Underground sewerage systems (USSs) are a vital part of public infrastructure that contributes to collecting wastewater or stormwater from various sources and conveying it to storage tanks or sewer treatment facilities. A healthy USS with proper functionality can effectively prevent urban waterlogging and play a positive role in the sustainable development of water resources. Since it was first introduced in the 1960s, computer vision (CV) has become a mature technology that is used to realize promising automation for sewer inspections.
Name |
Company |
Pipe Diameter |
Camera Feature |
Country |
Strong Point |
---|---|---|---|---|---|
Description |
Ref. |
ID |
Number of Images |
Algorithm |
Task |
Performance |
Ref. |
|||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy (%) |
Processing Speed |
|||||||||||
CAM160 (https://goolnk.com/YrYQob accessed on 20 February 2022) |
Sewer Robotics |
200–500 mm |
||||||||||
1 | NA |
Broken, crack, deposit, fracture, hole, root, tap |
USA |
● Auto horizon adjustment ● Intensity adjustable LED lighting ● Multifunctional |
||||||||
NA |
NA |
4056 |
Canada |
[9] |
||||||||
Precision |
The proportion of positive samples in all positive prediction samples |
|||||||||||
1 |
3 classes | [9] |
||||||||||
Multiple binary CNNs |
Classification |
Accuracy: 86.2 Precision: 87.7 Recall: 90.6 |
NA |
LETS 6.0 (https://ariesindustries.com/products/ accessed on 20 February 2022) |
Recall |
The proportion of positive prediction samples in all positive samples |
[36] | |||||
2 |
ARIES INDUSTRIES |
150 mm or larger |
Self-leveling lateral camera or a Pan and tilt camera |
|||||||||
2 |
Connection, crack, debris, deposit, infiltration, material change, normal, root |
12 classes 1440 × 720–320 × 256 |
[48] |
|||||||||
Single CNN |
RedZone® Solo CCTV crawler |
Classification USA |
12,000 |
● Slim tractor profile ● Superior lateral camera ● Simultaneously acquire mainline and lateral videos |
||||||||
AUROC: 87.1 | AUPR: 6.8 | USA |
NA |
wolverine® 2.02 |
ARIES INDUSTRIES |
150–450 mm |
||||||
3 | NA |
Accuracy USA |
Attached deposit, defective connection, displaced joint, fissure, infiltration, ingress, intruding connection, porous, root, sealing, settled deposit, surface ● Powerful crawler to maneuver obstacles |
1040 × 1040 |
Front-facing and back-facing camera with a 185∘ wide lens ● Minimum set uptime |
The proportion of correct prediction in all prediction samples 2,202,582 ● Camera with lens cleaning technique |
||||||
3 |
Dataset 1: 2 classes | |||||||||||
Two-level hierarchical CNNs |
Classification |
Accuracy: 94.5 Precision: 96.84 Recall: 92 | The Netherlands |
F1-score: 94.36 [ |
1.109 h for 200 videos |
[38][ |
X5-HS (https://goolnk.com/Rym02W accessed on 20 February 2022) |
|||||
] |
4 |
EASY-SIGHT |
F1-score Dataset 1: defective, normal 300–3000 mm |
Harmonic mean of precision and recall |
NA |
[38 ≥2 million pixels |
China |
|||||
Dataset 2: 6 classes |
Accuracy: 94.96 Precision: 85.13 Recall: 84.61 | ][69] |
NA | ● High-definition |
40,000 ● Freely choose wireless and wired connection and control |
China | ● Display and save videos in real time |
|||||
[ | ] | [ | 69] |
Robocam 6 ( | ||||||||
F1-score: 84.86https://goolnk.com/43pdGA accessed on 20 February 2022) |
FAR TAP Electronics |
False alarm rate in all prediction samples |
||||||||||
8 classes |
600 mm or more |
Deep CNN Sony 130-megapixel Exmor 1/3-inch CMOS |
Korea |
Classification ● High-resolution ● All-in-one subtitle system |
||||||||
Accuracy: 64.8 | NA |
[ |
RoboCam Innovation4 |
TAP Electronics |
