2010, 32, 875-882, 10.1007/s11738-010-0475-0.Marcińska, I.; Czyczyło-Mysza, I.; Skrzypek, E.; Filek, M.; Grzesiak, S.; Grzesiak, M.T.; Janowiak, F.; Hura, T.; Dziurka, M.; Dziurka, K.; et al. Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiol. Plant. 2013, 35, 451–461.
  72. J. T. Christopher; A. M. Manschadi; Graeme Hammer; A. K. Borrell; Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Australian Journal of Agricultural Research 2008, 59, 354-364, 10.1071/ar07193.Lawlor, D.W.; Cornic, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002, 25, 275–294.
  73. M. A. Babar; M. P. Reynolds; M. Van Ginkel; A. R. Klatt; William Raun; M. L. Stone; Spectral Reflectance to Estimate Genetic Variation for In-Season Biomass, Leaf Chlorophyll, and Canopy Temperature in Wheat. Crop Science 2006, 46, 1046-1057, 10.2135/cropsci2005.0211.Li, M.; Liu, Y.; Ma, J.; Zhang, P.; Wang, C.; Su, J.; Yang, D. Genetic dissection of stem WSC accumulation and remobilization in wheat (Triticum aestivum L.) under terminal drought stress. BMC Genet. 2020, 21, 50.
  74. Marta S. Lopes; Matthew Paul Reynolds; Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology 2010, 37, 147-156, 10.1071/fp09121.Javadi, T.; Arzani, K.; Ebrahimzadeh, H. Study of proline, soluble sugar, and chlorophyll a and b changes in nine Asian and one European pear cultivar under drought stress. In Proceedings of the XXVII International Horticultural Congress-IHC2006: International Symposium on Asian Plants with Unique Horticultural, Seoul, Korea, 30 June 2008; Volume 769, pp. 241–246.
  75. Izabela Marcińska; Ilona Czyczyło-Mysza; Edyta Skrzypek; Maria Filek; Stanisław Grzesiak; Maciej T. Grzesiak; Franciszek Janowiak; Tomasz Hura; Michał Dziurka; Kinga Dziurka; et al.Agata NowakowskaSteve A. Quarrie Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiologiae Plantarum 2012, 35, 451-461, 10.1007/s11738-012-1088-6.Borrill, P.; Fahy, B.; Smith, A.M.; Uauy, C. Wheat grain filling is limited by grain filling capacity rather than the duration of flag leaf photosynthesis: A case study us-ing NAM RNAi plants. PLoS ONE 2015, 10, e0134947.
  76. D. W. Lawlor; G. Cornic; Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment 2002, 25, 275-294, 10.1046/j.0016-8025.2001.00814.x.Hassan, N.M.; El-Bastawisy, Z.M.; El-Sayed, A.K.; Ebeed, H.T.; Alla, M.M.N. Roles of dehydrin genes in wheat tolerance to drought stress. J. Adv. Res. 2015, 6, 179–188.
  77. Mengfei Li; Yuan Liu; Jingfu Ma; Peipei Zhang; Caixiang Wang; Junji Su; Delong Yang; Genetic dissection of stem WSC accumulation and remobilization in wheat (Triticum aestivum L.) under terminal drought stress. BMC Genetics 2020, 21, 1-14, 10.1186/s12863-020-00855-1.Islam, M.; Begum, M.C.; Kabir, A.H.; Alam, M.F. Molecular and biochemical mechanisms associated with differential responses to drought tolerance in wheat (Triticum aestivum L.). J. Plant Interact. 2015, 10, 195–201.
  78. Javadi, T.; Arzani, K.; Ebrahimzadeh, H. Study of proline, soluble sugar, and chlorophyll a and b changes in nine Asian and one European pear cultivar under drought stress. In Proceedings of the XXVII International Horticultural Congress-IHC2006: International Symposium on Asian Plants with Unique Horticultural, Seoul, Korea, 30 June 2008; Volume 769, pp. 241–246.Mathew, I.; Shimelis, H.; Mwadzingeni, L.; Zengeni, R.; Mutema, M.; Chaplot, V. Variance components and heritability of traits related to root: Shoot biomass allocation and drought tolerance in wheat. Euphytica 2018, 214, 225.
  79. Philippa Borrill; Brendan Fahy; Alison M. Smith; Cristobal Uauy; Wheat Grain Filling Is Limited by Grain Filling Capacity rather than the Duration of Flag Leaf Photosynthesis: A Case Study Using NAM RNAi Plants. PLoS ONE 2015, 10, e0134947, 10.1371/journal.pone.0134947.Ober, E.S.; Alahmad, S.; Cockram, J.; Forestan, C.; Hickey, L.T.; Kant, J.; Maccaferri, M.; Marr, E.; Milner, M.; Pinto, F.; et al. Wheat root systems as a breeding target for climate resilience. Theor. Appl. Genet. 2021, 134, 1645–1662.
  80. Nemat Hassan; Zeinab M. El-Bastawisy; Ahamed K. El-Sayed; Heba T. Ebeed; Mamdouh Nemat Alla; Roles of dehydrin genes in wheat tolerance to drought stress. Journal of Advanced Research 2013, 6, 179-188, 10.1016/j.jare.2013.11.004.Wasson, A.P.; Richards, R.A.; Chatrath, R.; Misra, S.C.; Prasad, S.S.; Rebetzke, G.J.; Kirkegaard, J.A.; Christopher, J.; Watt, M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot. 2012, 63, 3485–3498.
  81. Monirul Islam; Most Champa Begum; Ahmad Humayan Kabir; Mohammad Firoz Alam; Molecular and biochemical mechanisms associated with differential responses to drought tolerance in wheat (Triticum aestivumL.). Journal of Plant Interactions 2015, 10, 195-201, 10.1080/17429145.2015.1064174.Peng, B.; Liu, X.; Dong, X.; Xue, Q.; Neely, C.B.; Marek, T.; Ibrahim, A.M.; Zhang, G.; Leskovar, D.I.; Rudd, J.C. Root morphological traits of winter wheat under contrasting environments. J. Agron. Crop Sci. 2019, 205, 571–585.
