The Causal Factors of Elevator Maintenance: Comparison
Please note this is a comparison between Version 1 by Hassan Alassafi and Version 2 by Dean Liu.

Maintenance is crucial for healthcare facilities in terms of both the continuity of operations and annual costs. Many maintenance issues are associated with design decisions that pave the way for added costs in later lifecycle stages. Some systems, e.g., elevators, are sources of maintenance costs; additionally, elevator outages are significant issues for multi-floor healthcare facilities. Considering the maintainability of elevators from the early design stages helps to highlight potential maintenance issues in later stages. This also assists in mitigating costs by avoiding design decisions that result in future maintenance costs.  This research uses the expertise of facility managers who have experience with maintenance issues resulting from design decisions. A list of 35 elevator maintenance issues caused by design flaws is presented in this paper, based on the literature and semi-structured

interviews with a representative sample of six healthcare facility management experts. Then, a questionnaire using convenience sampling was conducted with facility management professionals to evaluate and rank the maintenance issues. While 60 professionals responded, only 30 attempted the four-parameter evaluation of all listed maintenance issues. The results of the questionnaire determined elevator car jams, sudden stops, and working space conditions to be the most critical issues faced by facility managers in healthcare facilities. The output of this study can help designers of new healthcare facilities to avoid decisions that result in unwarranted maintenance issues with costly impacts.

  • facility management
  • construction management
  • maintainability
  • elevators maintenance
  • FMECA
  • design defects
  • healthcare facilities
  • elevator design

1. Introduction

Maintenance plays a vital role in all hospital services and refers to the complicated variety of systems, with various levels of technology, used in hospitals; the potential consequences of the failure of these systems necessitate high availability and functional safety measures [1]. The demand for healthcare services and hospitals is increasing globally, attributable to population growth, population aging, and consumer behavior [2]. Maintenance is essential to hospital performance [3][4][5][3,4,5]. Furthermore, design-stage problems are considered a more significant source of facility maintenance issues compared to problems in the construction stage [6]. When facility maintenance is not considered sufficiently at the design stage, unforeseen maintenance issues may add a cost parameter to the facility management stage. During the design stage, decisions are usually focused on the initial costs, and this does not reflect the significant impact of these decisions on the later stages [7].
As mentioned, these concerns signify a cost component among buildings’ lifecycle costs that can be avoided if maintenance is contemplated sufficiently in the design stage. However, not many owners consider this a priority issue [8][9][8,9]. Factors such as cost, longevity, and performance have long been the focus during the design stage, while other factors, including maintainability, have been underrated [10][11][10,11]. Al-Hammad et al. cited faulty designs as the reason for maintenance cost escalations [12]. Hence, maintenance problems and faulty designs are related to the level of maintenance input during the design stage. Building maintainability is determined by design selections that address or overlook maintenance concerns at the early stage of design and construction [9]. When maintenance concerns are addressed sufficiently at the design stage, the maintainability of the design is improved, which results in future maintenance cost savings. Feedback from facility management professionals on design-caused maintenance issues is a suitable approach to achieve this maintainability improvement. Designing for building maintainability includes the processes performed to reduce defects and maintenance needs throughout a facility’s lifecycle [13]. This issue focuses on the need for a maintainability assessment during the design stages to alleviate the impact of design decisions and predict future maintenance costs. This helps to reduce maintenance by enhancing the maintainability of the design. Therefore, an overall lifecycle cost reduction can be achieved.
Healthcare facilities contain several building service systems that are essential for the continuity of serving their purpose of providing healthcare to the public. The cost component and the annual growth in costs may cause serious concern regarding the continuity of healthcare facilities. In Saudi Arabia, for example, it is projected by the National Committee for Legislation and Standardization of Operation and Maintenance (NCLOM) that the future operation and maintenance of healthcare facilities will grow by an average of 10% annually from 2014 to 2030 if the current rates of growth continue [14]. Investigating the maintainability of healthcare facility service systems during the design stages helps to minimize maintenance needs and can lead to potential maintenance cost reductions. However, it is common to exclude the healthcare facility maintenance perspective while the project is in the design stage because of a lack of communication between the design and maintenance teams [15]. The maintenance of healthcare facilities can be considered with regard to the various systems utilized to run such facilities.
Mechanical, electrical, and plumbing (MEP) service systems in complex projects, such as high-tech, healthcare, and transportation projects, comprise up to 50% of the initial costs [16][17][16,17]. Among these mechanical systems, elevators are effective systems that are used in the daily operation of healthcare facilities. Although elevator maintenance is considered a cost, it provides a critical service in terms of the transport of patients. A cross-sectional case review study in Australia on incidents relating to the intra-hospital transfer of critically ill patients found that around 39% of the incidents encountered during transport were equipment-related, and 10% were due to elevator accessibility [18]