600 mm or more |
Sony 130-megapixel Exmor 1/3-inch CMOS |
Korea |
● Best digital record performance ● Super white LED lighting ● Cableless |
||||
Robocam 30004 |
TAP Electronics’ Japanese subsidiary |
250–3000 mm |
Sony 1.3-megapixel Exmor CMOS color |
Japan |
● Can be utilized in huge pipelines ● Optical 10X zoom performance |
ID |
Defect Type |
Image Resolution |
Equipment |
Number of Images |
Country |
Ref. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dataset 2: barrier, deposit, disjunction, fracture, stagger, water | ||||||||||||||||
15,000 |
||||||||||||||||
] | [ | ] |
5 |
True accuracy Broken, deformation, deposit, other, joint offset, normal, obstacle, water |
||||||||||||
5 |
The proportion of all predictions excluding the missed defective images among the entire actual images |
1435 × 1054–296 × 166 |
[ NA |
18,333 |
] China |
|||||||||||
6 classes | [58] |
|||||||||||||||
CNN |
Classification |
Accuracy: 96.58 |
NA |
6 |
AUROC Attached deposits, collapse, deformation, displaced joint, infiltration, joint damage, settled deposit |
mAP | ||||||||||
4 | Area under the receiver operator characteristic (ROC) curve NA |
NA |
1045 |
[ China |
||||||||||||
6 | ][49] | [ | ||||||||||||||
8 classes |
CNN | ] |
Classification | [ |
Accuracy: 97.6 41] |
|||||||||||
0.15 s/image | [ | ][52] |
7 |
Circumferential crack, longitudinal crack, multiple crack |
AUPR |
Area under the precision-recall curve 320 × 240 |
NA |
335 |
[37 | |||||||
7 |
7 classes | ][49] |
Multi-class random forest |
Classification USA |
Accuracy: 71 |
25 FPS [11] |
||||||||||
[ | ] | [ | ] |
8 |
Debris, joint faulty, joint open, longitudinal, protruding, surface |
NA |
mAP first calculates the average precision values for different recall values for one class, and then takes the average of all classes |
|||||||||
8 | Robo Cam 6 with a 1/3-in. SONY Exmor CMOS camera |
48,274 |
[ South Korea |
9] [ |
||||||||||||
7 classes |
SVM | ] | [ | 71] |
||||||||||||
Classification | Accuracy: 84.1 |
NA |
9 |
Detection rate Broken, crack, debris, joint faulty, joint open, normal, protruding, surface |
The ratio of the number of the detected defects to total number of defects 1280 × 720 |
Robo Cam 6 with a megapixel Exmor CMOS sensor |
115,170 |
South Korea |
||||||||
9 | [ |
3 classes | ||||||||||||||
SVM |
Classification |
Recall: 90.3 Precision: 90.3 | ] | [ |
10 FPS52] |
|||||||||||
[ | ] |
10 |
Error rate Crack, deposit, else, infiltration, joint, root, surface |
NA |
Remote cameras |
|||||||||||
10 | 2424 | The ratio of the number of mistakenly detected defects to the number of non-defects |
3 classes UK |
|||||||||||||
CNN |
Classification |
Accuracy: 96.7 Precision: 99.8 Recall: 93.6 F1-score: 96.6 | [ | |||||||||||||
15 min 30 images | [ | ][73] |
11 |
Broken, crack, deposit, fracture, hole, root, tap |
PA NA |
|||||||||||
11 |
Pixel accuracy calculating the overall accuracy of all pixels in the image |
3 classes |
NA |
1451 |
Canada |
|||||||||||
RotBoost and statistical feature vector |
Classification |
Accuracy: 89.96 |
1.5 s/image |
12 |
Crack, deposit, infiltration, root |
1440 × 720–320 × 256 |
RedZone® Solo CCTV crawler |
3000 |
USA |
mPA |
||||||
12 |
The average of pixel accuracy for all categories |
] | ||||||||||||||
7 classes |
Neuro-fuzzy classifier |
Classification |
Accuracy: 91.36 | [ |
NA |
|||||||||||
[ | ] | [ | ] |
13 |
mIoU Connection, fracture, root |
The ratio of intersection and union between predictions and GTs |
4 classes 1507 × 720–720 × 576 |
Front facing CCTV cameras |