  82. I. Mathew; H. Shimelis; L. Mwadzingeni; R. Zengeni; M. Mutema; V. Chaplot; Variance components and heritability of traits related to root: shoot biomass allocation and drought tolerance in wheat. Euphytica 2018, 214, 225, 10.1007/s10681-018-2302-4.Meister, R.; Rajani, M.S.; Ruzicka, D.; Schachtman, D.P. Challenges of modifying root traits in crops for agriculture. Trends Plant Sci. 2014, 19, 779–788.
  83. Eric S. Ober; Samir Alahmad; James Cockram; Cristian Forestan; Lee T. Hickey; Josefine Kant; Marco Maccaferri; Emily Marr; Matthew Milner; Francisco Pinto; et al.Charlotte RamblaMatthew ReynoldsSilvio SalviGiuseppe SciaraRod J. SnowdonPauline ThomelinRoberto TuberosaCristobal UauyKai P. Voss-FelsEmma WallingtonMichelle Watt Wheat root systems as a breeding target for climate resilience. Theoretical and Applied Genetics 2021, 134, 1-18, 10.1007/s00122-021-03819-w.Faye, A.; Sine, B.; Chopart, J.L.; Grondin, A.; Lucas, M.; Diedhiou, A.G.; Gantet, P.; Cournac, L.; Min, D.; Audebert, A.; et al. Development of a model estimating root length density from root impacts on a soil profile in pearl millet (Pennisetum glaucum (L.) R. Br). Application to measure root system response to water stress in field conditions. PLoS ONE 2019, 14, e0214182.
  84. A. P. Wasson; R. A. Richards; R. Chatrath; S. C. Misra; S. V. S. Prasad; G. J. Rebetzke; J. A. Kirkegaard; J. Christopher; M. Watt; Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany 2012, 63, 3485-3498, 10.1093/jxb/ers111.Eissenstat, D.M.; Kucharski, J.M.; Zadworny, M.; Adams, T.S.; Koide, R.T. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytol. 2015, 208, 114–124.
  85. Bin Peng; Xiuwei Liu; Xuejun Dong; Qingwu Xue; Clark B. Neely; Thomas Marek; Amir M. H. Ibrahim; Guorong Zhang; Daniel I. Leskovar; Jackie C. Rudd; et al. Root morphological traits of winter wheat under contrasting environments. Journal of Agronomy and Crop Science 2019, 205, 571-585, 10.1111/jac.12360.El-Hassouni, K.; Alahmad, S.; Belkadi, B.; Filali-Maltouf, A.; Hickey, L.T.; Bassi, F.M. Root system architecture and its association with yield under different water regimes in durum wheat. Crop Sci. 2018, 58, 2331–2346.
  86. Robert Meister; M.S. Rajani; Daniel Ruzicka; Daniel Schachtman; Challenges of modifying root traits in crops for agriculture. Trends in Plant Science 2014, 19, 779-788, 10.1016/j.tplants.2014.08.005.Kamal, N.M.; Gorafi, Y.S.A.; Abdelrahman, M.; Abdellatef, E.; Tsujimoto, H. Stay-green trait: A prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. Int. J. Mol. Sci. 2019, 20, 5837.
  87. Peter Ryser; Liina Eek; Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources. American Journal of Botany 2000, 87, 402-411, 10.2307/2656636.Schachtman, D.P.; Goodger, J.Q. Chemical root to shoot signaling under drought. Trends Plant Sci. 2008, 13, 281–287.
  88. Awa Faye; Bassirou Sine; Jean-Louis Chopart; Alexandre Grondin; Mikael Lucas; Abdala Gamby Diedhiou; Pascal Gantet; Laurent Cournac; Doohong Min; Alain Audebert; et al.Aboubacry KaneLaurent Laplaze Development of a model estimating root length density from root impacts on a soil profile in pearl millet (Pennisetum glaucum (L.) R. Br). Application to measure root system response to water stress in field conditions. PLOS ONE 2019, 14, e0214182, 10.1371/journal.pone.0214182.Bengough, A.G.; McKenzie, B.M.; Hallett, P.D.; Valentine, T.A. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 2011, 62, 59–68.
  89. Grégoire T. Freschet; Oscar J. Valverde‐Barrantes; Caroline M. Tucker; Joseph M. Craine; M. Luke McCormack; Cyrille Violle; Florian Fort; Christopher Blackwood; Katherine R. Urban‐Mead; Colleen M. Iversen; et al.Anne BonisLouise ComasJohannes H. C. CornelissenMing DongDali GuoSarah E. HobbieRobert J. HoldawaySteven KembelNaoki MakitaVladimir G. OnipchenkoCatherine Picon‐CochardPeter ReichEnrique G. de la RivaStuart SmithNadejda A. SoudzilovskaiaMark G. TjoelkerDavid A. WardleCatherine Roumet Climate, soil and plant functional types as drivers of global fine‐root trait variation. Journal of Ecology 2017, 105, 1182-1196, 10.1111/1365-2745.12769.Hunt, J.R.; Lilley, J.M.; Trevaskis, B.; Flohr, B.M.; Peake, A.; Fletcher, A.; Zwart, A.B.; Gobbett, D.; Kirkegaard, J.A. Early sowing systems can boost Australian wheat yields despite recent climate change. Nat. Clim. Chang. 2019, 9, 244–247.
  90. David M. Eissenstat; Joshua M. Kucharski; Marcin Zadworny; Thomas S. Adams; Roger Koide; Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist 2015, 208, 114-124, 10.1111/nph.13451.Gao, S.Q.; Chen, M.; Xu, Z.S.; Zhao, C.P.; Li, L.; Xu, H.J.; Tang, Y.M.; Zhao, X.; Ma, Y.Z. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol. Biol. 2011, 75, 537–553.
  91. Oscar J. Valverde‐Barrantes; Kurt A. Smemo; Christopher Blackwood; Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology 2014, 29, 796-807, 10.1111/1365-2435.12384.Fletcher, A.; Chenu, K. Change in biomass partitioning and transpiration efficiency in Australian wheat varieties over the last decades. In Proceedings of the 17th Australian Agronomy Conference, Hobart, Australia, 21–24 September 2015; Volume 4.
