Neuroinflammation in Parkinson’s Disease: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 3 by Conner Chen.

Parkinson’s disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). Its main symptoms include resting tremors, rigidity, shuffling gait, and bradykinesia.  Genome-wide association studies have identified many genetic variants associated with PD. Studies of animal models, neuroimages, and postmortem pathology have also provided substantial insights into the involvement of neuroinflammation in PD pathogenesis [6,7,8], and indicate that cytokine-induced inflammatory responses may play a vital role.

  • Parkinson’s disease
  • inflammation
  • PD-causative genes

1. Genetic Mutations Involved in Neuroinflammation in PD

1.1. Leucine-Rich Repeat Kinase 2

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common monogenic genetic causes of both familial and sporadic PD [1][2], and they are also present in other inflammatory diseases such as Crohn’s disease and leprosy [3][4]. LRRK2 expression and kinase activity are upregulated in lipopolysaccharide (LPS)-activated rat microglia, whereas the inhibition of LRRK2 kinase reduces the secretion of TNF-α [5]. Increased secretion of IL-1β and IL-6 is also noted in LPS-activated microglia derived from LRRK (p.R1441G) transgenic mice [6]. These findings support the role of LRRK2 in neuroinflammation in PD [6]LRRK2 (p.G2019S) transgenic rats demonstrate increased microglial activation in the SN and pronounced DAergic neurodegeneration in response to the overexpression of α-synuclein [7]. Neuroinflammation associated with the LRRK2 (p.G2019S) mutation could be diminished by LRRK2 kinase inhibition [7]. A study showed that microglia from LRRK2 (p.G2019S) transgenic mice demonstrate increased expression of IL-6 and TNFα, following injection with recombinant α-synuclein fibrils [8]. Chronic dextran sodium sulfate-induced colitis aggravates microglial activation, loss of DAergic neurons, and locomotor deficits in LRRK2 (p.G2019S) transgenic mice, whereas treatment with anti-TNF-α antibody attenuates neuroinflammation and neurodegeneration [9]. In LRRK2 (p.G2019S) knockin mice treated with LPS, depletion of microglia by PLX-3397 diminishes weight loss and increases home-cage activity [10], supporting the interaction between neuroinflammation and LRRK2-mediated neurodegeneration.

1.2. PTEN-Induced Putative Kinase 1

Mutations in PTEN-induced putative kinase 1 (PINK1) are linked to familial PD with autosomal recessive inheritance [11][12][13]. PINK1 senses mitochondrial dysfunction and phosphorylates parkin to degrade damaged mitochondria through mitophagy [14][15]. PINK1 is also involved in the regulation of proinflammatory cytokines. PINK1 knockout mice demonstrate increased striatal IL-1β levels, IL-12, and IL-10 after treatment with LPS [16]. In the cortical slices of PINK1 knockout mice, LPS also augments the upregulation of TNF-α, IL-1β, and IL-6 levels [17]. Moreover, mitochondrial stress leads to the release of DAMPs to activate inflammation, whereas mitophagy mitigates inflammation by removing the damaged mitochondria [18][19][20][21][22]. These results support the role of PINK1-mediated and parkin-mediated mitophagy in inhibiting neuroinflammation.

1.3. Parkin (PRKN)

Mutations in PRKN are commonly seen in patients with autosomal recessive early-onset PD [23][24][25]PRKN encodes an E3 ubiquitin ligase (parkin), which plays a neuroprotective role against α-synuclein toxicity and oxidative stress [26][27]. Together with PINK1, parkin participates in mitophagy to degrade damaged mitochondria. The nigral DAergic neurons in PRKN knockout mice are vulnerable to LPS-induced inflammation [28]. LPS and TNF-α also downregulate parkin expression in BV2 mouse microglial cells [29], suggesting that chronic inflammation modulates PRKN expression.

1.4. DJ-1

Mutations in DJ-1 are found in the familial recessive form of PD [30]. These mutations disturb the function of the protein in the regulation of membrane receptor tracking and signal transduction [31], TLR3/4 mediated endocytosis [31], and production of IL-6 and IL-1β [31][32]. In BV2 mouse microglial cells, DJ-1 binds to the p65 subunit of NFκB, and DJ-1 knockdown promotes p65 nuclear translocation [33]DJ-1 knockout mice exhibit profound microglial activation compared with wild-type littermate controls, especially in response to LPS treatment [33]DJ-1 knockdown in N9 mouse microglial cells also reduces the expression of triggering receptors on myeloid cells 2 (TREM2), which is a pivotal regulator of proinflammatory cytokines such as IL-1β and IL-6 [34].