2. Studies on Elevators in Healthcare Facilities

The focus was only on commercial buildings. Moreover, multiple studies on building maintainability have been conducted for a number of building types, but few have attempted to investigate elevators. The studies in Table 1 followed different methods of approaching the maintainability of buildings and the assessment thereof, but all of them sought to list and evaluate building defects as part of the various methods adopted to improve maintainability. Until now, there have been insufficient numbers of maintainability studies on elevators in healthcare facilities, despite the heavy usage of elevators in healthcare facilities.
Table 1. Previous research on maintainability.
Authors Building Type Location Elevators Defects
[20]
Table 2. Elevator components.
Siti et al. [Impact Factors of Defects Comparison
19] Chew et al. [20] Das and Chew [21]
Siti et al. [19] General buildings
Traveling performance

Machine rooms

Hoistway and elevator pit

Elevator car

Singapore Elevator lobby Components:

Machine room

Lift hoistway

26
Lift carNot stated This study provided a framework for an elevator maintainability evaluation and sought to understand maintainability issues via a questionnaire distributed among practitioners.


Lift pit

Lift landing

Sub-components:

controller, governor machine, machine room, traction machine, traction motor, brake assembly, guide rail, wire rope, shaft, car interior, car door, car top, car bottom, door operator, travelling, landing door, lift landing, and smoke detector
Machine room and equipment

Lift car

Car and lobby door

Hoistway

Ropes

Landing

Lift pit
Chew et al. [20] High-rise commercial buildings Singapore 114 This study analyzed elevators’ economic defects, system performance, safety, and comfort impact. This study focused on commercial buildings, and the impact of defects did not consider healthcare-related building use. It includes defects that occurred during the construction and operation stages.
De Silva et al., 2016 [21] High-rise Building Sri Lanka - 10 risk factors This study followed a risk-based framework that can measure maintainability by listing. It used an artificial neural network (ANN) tool to forecast maintainability in the early stage of a building. It serves as a decision tool to reduce maintenance costs.
De Silva and Ranasinghe [22] Condominium Sri Lanka - - This study followed a risk-based maintainability assessment by investigating defects and problems. Although building service defects were the most serious maintainability issues, this study did not specify the defects of the elevator system.
Hassanain et al., 2014 [23] Higher education Saudi Arabia - - This study investigated the defects of the heating, ventilating, air-conditioning, and cooling (HVAC) systems from maintenance professionals’ point of view. It presented evaluated maintainability lists built to help designers avoid common maintenance issues.
The elevator systems investigated previously in maintainability studies follow a similar breakdown of elevator components, with some differences (Table 2). For one, Siti et al. [19] presented five main component groups that included various common maintainability issues. The breakdown of components adopted by Chew et al. [20] included a larger breakdown that specified subcomponents. The subcomponents may be present within a single component or in more than one. Another study by Chew and Das [24] listed the main components in a manner that combined the main approaches of the studies of both Siti et al. [19] and Chew et al.
Researchers aim to use the experience of healthcare facility management experts in a proper framework that helps to improve elevator maintainability by achieving two objectives. The first objective is identifying a list of elevator maintenance issues caused by their design, and the second is evaluating and ranking the maintenance issues based on their criticality.
During the design stage, the designers can utilize this study’s output regarding the maintainability of elevators to enhance the decision-making process. Such a proactive approach eliminates unfavorable design decisions and improves the maintainability of healthcare facility design by reducing the undesirable effects of future maintenance needs.
Video Production Service