  92. K. El Hassouni; S. Alahmad; B. Belkadi; A. Filali-Maltouf; L. T. Hickey; F. M. Bassi; Root System Architecture and Its Association with Yield under Different Water Regimes in Durum Wheat. Crop Science 2018, 58, 2331-2346, 10.2135/cropsci2018.01.0076.Fletcher, A.; Chenu, K. Recent Improvements in Biomass Partitioning and Transpiration Efficiency of Modern Australian Wheat Varieties–Any Opportunity for the Future? 2016. Available online: https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2016/03/recent-improvements-in-biomass-partitioning-and-transpiration-efficiency-of-wheat (accessed on 13 February 2022).
  93. Nasrein Mohamed Kamal; Yasir Serag Alnor Gorafi; Mostafa Abdelrahman; Eltayb Abdellatef; Hisashi Tsujimoto; Stay-Green Trait: A Prospective Approach for Yield Potential, and Drought and Heat Stress Adaptation in Globally Important Cereals. International Journal of Molecular Sciences 2019, 20, 5837, 10.3390/ijms20235837.Kirkegaard, J.A.; Lilley, J.M.; Howe, G.N.; Graham, J.M. Impact of subsoil water use on wheat yield. Aust. J. Agric. Res. 2007, 58, 303–315.
  94. Daniel P. Schachtman; Jason Goodger; Chemical root to shoot signaling under drought. Trends in Plant Science 2008, 13, 281-287, 10.1016/j.tplants.2008.04.003.Deng, W.; Casao, M.C.; Wang, P.; Sato, K.; Hayes, P.M.; Finnegan, E.J.; Trevaskis, B. Direct links between the vernalization response and other key traits of cereal crops. Nat. Commun. 2015, 6, 5882.
  95. A. Glyn Bengough; B. M. McKenzie; P. D. Hallett; T. A. Valentine; Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany 2011, 62, 59-68, 10.1093/jxb/erq350.Voss-Fels, K.P.; Robinson, H.; Mudge, S.R.; Richard, C.; Newman, S.; Wittkop, B.; Stahl, A.; Friedt, W.; Frisch, M.; Gabur, I.; et al. VERNALIZATION1 modulates root system architecture in wheat and barley. Mol. Plant 2018, 11, 226–229.
  96. James R. Hunt; Julianne M. Lilley; Ben Trevaskis; Bonnie Flohr; Allan Peake; Andrew Fletcher; Alexander B. Zwart; David Gobbett; John Kirkegaard; Early sowing systems can boost Australian wheat yields despite recent climate change. Nature Climate Change 2019, 9, 244-247, 10.1038/s41558-019-0417-9.Ghimire, B. In Situ Imaging of Root System Architecture to Improve Drought Tolerance and Yield in Spring Wheat (Triticum aestivum L.). Doctoral dissertation, Washington State University: Vancouver, WA, USA, 2017; 177p.
  97. Shi-Qing Gaoming; Ming Chen; Zhao-Shi Xu; Chang-Ping Zhao; Liancheng Li; Hui-Jun Xu; Yi-Miao Tang; Xin Zhao; You-Zhi Ma; The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Molecular Biology 2011, 75, 537-553, 10.1007/s11103-011-9738-4.Tahmasebi, S.; Heidari, B.; Pakniyat, H.; Dadkhodaie, A. Consequences of 1BL/1RS translocation on agronomic and physiological traits in wheat. Cereal Res. Commun. 2015, 43, 554–566.
  98. J. A. Kirkegaard; Julianne Lilley; G. N. Howe; J. M. Graham; Impact of subsoil water use on wheat yield. Australian Journal of Agricultural Research 2007, 58, 303-315, 10.1071/ar06285.Breseghello, F.; Coelho, A.S.G. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J. Agric. Food Chem. 2013, 61, 8277–8286.
  99. Weiwei Deng; M. Cristina Casao; Penghao Wang; Kazuhiro Sato; Patrick M. Hayes; Elizabeth Jean Finnegan; Ben Trevaskis; Direct links between the vernalization response and other key traits of cereal crops. Nature Communications 2015, 6, 5882, 10.1038/ncomms6882.Xynias, I.N.; Mylonas, I.; Korpetis, E.G.; Ninou, E.; Tsaballa, A.; Avdikos, I.D.; Mavromatis, A.G. Durum wheat breeding in the Mediterranean region: Current status and future prospects. Agronomy 2020, 10, 432.
  100. Kai Peter Voss-Fels; Hannah Robinson; Stephen R. Mudge; Cecile Richard; Saul Newman; Benjamin Wittkop; Andreas Stahl; Wolfgang Friedt; Matthias Frisch; Iulian Gabur; et al.Anika Miller-CooperBradley CampbellAlison KellyGlen FoxJack ChristopherMandy ChristopherKarine ChenuJerome FranckowiakEmma MaceAndrew K. BorrellHoward EaglesDavid JordanJose BotellaGraeme HammerIan D. GodwinBen TrevaskisRod J. SnowdonLee T. Hickey VERNALIZATION1 Modulates Root System Architecture in Wheat and Barley. Molecular Plant 2017, 11, 226-229, 10.1016/j.molp.2017.10.005.Acquaah, G. Principles of Plant Genetics and Breeding, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2012; 740p.
  101. Ghimire, B. In Situ Imaging of Root System Architecture to Improve Drought Tolerance and Yield in Spring Wheat (Triticum aestivum L.). Doctoral dissertation, Washington State University: Vancouver, WA, USA, 2017; 177.Al-Azab, K.F. Improving Wheat for Drought Tolerance by Using Hybridization and Mutation Breeding Procedures. Doctoral Dissertation, Faculty of Agriculture Cairo University, Giza, Egypt, 2013; 266p.
  102. S Tahmasebi; B Heidari; H Pakniyat; Consequences of 1BL/1RS translocation on agronomic and physiological traits in wheat. Cereal Res. Cereal Research Communications 2015, 43, 554-566.Farag, H.I.A. Efficiency of three methods of selection in wheat breeding under saline stress conditions. J. Plant Breed. 2013, 17, 85–95.
  103. Flavio Breseghello; Alexandre Siqueira Guedes Coelho; Traditional and Modern Plant Breeding Methods with Examples in Rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry 2013, 61, 8277-8286, 10.1021/jf305531j.Acquaah, G. Principles of Plant Genetics and Breeding, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; 584p.