2. Anti-Inflammation Strategies for PDs

Molecular and neuroimaging studies have indicated the role of neuroinflammation in PD pathogenesis. Therefore, anti-inflammatory therapies may be a strategy against neurodegeneration in PD. Different anti-inflammatory strategies, including nonsteroid anti-inflammatory drugs (NSAIDs), inhibitors of TNF-α and NLR family pyrin domain containing 3 (NLRP3), agonists of nuclear factor erythroid 2-related factor 2 (NRF2), and peroxisome proliferator-activated receptor (PPAR)-γ, have been studied for treating PD.

2.1. NSAIDs

In addition to inhibiting cyclooxygenase, NSAIDs downregulate the expression of the deactivate nonsteroidal anti-inflammatory drug-activated gene-1 to suppress microglial activation [35]. In MPTP-treated mice, sodium salicylate decreases microglial activity and lymphocyte infiltrations, and reduces the death of DAergic neurons in SN [36][37][38]. Ibuprofen and piroxicam protect DAergic neurons in SN against rotenone-induced toxicity in rats [39]. Aspirin, acetaminophen, and ibuprofen protect DAergic neurons against glutamate-mediated excitotoxicity in a rat embryonic mesencephalon neuronal model [40]. These animal studies have indicated that NSAIDs may preserve neuronal integrity and survival [40]. However, epidemiological studies have shown no association between ibuprofen or acetaminophen and PD [41]. Neither meta-analysis nor observational studies have provided solid evidence that NSAIDs decrease the risk of PD or modify disease progression [42][43]. Further studies are required to verify the protective role of NSAIDs in patients with PD.

2.2. TNF-α Inhibitor

MPTP administration upregulates TNF-α expression in mouse striatum preceding the loss of DAergic neurons [36], suggesting the role of TNF-α in preclinical or early-stage PD. MPTP-induced loss of DAergic neurons is abolished in transgenic mice carrying homozygous mutant alleles for TNFRs [36]. Thalidomide, an inhibitor of TNF-α synthesis, and TNF-α knockout attenuate MPTP-induced neuronal damage in the mouse striatum [44]. A cohort study reported that early exposure to anti-TNF therapy is associated with reduced PD incidence [45]. In this study, patients with inflammatory bowel disease (IBD) were 28% more likely to develop PD than matched individuals without IBD. Patients who are exposed to anti-TNF therapy show a 78% reduction in PD incidence compared with unexposed patients [45]. Although the study has positive results, anti-TNF compounds may have limited CNS effects due to their poor penetration across the blood–brain barrier [46].

2.3. NLRP3 Inhibitor

α-Synuclein binds to TLR2 to activate the NLRP3 inflammasome and its downstream IL-1β pathway [47]. A pathological study showed the upregulation of NLRP3 colocalized with microglia in the SN of patients with PD [48]. The small-molecule NLRP3 inhibitor MCC950 decreases inflammasome activation and effectively mitigates motor deficits, nigrostriatal DAergic degeneration, and accumulation of α-synuclein aggregates in 6-hydroxydopa- and α-synuclein fibrils-treated mice [48]. These observations suggest that NLRP3 persistently promotes neuroinflammation, driving progressive DAergic neuropathology, highlighting its potential as a target for PD treatment [48].

2.4. NRF2 Enhancer

NRF2 is a transcription factor that regulates endogenous antioxidative and anti-inflammatory pathways [49]. Neuroinflammation is a prominent cause of oxidative stress in PD [50]. Therefore, the reduction of oxidative stress and neuroinflammation by NRF2 enhancers could be a therapeutic strategy for PD. Dimethyl fumarate, a well-known medication in multiple sclerosis, is a potent NRF2 enhancer that reduces the production of reactive oxygen species in the neurons of SNCA (p.A53T) transgenic mice [51]. Dimethyl fumarate also prevents nigral DAergic neuron damage and decreases microgliosis in MPTP- and α-synuclein-treated mice [52][53]. These findings suggest that NRF2 is a viable target for therapeutic interventions in PD.