Multi-layer perceptions 3600 |
USA |
||||||
13 | Classification | Accuracy: 98.2 |
14 |
fwIoU Crack, deposit, root |
Frequency-weighted IoU measuring the mean IoU value weighing the pixel frequency of each class 928 × 576–352 × 256 |
NA |
3000 |
USA |
||||||||
NA | [ | ] |
||||||||||||||
14 |
2 classes |
Rule-based classifier |
Classification |
Accuracy: 87 FAR: 18 Recall: 89 |
NA |
15 |
||||||||||
15 |
Crack, deposit, root |
2 classes 512 × 256 |
OCSVM NA |
Classification1880 |
USA |
[ |
Accuracy: 75 |
|||||||||
NA | [ | ][65] |
16 |
Crack, infiltration, joint, protruding |
1073 × 749–296 × 237 |
NA |
||||||||||
16 | 1106 |
4 classes |
China |
CNN [49] |
Classification |
Recall: 88 Precision: 84 Accuracy: 85 [122] |
||||||||||
NA | [ | ][67] |
17 |
Crack, non-crack |
64 × 64 | |||||||||||
17 |
2 class |
Rule-based classifierNA |
40,810 |
Classification |
Accuracy: 84 FAR: 21 True accuracy: 95 Australia |
NA |
||||||||||
[ | ] | [ | 58] |
18 |
||||||||||||
18 |
Crack, normal, spalling |
4 classes 4000 × 46,000–3168 × 4752 |
RBN Canon EOS. Tripods and stabilizers |
Classification 294 |
Accuracy: 95 China |
NA |
19 |
Collapse, crack, root |
NA |
SSET system |
239 |
USA |
||||
20 |
Clean pipe, collapsed pipe, eroded joint, eroded lateral, misaligned joint, perfect joint, perfect lateral |
|||||||||||||||
19 |
7 classes |
YOLOv3 |
Detection |
mAP: 85.37 |
33 FPS |
[9]NA |
SSET system |
500 |
USA |
|||||||
20 |
4 classes |
Faster R-CNN |
Detection |
mAP: 83 |
9 FPS |
21 |
||||||||||
21 |
Cracks, joint, reduction, spalling |
3 classes 512 × 512 |
Faster R-CNN CCTV or Aqua Zoom camera |
Detection 1096 |
Canada |
[54] |
||||||||||
mAP: 77 | 110 ms/image |
22 |
||||||||||||||
22 |
Defective, normal |
3 classes NA |
Faster R-CNN CCTV (Fisheye) |
Detection 192 |
Precision: 88.99 Recall: 87.96 F1-score: 88.21 USA |
110 ms/image |
||||||||||
[ | ] | [ | ] |
23 |
Deposits, normal, root |
|||||||||||
23 |
2 classes |
1507 × 720–720 × 576 |
CNN Front-facing CCTV cameras |
3800 |
USA |
Detection |
Accuracy: 96 Precision: 90 |
0.2782 s/image |
||||||||
[ | ] | [ | ] |
24 |
Crack, non-crack |
|||||||||||
24 |
3 classes | 240 × 320 |
CCTV |
Faster R-CNN 200 |
South Korea |
|||||||||||
Detection | mAP: 71.8 |
110 ms/image |
25 |
Faulty, normal |
NA |
CCTV |
8000 |
|||||||||
SSD |
mAP: 69.5 |
57 ms/image | UK | |||||||||||||
26 |
Blur, deposition, intrusion, obstacle |
NA |
||||||||||||||
YOLOv3 | CCTV |
mAP: 53 12,000 |
33 ms/image NA |
|||||||||||||
27 |
Crack, deposit, displaced joint, ovality |
NA |
CCTV (Fisheye) |
|||||||||||||
25 |
2 classes |
Rule-based detector |
Detection |
32 |
Qatar |
[ |
Detection rate: 89.2 Error rate: 4.44 |
1 FPS |
||||||||
[ | ] | [ | ] |
29 |
Crack, non-crack |
320 × 240–20 × 20 |
||||||||||
26 |
2 classes |
GA and CNN |
CCTV |
Detection 100 |
NA |
|||||||||||
Detection rate: 92.3 | NA |
30 |
||||||||||||||
27 |
Barrier, deposition, distortion, fraction, inserted |
5 classes 600 × 480 |
SRPN CCTV and quick-view (QV) cameras |
Detection 10,000 |
China |
mAP: 50.8 Recall: 82.4 [ |
153 ms/image |
|||||||||
[ | ] | [ | ] |
31 |
Fracture |
|||||||||||
28 | NA |
CCTV |
1 class2100 |
USA |
CNN and YOLOv3 |
Detection |
AP: 71 |
65 ms/image |
||||||||
32 |
Broken, crack, fracture, joint open |
NA |
CCTV |
291 |
China |
Metric |
---|
[ | ||||||
] | ||||||
[ | ||||||
] | ||||||
29 | ||||||
3 classes | ||||||
DilaSeg-CRF | ||||||
Segmentation | ||||||
PA: 98.69 | ||||||
mPA: 91.57 | ||||||
mIoU: 84.85 | fwIoU: 97.47 | 107 ms/image |
||||
30 |
4 classes |
PipeUNet |
Segmentation |
mIoU: 76.37 |
32 FPS |