  104. Ioannis N. Xynias; Ioannis Mylonas; Evangelos G. Korpetis; Elissavet Ninou; Aphrodite Tsaballa; Ilias D. Avdikos; Athanasios G. Mavromatis; Durum Wheat Breeding in the Mediterranean Region: Current Status and Future Prospects. Agronomy 2020, 10, 432, 10.3390/agronomy10030432.Allard, R.W. “Plant Breeding”. Encyclopedia Britannica. 2019. Available online: https://www.britannica.com/science/plant-breeding (accessed on 3 March 2022).
  105. G Acquaah. Principles of plant genetics and breeding, 2nd ed; Wiley-Blackwell: Oxford, UK, 2012; pp. 740.Mwadzingeni, L.; Figlan, S.; Shimelis, H.; Mondal, S.; Tsilo, T. Genetic resources and breeding methodologies for improving drought tolerance in wheat. J. Crop Improv. 2017, 31, 648–672.
  106. K.F Al-Azab. Improving Wheat for Drought Tolerance by Using Hybridization and Mutation Breeding Procedures. Doctoral Dissertation, Faculty of Agriculture Cairo University, Giza, Egypt, 2013; 266p.Distelfeld, A.; Uauy, C.; Fahima, T.; Dubcovsky, J. Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol. 2006, 169, 753–763.
  107. H. I. A. Farag; Efficiency of Three Methods of Selection in Wheat Breeding under Saline Stress Conditions. Egyptian Journal of Plant Breeding 2013, 17, 85-95, 10.12816/0003992.Khan, M.A.; Iqbal, M.; Jameel, M.; Nazeer, W.; Shakir, S.; Aslam, M.T.; Iqbal, B. Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.). Afr. J. Biotechnol. 2011, 10, 11340–11344.
  108. G Acquaah. Principles of plant genetics and breeding, 1st ed; Jogn Wiley and Sons: Hoboken, NJ, USA, 2009; pp. 584.Collard, B.C.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 557–572.
  109. “Plant Breeding”. Encyclopedia Britannica . Britannica.com. Retrieved 2022-5-29Edae, E.A.; Byrne, P.F.; Haley, S.D.; Lopes, M.S.; Reynolds, M.P. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor. Appl. Genet. 2014, 127, 791–807.
  110. Assaf Distelfeld; Cristobal Uauy; Tzion Fahima; Jorge Dubcovsky; Physical map of the wheat high‐grain protein content geneGpc‐B1and development of a high‐throughput molecular marker. New Phytologist 2005, 169, 753-763, 10.1111/j.1469-8137.2005.01627.x.Huseynova, I.M.; Rustamova, S.M. Screening for drought stress tolerance in wheat genotypes using molecular markers. Proc. ANAS 2010, 65, 132–139.
  111. M.A Khan; M Iqbal; M Jameel; W Nazeer; S Shakir; MT Aslam; B Iqbal; Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.). African Journal of Biotechnology 2011, 10, 11340-11344.Tessema, B.B.; Liu, H.; Sørensen, A.C.; Andersen, J.R.; Jensen, J. Strategies using genomic selection to increase genetic gain in breeding programs for wheat. Front. Genet. 2020, 11, 1–12.
  112. Bertrand Collard; David J Mackill; Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 2007, 363, 557-572, 10.1098/rstb.2007.2170.Lozada, D.N.; Ward, B.P.; Carter, A.H. Gains through selection for grain yield in a winter wheat breeding program. PLoS ONE 2020, 15, e0221603.
  113. Erena A. Edae; Patrick F. Byrne; Scott D. Haley; Marta S. Lopes; Matthew P. Reynolds; Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theoretical and Applied Genetics 2014, 127, 791-807, 10.1007/s00122-013-2257-8.Tadesse, W.; Sanchez-Garcia, M.; Assefa, S.G.; Amri, A.; Bishaw, Z.; Ogbonnaya, F.C.; Baum, M. Genetic gains in wheat breeding and its role in feeding the world. Crop Breed. Genet. Genome 2019, 1, 1–28.
  114. I.M Huseynova; S.M Rustamova; Screening for drought stress tolerance in wheat genotypes using molecular markers. Proc. ANAS 2010, 65, 132-139.Tsai, H.Y.; Janss, L.L.; Andersen, J.R.; Orabi, J.; Jensen, J.D.; Jahoor, A.; Jensen, J. Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Sci. Rep. 2020, 10, 3347.
  115. Biructawit Bekele Tessema; Huiming Liu; Anders Christian Sørensen; Jeppe Reitan Andersen; Just Jensen; Strategies Using Genomic Selection to Increase Genetic Gain in Breeding Programs for Wheat. Frontiers in Genetics 2020, 11, 1-12, 10.3389/fgene.2020.578123.Gill, B.S.; Appels, R.; Botha-Oberholster, A.M.; Buell, C.R.; Bennetzen, J.L.; Chalhoub, B.; Chumley, F.; Dvorák, J.; Iwanaga, M.; Keller, B.; et al. A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 2004, 168, 1087–1096.
  116. Dennis N. Lozada; Arron H. Carter; Gains through selection for grain yield in a winter wheat breeding program. PLos ONE 2020, 15, e0221603, 10.1101/734194.Sticklen, M. Transgenic, cisgenic, intragenic and subgenic crops. Adv. Crop Sci. Technol. 2015, 3, e123.
  117. W Tadesse; M Sanchez-Garcia; S.G Assefa; A Amri; Z Bishaw; F.C Ogbonnaya; M Baum; Genetic Gains in Wheat Breeding and Its Role in Feeding the World. Crop Breeding, Genetics and Genomics 2019, 1, 1-28, 10.20900/cbgg20190005.Puchta, H. Using CRISPR/Cas in three dimensions: Towards synthetic plant genomes, transcriptomes and epigenomes. Plant J. 2016, 87, 5–15.
  118. Hsin-Yuan Tsai; Luc L. Janss; Jeppe R. Andersen; Jihad Orabi; Jens D. Jensen; Ahmed Jahoor; Just Jensen; Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Scientific Reports 2020, 10, 1-15, 10.1038/s41598-020-60203-2.Carroll, D. Focus: Genome editing: Genome editing: Past, present and future. Yale J. Biol. Med. 2017, 90, 653–659.
  119. Gill, B.S.; Appels, R.; Botha-Oberholster, A.M.; Buell, C.R.; Bennetzen, J.L.; Chalhoub, B.; Chumley, F.; Dvorák, J.; Iwanaga, M.; Keller, B.; et al. A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 2004, 168, 1087–1096.Khan, M.Z.; Zaidi, S.S.E.A.; Amin, I.; Mansoor, S. A CRISPR way for fast-forward crop domestication. Trends Plant Sci. 2019, 24, 293–296.