2.5. PPAR-γ Agonist

PPAR-γ is a member of the nuclear receptor superfamily that regulates mitochondrial function and modulates lipid and glucose metabolism [54]. PPAR-γ agonists, such as pioglitazone, reduce inflammation by inhibiting the expression of IL-6 and TNF-α [55]. Pioglitazone attenuates inflammatory responses and preserves DAergic nigrostriatal function in the brain of MPTP-treated monkeys [56]. Furthermore, administration of pioglitazone attenuates MPTP-induced glial activation and prevents the loss of dopaminergic neurons in SN of MPTP-treated mice [57][58]. Another PPAR-γ agonist, rosiglitazone, also prevents the loss of DAergic neurons in the SN of MPTP-treated mice [59]. These results support the application of PPAR-γ agonists as putative anti-inflammatory therapies for halting PD progression.

2.6. Steroid Drugs

Dexamethasone, a well-known anti-inflammation agent, protects nigral DAergic neurons against LPS-induced toxicity [60]. Steroid precursors such as dehydroepiandrosterone (DHEA) and pregnenolone provide another treatment option for PD [61]. Pregnenolone alleviates synaptic defects and hyperdopaminergic activity in rats [62]. In MPTP-treated monkeys, DHEA improves parkinsonian phenotypes and potentiates the effect of L-dopa [63]. A recent cohort study indicated that dexamethasone was associated with decreased odds of PD, suggesting that corticosteroids are a potential disease-modifying drug in PD [64]. The aforementioned findings indicate the potential of anti-inflammatory therapies for treating PD. These results should be validated by large randomized controlled trials in patients with PD.