  120. Mariam B Sticklen; Transgenic, Cisgenic, Intragenic and Subgenic Crops. Advances in Crop Science and Technology 2015, 3, e123, 10.4172/2329-8863.1000e123.Hansen, M.K. Genetic Engineering Is Not an Extension of Conventional Plant Breeding; How Genetic Engineering Differs from Conventional Breeding, Hybridization, Wide Crosses and Horizontal Gene Transfer; Consumer Policy Institute/Consumers Union: New York, NY, USA, 2000; pp. 1–15.
  121. Holger Puchta; Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. The Plant Journal 2016, 87, 5-15, 10.1111/tpj.13100.Carroll, D. Genome engineering with zinc-finger nucleases. Genetics 2011, 188, 773–782.
  122. D Carroll; Focus: Genome editing: Genome editing: Past, present and future. Yale Journal of Biology and Medicine 2017, 90, 653.Gaj, T.; Gersbach, C.A.; Barba, I.I.I.; Carlos, F. ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405.
  123. Muhammad Zuhaib Khan; Syed Shan E Ali Zaidi; Imran Amin; Shahid Mansoor; A CRISPR Way for Fast-Forward Crop Domestication. Trends in Plant Science 2019, 24, 293-296, 10.1016/j.tplants.2019.01.011.Weinthal, D.M.; Gürel, F. Plant genome editing and its applications in cereals. In Genetic Engineering: An Insight into the Strategies and Applications; IntechOpen: London, UK, 2016; pp. 63–73.
  124. Hansen, M.K. Genetic Engineering Is Not an Extension of Conventional Plant Breeding; How Genetic Engineering Differs from Conventional Breeding, Hybridization, Wide Crosses and Horizontal Gene Transfer; Consumer Policy Institute/Consumers Union: New York, NY,USA, 2000; pp. 1–15.Belhaj, K.; Chaparro-Garcia, A.; Kamoun, S.; Nekrasov, V. Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 2013, 9, 39.
  125. Dana Carroll; Genome Engineering With Zinc-Finger Nucleases. Genetics 2011, 188, 773-782, 10.1534/genetics.111.131433.Mali, P.; Aach, J.; Stranges, P.B.; Esvelt, K.M.; Moosburner, M.; Kosuri, S.; Yang, L.; Church, G.M. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 2013, 31, 833–838.
  126. Thomas Gaj; Charles A. Gersbach; Carlos F. Barbas; ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 2013, 31, 397-405, 10.1016/j.tibtech.2013.04.004.Tsai, S.Q.; Wyvekens, N.; Khayter, C.; Foden, J.A.; Thapar, V.; Reyon, D.; Goodwin, M.J.; Aryee, M.J.; Joung, J.K. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 2014, 32, 569–576.
  127. D.M Weinthal; F Gürel. Plant genome editing and its applications in cereals. In Genetic Engineering: An Insight into the Strategies and Applications; IntechOpen: London, UK, 2016; pp. 63-73.Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; Van Der Oost, J.; Re`gev, A.; et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771.
  128. Khaoula Belhaj; Angela Chaparro-Garcia; Sophien Kamoun; Vladimir Nekrasov; Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 2013, 9, 39-39, 10.1186/1746-4811-9-39.Martignago, D.; Rico-Medina, A.; Blasco-Escámez, D.; Fontanet-Manzaneque, J.B.; Caño-Delgado, A.I. Drought resistance by engineering plant tissue-specific responses. Front. Plant Sci. 2020, 10, 1–19.
  129. Prashant Mali; John Aach; Peter Stranges; Kevin Esvelt; Mark Moosburner; Sriram Kosuri; Luhan Yang; George M. Church; CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 2013, 31, 833-838, 10.1038/nbt.2675.Ashraf, A.; Rehman, O.U.; Muzammil, S.; Léon, J.; Naz, A.A.; Rasool, F.; Ali, G.M.; Zafar, Y.; Khan, M.R. Evolution of Deeper Rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS ONE 2019, 14, e0214145.
  130. Shengdar Q. Tsai; Nicolas Wyvekens; Cyd Khayter; Jennifer A. Foden; Vishal Thapar; Deepak Reyon; Mathew J. Goodwin; Martin J. Aryee; J. Keith Joung; Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology 2014, 32, 569-576, 10.1038/nbt.2908.Guseman, J.M.; Webb, K.; Srinivasan, C.; Dardick, C. DRO 1 influences root system architecture in Arabidopsis and Prunus species. Plant J. 2017, 89, 1093–1105.
  131. Bernd Zetsche; Jonathan Gootenberg; Omar O. Abudayyeh; Ian M. Slaymaker; Kira S. Makarova; Patrick Essletzbichler; Sara E. Volz; Julia Joung; John van der Oost; Aviv Regev; et al.Eugene V. KooninFeng Zhang Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 2015, 163, 759-771, 10.1016/j.cell.2015.09.038.Wei, B.; Jing, R.; Wang, C.; Chen, J.; Mao, X.; Chang, X.; Jia, J. Dreb1 genes in wheat (Triticum aestivum L.): Development of functional markers and gene mapping based on SNPs. Mol. Breed. 2009, 23, 13–22.
  132. Damiano Martignago; Andrés Rico-Medina; David Blasco-Escámez; Juan B. Fontanet-Manzaneque; Ana I. Caño-Delgado; Drought Resistance by Engineering Plant Tissue-Specific Responses. Frontiers in Plant Science 2020, 10, 1-19, 10.3389/fpls.2019.01676.Moon, S.J.; Min, M.K.; Kim, J.; Kim, D.Y.; Yoon, I.S.; Kwon, T.R.; Byun, M.O.; Kim, B.G. Ectopic expression of OsDREB1G, a member of the OsDREB1 subfamily, confers cold stress tolerance in rice. Front. Plant Sci. 2019, 10, 1–11.
  133. Almas Ashraf; Obaid Ur Rehman; Shumaila Muzammil; Jens Léon; Ali Ahmed Naz; Fatima Rasool; Ghulam Muhammad Ali; Yusuf Zafar; Muhammad Ramzan Khan; Evolution of Deeper Rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLOS ONE 2019, 14, e0214145, 10.1371/journal.pone.0214145.Joshi, R.K.; Bharat, S.S.; Mishra, R. Engineering drought tolerance in plants through CRISPR/Cas genome editing. 3 Biotech 2020, 10, 400.