References

  1. Paisan-Ruiz, C.; Jain, S.; Evans, E.W.; Gilks, W.P.; Simon, J.; van der Brug, M.; de Munain, A.L.; Aparicio, S.; Gil, A.M.; Khan, N.; et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004, 44, 595–600.
  2. Zimprich, A.; Biskup, S.; Leitner, P.; Lichtner, P.; Farrer, M.; Lincoln, S.; Kachergus, J.; Hulihan, M.; Uitti, R.J.; Calne, D.B.; et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004, 44, 601–607.
  3. Zhang, F.R.; Huang, W.; Chen, S.M.; Sun, L.D.; Liu, H.; Li, Y.; Cui, Y.; Yan, X.X.; Yang, H.T.; Yang, R.D.; et al. Genomewide association study of leprosy. N. Engl. J. Med. 2009, 361, 2609–2618.
  4. Umeno, J.; Asano, K.; Matsushita, T.; Matsumoto, T.; Kiyohara, Y.; Iida, M.; Nakamura, Y.; Kamatani, N.; Kubo, M. Meta-analysis of published studies identified eight additional common susceptibility loci for Crohn’s disease and ulcerative colitis. Inflamm. Bowel Dis. 2011, 17, 2407–2415.
  5. Moehle, M.S.; Webber, P.J.; Tse, T.; Sukar, N.; Standaert, D.G.; DeSilva, T.M.; Cowell, R.M.; West, A.B. LRRK2 inhibition attenuates microglial inflammatory responses. J. Neurosci. 2012, 32, 1602–1611.
  6. Gillardon, F.; Schmid, R.; Draheim, H. Parkinson’s disease-linked leucine-rich repeat kinase 2 (R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience 2012, 208, 41–48.
  7. Daher, J.P.; Abdelmotilib, H.A.; Hu, X.; Volpicelli-Daley, L.A.; Moehle, M.S.; Fraser, K.B.; Needle, E.; Chen, Y.; Steyn, S.J.; Galatsis, P.; et al. Leucine-rich repeat kinase 2 (LRRK2) Pharmacol. ogical inhibition abates alpha-synuclein gene-induced neurodegeneration. J. Biol. Chem 2015, 290, 19433–19444.
  8. Berwick, D.C.; Heaton, G.R.; Azeggagh, S.; Harvey, K. LRRK2 Biology from structure to dysfunction: Research progresses, but the themes remain the same. Mol. Neurodegener. 2019, 14, 49.
  9. Lin, C.H.; Lin, H.Y.; Ho, E.P.; Ke, Y.C.; Cheng, M.F.; Shiue, C.Y.; Wu, C.H.; Liao, P.H.; Hsu, A.Y.; Chu, L.A.; et al. Mild chronic colitis triggers parkinsonism in LRRK2 mutant mice through activating TNF-alpha pathway. Mov. Disord. 2021. Online ahead of print.
  10. Dwyer, Z.; Rudyk, C.; Situt, D.; Beauchamp, S.; Abdali, J.; Dinesh, A.; Legancher, N.; Sun, H.; Schlossmacher, M.; Hayley, S. CLINT (Canadian LRRK2 in inflammation team). Microglia depletion prior to lipopolysaccharide and paraquat treatment differentially modulates behavioral and neuronal outcomes in wild type and G2019S LRRK2 knock-in mice. Brain Behav. Immun. Health 2020, 5, 100079.
  11. Valente, E.M.; Abou-Sleiman, P.M.; Caputo, V.; Muqit, M.M.; Harvey, K.; Gispert, S.; Ali, Z.; Del Turco, D.; Bentivoglio, A.R.; Healy, D.G.; et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004, 304, 1158–1160.
  12. Cookson, M.R. Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb. Perspect Med. 2012, 2, a009415.
  13. Yonova-Doing, E.; Atadzhanov, M.; Quadri, M.; Kelly, P.; Shawa, N.; Musonda, S.T.; Simons, E.J.; Breedveld, G.J.; Oostra, B.A.; Bonifati, V. Analysis of LRRK2, SNCA, Parkin, PINK1, and DJ-1 in Zambian patients with Parkinson’s disease. Parkinsonism Relat. Disord. 2012, 18, 567–571.
  14. Narendra, D.P.; Jin, S.M.; Tanaka, A.; Suen, D.F.; Gautier, C.A.; Shen, J.; Cookson, M.R.; Youle, R.J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010, 8, e1000298.
  15. Ziviani, E.; Tao, R.N.; Whitworth, A.J. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. USA 2010, 107, 5018–5023.
  16. Akundi, R.S.; Huang, Z.; Eason, J.; Pandya, J.D.; Zhi, L.; Cass, W.A.; Sullivan, P.G.; Bueler, H. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS ONE 2011, 6, e16038.
  17. Kim, J.; Byun, J.W.; Choi, I.; Kim, B.; Jeong, H.K.; Jou, I.; Joe, E. PINK1 Deficiency Enhances Inflammatory Cytokine release from acutely prepared brain slices. Exp. Neurobiol. 2013, 22, 38–44.
  18. Rongvaux, A.; Jackson, R.; Harman, C.C.; Li, T.; West, A.P.; de Zoete, M.R.; Wu, Y.; Yordy, B.; Lakhani, S.A.; Kuan, C.Y.; et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 2014, 159, 1563–1577.
  19. Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469, 221–225.
  20. White, M.J.; McArthur, K.; Metcalf, D.; Lane, R.M.; Cambier, J.C.; Herold, M.J.; van Delft, M.F.; Bedoui, S.; Lessene, G.; Ritchie, M.E.; et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 2014, 159, 1549–1562.
  21. Nakahira, K.; Haspel, J.A.; Rathinam, V.A.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011, 12, 222–230.