  134. Jessica M. Guseman; Kevin Webb; Chinnathambi Srinivasan; Chris Dardick; DRO 1 influences root system architecture in Arabidopsis and Prunus species. The Plant Journal 2017, 89, 1093-1105, 10.1111/tpj.13470.Badhan, S.; Ball, A.S.; Mantri, N. First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. Int. J. Mol. Sci. 2021, 22, 396.
  135. Bo Wei; Ruilian Jing; Chengshe Wang; Jibao Chen; Xinguo Mao; Xiaoping Chang; Jizeng Jia; Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs. Molecular Breeding 2008, 23, 13-22, 10.1007/s11032-008-9209-z.Meyer, R.S.; Purugganan, M.D. Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 2013, 14, 840–852.
  136. Seok-Jun Moon; Myung Ki Min; Jin-Ae Kim; Dool Yi Kim; In Sun Yoon; Taek Ryun Kwon; Myung Ok Byun; Beom-Gi Kim; Ectopic Expression of OsDREB1G, a Member of the OsDREB1 Subfamily, Confers Cold Stress Tolerance in Rice. Frontiers in Plant Science 2019, 10, 1-11, 10.3389/fpls.2019.00297.Budak, H.; Hussain, B.; Khan, Z.; Ozturk, N.Z.; Ullah, N. From genetics to functional genomics: Improvement in drought signaling and tolerance in wheat. Front. Plant Sci. 2015, 6, 1012.
  137. Raj Kumar Joshi; Suhas Sutar Bharat; Rukmini Mishra; Engineering drought tolerance in plants through CRISPR/Cas genome editing. 3 Biotech 2020, 10, 1-14, 10.1007/s13205-020-02390-3.Roy, S.J.; Tucker, E.J.; Tester, M. Genetic analysis of abiotic stress tolerance in crops. Curr. Opin. Plant Biol. 2011, 14, 232–239.
  138. Sapna Badhan; Andrew S. Ball; Nitin Mantri; First Report of CRISPR/Cas9 Mediated DNA-Free Editing of 4CL and RVE7 Genes in Chickpea Protoplasts. International Journal of Molecular Sciences 2021, 22, 396, 10.3390/ijms22010396.Goel, S.; Signh, K.; Grewal, S.; Nath, M. Impact of ¨omics¨ in improving drought tolerance in wheat. Crit. Rev. Plant Sci. 2020, 39, 222–235.
  139. Rachel S. Meyer; Michael D. Purugganan; Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics 2013, 14, 840-852, 10.1038/nrg3605.Gupta, P.K.; Balyan, H.S.; Gahlaut, V. QTL analysis for drought-tolerance in wheat: Present status and future possibilities. Agronomy 2017, 7, 5.
  140. Yonglu Tang; Garry M. Rosewarne; Chaosu Li; Xiaoli Wu; Wuyun Yang; Chun Wu; Physiological Factors Underpinning Grain Yield Improvements of Synthetic-Derived Wheat in Southwestern China. Crop Science 2015, 55, 98-112, 10.2135/cropsci2014.02.0124.Kulkarni, M.; Soolanayakanahally, R.; Ogawa, S.; Uga, Y.; Selvaraj, M.G.; Kagale, S. Drought response in wheat: Key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Front. Chem. 2017, 5, 106.
  141. Stuart J Roy; Elise J Tucker; Mark Tester; Genetic analysis of abiotic stress tolerance in crops. Current Opinion in Plant Biology 2011, 14, 232-239, 10.1016/j.pbi.2011.03.002.Yang, S.; Vanderbeld, B.; Wan, J.; Huang, Y. Narrowing down the targets: Towards successful genetic engineering of drought-tolerance crops. Mol. Plant 2010, 3, 469–490.
  142. Sonia Goel; Kalpana Singh; Sapna Grewal; Manoj Nath; Impact of “Omics” in Improving Drought Tolerance in Wheat. Critical Reviews in Plant Sciences 2020, 39, 222-235, 10.1080/07352689.2020.1778924.Uga, Y.; Okuno, K.; Yano, M. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J. Exp. Bot. 2011, 62, 2485–2494.
  143. Pushpendra Kumar Gupta; Harindra Singh Balyan; Vijay Gahlaut; QTL Analysis for Drought Tolerance in Wheat: Present Status and Future Possibilities. Agronomy 2017, 7, 5, 10.3390/agronomy7010005.Wang, J.; Wen, W.; Hanif, M.; Xia, X.; Wang, H.; Liu, S.; Liu, J.; Yang, L.; Cao, S.; He, Z. TaELF3-1DL, a homolog of ELF3, is associated with heading date in bread wheat. Mol. Breed. 2016, 36, 161.
  144. Manoj Kulkarni; Raju Soolanayakanahally; Satoshi Ogawa; Yusaku Uga; Michael G. Selvaraj; Sateesh Kagale; Drought Response in Wheat: Key Genes and Regulatory Mechanisms Controlling Root System Architecture and Transpiration Efficiency. Frontiers in Chemistry 2017, 5, 106, 10.3389/fchem.2017.00106.Zhang, J.; Dell, B.; Biddulph, B.; Drake-Brockman, F.; Walker, E.; Khan, N.; Wong, D.; Hayden, M.; Appels, R. Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat. Mol. Breed. 2013, 32, 771–783.
  145. Shujun Yang; Barbara Vanderbeld; Jiangxin Wan; Yafan Huang; Narrowing Down the Targets: Towards Successful Genetic Engineering of Drought-Tolerant Crops. Molecular Plant 2010, 3, 469-490, 10.1093/mp/ssq016.Xue, G.G.; Way, H.H.; Richardson, T.; Drenth, J.; Joyce, P.A.; McIntyre, C.L. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol. Plant 2011, 4, 697–712.
  146. Yusaku Uga; Kazutoshi Okuno; Masahiro Yano; Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany 2011, 62, 2485-2494, 10.1093/jxb/erq429.Cai, H.; Tian, S.; Liu, C.; Dong, H. Identification of a MYB3R gene involved in drought, salt and cold stress in wheat (Triticum aestivum L.). Gene 2011, 485, 14–152.
  147. Jinping Wang; Weie Wen; Mamoona Hanif; Xianchun Xia; Honggang Wang; Shubing Liu; Jindong Liu; Li Yang; Shuanghe Cao; Zhonghu He; et al. TaELF3-1DL, a homolog of ELF3, is associated with heading date in bread wheat. Molecular Breeding 2016, 36, 161, 10.1007/s11032-016-0585-5.Mao, H.; Li, S.; Wang, Z.; Cheng, X.; Li, F.; Mei, F.; Chen, N.; Kang, Z. Regulatory changes in TaSNAC8-6A are associated with drought tolerance in wheat seedlings. Plant Biotechnol. J. 2020, 18, 1078–1092.
  148. Jingjuan Zhang; Bernard Dell; Ben Biddulph; Fiona Drake-Brockman; Esther Walker; Nusrat Khan; Debbie Wong; Matthew Hayden; Rudi Appels; Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat. Molecular Breeding 2013, 32, 771-783, 10.1007/s11032-013-9905-1.Hu, M.J.; Zhang, H.P.; Cao, J.J.; Zhu, X.F.; Wang, S.X.; Jiang, H.; Wu, Z.Y.; Lu, J.; Chang, C.; Sun, G.L.; et al. Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol. Breed. 2016, 36, 25.
  149. Gang-Ping Xue; Heather M. Way; Terese Richardson; Janneke Drenth; Priya A. Joyce; C. Lynne McIntyre; Overexpression of TaNAC69 Leads to Enhanced Transcript Levels of Stress Up-Regulated Genes and Dehydration Tolerance in Bread Wheat. Molecular Plant 2011, 4, 697-712, 10.1093/mp/ssr013.Qin, L.; Zhao, J.; Li, T.; Hou, J.; Zhang, X.; Hao, C. TaGW2, a good reflection of wheat polyploidization and evolution. Front. Plant Sci. 2017, 8, 1–13.
  150. Hongsheng Cai; Shan Tian; Changlai Liu; Hansong Dong; Identification of a MYB3R gene involved in drought, salt and cold stress in wheat (Triticum aestivum L.). Gene 2011, 485, 146-152, 10.1016/j.gene.2011.06.026.Zhang, Y.; Liu, J.; Xia, X.; He, Z. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol. Breed. 2014, 34, 1097–1107.
  151. Ming-Jian Hu; Hai-Ping Zhang; Jia-Jia Cao; Xiao-Feng Zhu; Sheng-Xing Wang; Hao Jiang; Zeng Yun Wu; Jie Lu; Cheng Chang; Gen-Lou Sun; et al.Chuan-Xi Ma Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Molecular Breeding 2016, 36, 1-11, 10.1007/s11032-016-0449-z.Jiang, Q.; Hou, J.; Hao, C.; Wang, L.; Ge, H.; Dong, Y.; Zhang, X. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct. Integr. Genom. 2011, 11, 49–61.
  152. Lin Qin; Junjie Zhao; Tian Li; Jian Hou; Xueyong Zhang; Chenyang Hao; TaGW2, a Good Reflection of Wheat Polyploidization and Evolution. Frontiers in Plant Science 2017, 8, 1-13, 10.3389/fpls.2017.00318.An, Y.Q.; Lin, R.M.; Wang, F.T.; Feng, J.; Xu, Y.F.; Xu, S.C. Molecular cloning of a new wheat calreticulin gene TaCRT1 and expression analysis in plant defense responses and abiotic stress resistance. Genet. Mol. Res. 2011, 10, 3576–3585.
  153. Y Zhang; J Liu; X Xia; Z He; TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol.. Molecular Breeding 2014, 34, 1097-1107.Li, Y.; Zhang, S.; Zhang, N.; Zhang, W.; Li, M.; Liu, B.; Shi, Z. MYB-CC transcription factor, TaMYBsm3, cloned from wheat is involved in drought tolerance. BMC Plant Biol. 2019, 19, 143.
  154. Qiyan Jiang; Jian Hou; Chenyang Hao; Lanfen Wang; Hongmei Ge; Yushen Dong; Xueyong Zhang; The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Functional & Integrative Genomics 2010, 11, 49-61, 10.1007/s10142-010-0188-x.Abou-Elwafa, S.F.; Shehzad, T. Genetic diversity, GWAS and prediction for drought and terminal heat stress tolerance in bread wheat (Triticum aestivum L.). Genet. Resour. Crop Evol. 2021, 68, 711–728.
  155. Y.Q. An; R.M. Lin; F.T. Wang; J. Feng; Y.F. Xu; S.C. Xu; Molecular cloning of a new wheat calreticulin gene TaCRT1 and expression analysis in plant defense responses and abiotic stress resistance. Genetics and Molecular Research 2011, 10, 3576-3585, 10.4238/2011.november.10.1.Gizaw, S.A.; Godoy, J.G.V.; Garland-Campbell, K.; Carter, A.H. Genome-wide association study of yield and component traits in Pacific Northwest winter wheat. Crop Sci. 2018, 58, 2315–2330.
  156. Yaqing Li; Shichang Zhang; Nan Zhang; Wenying Zhang; Mengjun Li; Binhui Liu; Zhanliang Shi; MYB-CC transcription factor, TaMYBsm3, cloned from wheat is involved in drought tolerance. BMC Plant Biology 2019, 19, 1-11, 10.1186/s12870-019-1751-9.Ain, Q.-U.; Rasheed, A.; Anwar, A.; Mahmood, T.; Imtiaz, M.; Mahmood, T.; Xia, X.; He, Z.; Quraishi, U.M. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front. Plant Sci. 2015, 6, 743.
  157. Salah Fatouh Abou-Elwafa; Tariq Shehzad; Genetic diversity, GWAS and prediction for drought and terminal heat stress tolerance in bread wheat (Triticum aestivum L.). Genetic Resources and Crop Evolution 2020, 68, 711-728, 10.1007/s10722-020-01018-y.Shokat, S.; Sehgal, D.; Vikram, P.; Liu, F.; Singh, S. Molecular markers associated with agro-physiological traits under terminal drought conditions in bread wheat. Int. J. Mol. Sci. 2020, 21, 3156.