  22. West, A.P.; Khoury-Hanold, W.; Staron, M.; Tal, M.C.; Pineda, C.M.; Lang, S.M.; Bestwick, M.; Duguay, B.A.; Raimundo, N.; MacDuff, D.A.; et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015, 520, 553–557.
  23. Kitada, T.; Asakawa, S.; Hattori, N.; Matsumine, H.; Yamamura, Y.; Minoshima, S.; Yokochi, M.; Mizuno, Y.; Shimizu, N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392, 605–608.
  24. Shimura, H.; Hattori, N.; Kubo, S.; Mizuno, Y.; Asakawa, S.; Minoshima, S.; Shimizu, N.; Iwai, K.; Chiba, T.; Tanaka, K.; et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 2000, 25, 302–305.
  25. Zhang, Y.; Gao, J.; Chung, K.K.; Huang, H.; Dawson, V.L.; Dawson, T.M. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl Acad Sci. USA 2000, 97, 13354–13359.
  26. Bellosta, S.; Paoletti, R.; Corsini, A. Safety of statins: Focus on clinical pharmacokinetics and drug interactions. Circulation 2004, 109, III50–III57.
  27. Feany, M.B.; Pallanck, L.J. Parkin: A multipurpose neuroprotective agent? Neuron 2003, 38, 13–16.
  28. Frank-Cannon, T.C.; Tran, T.; Ruhn, K.A.; Martinez, T.N.; Hong, J.; Marvin, M.; Hartley, M.; Trevino, I.; O’Brien, D.E.; Casey, B.; et al. Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J. Neurosci. 2008, 28, 10825–10834.
  29. Tran, T.A.; Nguyen, A.D.; Chang, J.; Goldberg, M.S.; Lee, J.K.; Tansey, M.G. Lipopolysaccharide and tumor necrosis factor regulate Parkin expression via nuclear factor-kappa B. PLoS ONE 2011, 6, e23660.
  30. Bonifati, V.; Rizzu, P.; van Baren, M.J.; Schaap, O.; Breedveld, G.J.; Krieger, E.; Dekker, M.C.; Squitieri, F.; Ibanez, P.; Joosse, M.; et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003, 299, 256–259.
  31. Kim, K.S.; Kim, J.S.; Park, J.Y.; Suh, Y.H.; Jou, I.; Joe, E.H.; Park, S.M. DJ-1 associates with lipid rafts by palmitoylation and regulates lipid rafts-dependent endocytosis in astrocytes. Hum. Mol. Genet. 2013, 22, 4805–4817.
  32. Ashley, A.K.; Hinds, A.I.; Hanneman, W.H.; Tjalkens, R.B.; Legare, M.E. DJ-1 mutation decreases astroglial release of inflammatory mediators. Neurotoxicology 2016, 52, 198–203.
  33. Lin, Z.; Chen, C.; Yang, D.; Ding, J.; Wang, G.; Ren, H. DJ-1 inhibits microglial activation and protects dopaminergic neurons in vitro and in vivo through interacting with microglial p65. Cell Death Dis. 2021, 12, 715.
  34. Trudler, D.; Weinreb, O.; Mandel, S.A.; Youdim, M.B.; Frenkel, D. DJ-1 deficiency triggers microglia sensitivity to dopamine toward a pro-inflammatory phenotype that is attenuated by rasagiline. J. Neurochem. 2014, 129, 434–447.
  35. Ajmone-Cat, M.A.; Bernardo, A.; Greco, A.; Minghetti, L. Non-steroidal anti-Inflammatory drugs and brain inflammation: Effects on microglial functions. Pharmaceuticals 2010, 3, 1949–1965.
  36. Sairam, K.; Saravanan, K.S.; Banerjee, R.; Mohanakumar, K.P. Non-steroidal anti-inflammatory drug sodium salicylate, but not diclofenac or celecoxib, protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Brain Res. 2003, 966, 245–252.
  37. Kurkowska-Jastrzębska, I.; Babiuch, M.; Joniec, I.; Przybyłkowski, A.; Członkowski, A.; Członkowska, A. Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice. Int. Immunopharmacol. 2002, 2, 1213–1218.
  38. Maharaj, D.S.; Saravanan, K.S.; Maharaj, H.; Mohanakumar, K.P.; Daya, S. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Neurochem. Int. 2004, 44, 355–360.
  39. Teema, A.M.; Zaitone, S.A.; Moustafa, Y.M. Ibuprofen or piroxicam protects nigral neurons and delays the development of l-dopa induced dyskinesia in rats with experimental Parkinsonism: Influence on angiogenesis. Neuropharmacology 2016, 107, 432–450.
  40. Casper, D.; Yaparpalvi, U.; Rempel, N.; Werner, P. Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro. Neurosci. Lett. 2000, 289, 201–204.
  41. Manthripragada, A.D.; Schernhammer, E.S.; Qiu, J.; Friis, S.; Wermuth, L.; Olsen, J.H.; Ritz, B. Non-steroidal anti-inflammatory drug use and the risk of Parkinson’s disease. Neuroepidemiology 2011, 36, 155–161.
  42. Rees, K.; Stowe, R.; Patel, S.; Ives, N.; Breen, K.; Clarke, C.E.; Ben-Shlomo, Y. Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson’s disease: Evidence from observational stud. Cochrane Database Syst. Rev. 2011, 11, CD008454.