  158. Shiferaw A. Gizaw; Jayfred Gaham V. Godoy; Kimberly Garland-Campbell; Arron H. Carter; Genome‐Wide Association Study of Yield and Component Traits in Pacific Northwest Winter Wheat. Crop Science 2018, 58, 2315-2330, 10.2135/cropsci2017.12.0740.Rahimi, Y.; Bihamta, M.R.; Taleei, A.; Alipour, H.; Ingvarsson, P.K. Genome-wide association study of agronomic traits in bread wheat reveals novel putative alleles for future breeding programs. BMC Plant Biol. 2019, 19, 541.
  159. Qurat-Ul Ain; Awais Rasheed; Alia Anwar; Tariq Mahmood; Muhammad Imtiaz; Xianchun Xia; Zhonghu He; Umar Masood Quraishi; Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Frontiers in Plant Science 2015, 6, 743, 10.3389/fpls.2015.00743.IWGSC Website. 2018. Available online: http://www.wheatgenome.org (accessed on 19 September 2021).
  160. Sajid Shokat; Deepmala Sehgal; Prashant Vikram; Fulai Liu; Sukhwinder Singh; Molecular Markers Associated with Agro-Physiological Traits under Terminal Drought Conditions in Bread Wheat. International Journal of Molecular Sciences 2020, 21, 3156, 10.3390/ijms21093156.Li, L.; Peng, Z.; Mao, X.; Wang, J.; Chang, X.; Reynolds, M.; Jing, R. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. J. Exp. Bot. 2019, 124, 993–1006.
  161. Yousef Rahimi; Mohammad Reza Bihamta; Alireza Taleei; Hadi Alipour; Pär Ingvarsson; Genome-wide association study of agronomic traits in bread wheat reveals novel putative alleles for future breeding programs. BMC Plant Biology 2019, 19, 1-19, 10.1186/s12870-019-2165-4.Mwadzingeni, L.; Shimelis, H.; Dube, E.; Laing, M.D.; Tsilo, T.J. Breeding wheat for drought tolerance: Progress and technologies. J. Integr. Agric. 2016, 15, 935–943.
  162. IWGSC Website. 2018. Available online: http://www.wheatgenome.org (accessed on 19 September 2021).Liu, X.; Li, R.; Chnag, X.; Jing, R. Mapping QTLs for seedling root traits in a double haploid wheat population under different water regimes. Euphytica 2013, 189, 51–66.
  163. Long Li; Zhi Peng; Xinguo Mao; Jingyi Wang; Xiaoping Chang; Matthew Paul Reynolds; Ruilian Jing; Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Annals of Botany 2019, 124, 993-1006, 10.1093/aob/mcz041.Kabir, M.R.; Liu, G.; Guan, P.; Wang, F.; Khan, A.A.; Ni, Z.; Yao, Y.; Hu, Z.; Xin, M.; Peng, H.; et al. Mapping QTLs associated with root traits using two different populations in wheat (Triticum aestivum L.). Euphytica 2015, 206, 175–190.
  164. Learnmore Mwadzingeni; Hussein Shimelis; Ernest Dube; Mark Laing; Toi J Tsilo; Breeding wheat for drought tolerance: Progress and technologies. Journal of Integrative Agriculture 2016, 15, 935-943, 10.1016/s2095-3119(15)61102-9.Liu, R.X.; Wu, F.K.; Xin, Y.I.; Yu, L.N.; Wang, Z.Q.; Liu, S.H.; Mei, D.E.N.G.; Jian, M.A.; Wei, Y.M.; Zheng, Y.L.; et al. Quantitative trait loci analysis for root traits in synthetic hexaploid wheat under drought stress conditions. J. Integr. Agric. 2020, 19, 1947–1960.
  165. Xiulin Liu; Runzhi Li; Xiaoping Chang; Ruilian Jing; Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica 2012, 189, 51-66, 10.1007/s10681-012-0690-4.Yu, J.B.; Bai, G.H. Mapping quantitative trait loci for long coleoptile in Chinese wheat landrace Wangshuibai. Crop Sci. 2010, 50, 43–50.
  166. Muhammad Rezaul Kabir; Gang Liu; Panfeng Guan; Fei Wang; Abul Awlad Khan; Zhongfu Ni; Yingyin Yao; Zhaorong Hu; Mingming Xin; Huiru Peng; et al.Qixin Sun Mapping QTLs associated with root traits using two different populations in wheat (Triticum aestivum L.). Euphytica 2015, 206, 175-190, 10.1007/s10681-015-1495-z.Singh, K.; Shukla, S.; Kadam, S.; Semwal, V.K.; Singh, N.K.; Khanna-Chopra, R. Genomic regions and underlying candidate genes associated with coleoptile length under deep sowing conditions in a wheat RIL population. J. Plant Biochem. Biotechnol. 2015, 24, 324–330.
  167. Rui-Xuan Liu; Fang-Kun Wu; Xin Yi; Yu Lin; Zhi-Qiang Wang; Shi-Hang Liu; Mei Deng; Jian Ma; Yu-Ming Wei; You-Liang Zheng; et al.Ya-Xi Liu Quantitative trait loci analysis for root traits in synthetic hexaploid wheat under drought stress conditions. Journal of Integrative Agriculture 2020, 19, 1947-1960, 10.1016/s2095-3119(19)62825-x.
  168. Jian-Bin Yu; Gui-Hua Bai; Mapping Quantitative Trait Loci for Long Coleoptile in Chinese Wheat Landrace Wangshuibai. Crop Science 2010, 50, 43-50, 10.2135/cropsci2009.02.0065.
  169. Kalpana Singh; Sanyukta Shukla; Suhas Kadam; Vimal Kumar Semwal; Nagendra Kumar Singh; Renu Khanna-Chopra; Genomic regions and underlying candidate genes associated with coleoptile length under deep sowing conditions in a wheat RIL population. Journal of Plant Biochemistry and Biotechnology 2014, 24, 324-330, 10.1007/s13562-014-0277-3.
  170. Kalpana Singh; Sanyukta Shukla; Suhas Kadam; Vimal Kumar Semwal; Nagendra Kumar Singh; Renu Khanna-Chopra; Genomic regions and underlying candidate genes associated with coleoptile length under deep sowing conditions in a wheat RIL population. Journal of Plant Biochemistry and Biotechnology 2014, 24, 324-330, 10.1007/s13562-014-0277-3.
More
ScholarVision Creations