  43. Poly, T.N.; Islam, M.M.R.; Yang, H.C.; Li, Y.J. Non-steroidal anti-inflammatory drugs and risk of Parkinson’s disease in the elderly population: A meta-analysis. Eur. J. Clin. Pharmacol. 2019, 75, 99–108.
  44. Ferger, B.; Leng, A.; Mura, A.; Hengerer, B.; Feldon, J. Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and Pharmacol. ogical inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J. Neurochem. 2004, 89, 822–833.
  45. Peter, I.; Dubinsky, M.; Bressman, S.; Park, A.; Lu, C.; Chen, N.; Wang, A. Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol. 2018, 75, 939–946.
  46. Pardridge, W.M. Biologic TNFα-inhibitors that cross the human blood-brain barrier. Bioeng. Bugs 2010, 1, 231–234.
  47. Li, Y.; Xia, Y.; Yin, S.; Wan, F.; Hu, J.; Kou, L.; Sun, Y.; Wu, J.; Zhou, Q.; Huang, J.; et al. Targeting microglial α-synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in Parkinson’s disease. Front. Immunol. 2021, 12, 719807.
  48. Gordon, R.; Albornoz, E.A.; Christie, D.C.; Langley, M.R.; Kumar, V.; Mantovani, S.; Robertson, A.A.B.; Butler, M.S.; Rowe, D.B.; O’Neill, L.A.; et al. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 2018, 10, eaah4066.
  49. Esteras, N.; Dinkova-Kostova, A.T.; Abramov, A.Y. Nrf2 activation in the treatment of neurodegenerative diseases: A focus on its role in mitochondrial bioenergetics and function. Biol Chem 2016, 397, 383–400.
  50. Hassanzadeh, K.; Rahimmi, A. Oxidative stress and neuroinflammation in the story of Parkinson’s disease: Could targeting these pathways write a good ending? J. Cell Physiol. 2018, 234, 23–32.
  51. Brandes, M.S.; Zweig, J.A.; Tang, A.; Gray, N.E. NRF2 activation ameliorates oxidative stress and improves mitochondrial function and synaptic plasticity, and in A53T α-synuclein hippocampal neurons. Antioxidants 2021, 11, 26.
  52. Lastres-Becker, I.; Garcia-Yague, A.J.; Scannevin, R.H.; Casarejos, M.J.; Kugler, S.; Rabano, A.; Cuadrado, A. Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxid. Redox Signal. 2016, 25, 61–77.
  53. Campolo, M.; Casili, G.; Biundo, F.; Crupi, R.; Cordaro, M.; Cuzzocrea, S.; Esposito, E. The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson’s disease: Involvement of reactive oxygen species/nuclear factor-kappaB/nuclear transcription factor related to NF-E2. Antioxid. Redox Signal. 2017, 27, 453–471.
  54. Delerive, P.; Fruchart, J.C.; Staels, B. Peroxisome proliferator-activated receptors in inflammation control. J. Endocrinol 2001, 169, 453–459.
  55. Chaturvedi, R.K.; Beal, M.F. PPAR: A therapeutic target in Parkinson’s disease. J. Neurochem. 2008, 106, 506–518.
  56. Swanson, C.R.; Joers, V.; Bondarenko, V.; Brunner, K.; Simmons, H.A.; Ziegler, T.E.; Kemnitz, J.W.; Johnson, J.A.; Emborg, M.E. The PPAR-gamma agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J. Neuroinflammation 2011, 8, 91.
  57. Breidert, T.; Callebert, J.; Heneka, M.T.; Landreth, G.; Launay, J.M.; Hirsch, E.C. Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J. Neurochem. 2002, 82, 615–624.
  58. Dehmer, T.; Heneka, M.T.; Sastre, M.; Dichgans, J.; Schulz, J.B. Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J. Neurochem. 2004, 88, 494–501.
  59. Schintu, N.; Frau, L.; Ibba, M.; Caboni, P.; Garau, A.; Carboni, E.; Carta, A.R. PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur. J. Neurosci. 2009, 29, 954–963.
  60. Castano, A.; Herrera, A.J.; Cano, J.; Machado, A. The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-a, IL-1b and IFN-c. J. Neurochem. 2002, 81, 150–157.
  61. Bourque, M.; Di Paolo, T. Neuroactive steroids and Parkinson’s disease. Curr. Opin. Endocr. Metab. Res. 2022, 22, 100312.
  62. Frau, R.; Miczán, V.; Traccis, F.; Aroni, S.; Pongor, C.I.; Saba, P.; Serra, V.; Sagheddu, C.; Fanni, S.; Congiu, M.; et al. Prenatal THC exposure produces a hyperdopaminergic phenotype rescued by pregnenolone. Nat. Neurosci. 2019, 22, 1975–1985.
  63. Belanger, N.; Gregoire, L.; Bedard, P.J.; Di Paolo, T. DHEA improves symptomatic treatment of moderately and severely impaired MPTP monkeys. Neurobiol. Aging 2006, 27, 1684–1693.
  64. Maclagan, L.C.; Visanji, N.P.; Cheng, Y.; Tadrous, M.; Lacoste, A.M.B.; Kalia, L.V.; Bronskill, S.E.; Marras, C. Identifying drugs with disease-modifying potential in Parkinson’s disease using artificial intelligence and pharmacoepidemiology. Pharmacoepidemiol. Drug Saf. 2020, 29, 864–872.
More