Luffa Natural Fiber Composites: Comparison
Please note this is a comparison between Version 2 by Bruce Ren and Version 1 by Mohammed Asmael.

Natural fiber composites (NFCs) are an evolving area in polymer sciences. Fibers extracted from natural sources hold a wide set of advantages such as negligible cost, significant mechanical characteristics, low density, high strength-to-weight ratio, environmental friendliness, recyclability, etc. Luffa cylindrica, also termed luffa gourd or luffa sponge, is a natural fiber that has a solid potential to replace synthetic fibers in composite materials in diverse applications like vibration isolation, sound absorption, packaging, etc. Recently, many researches have involved luffa fibers as a reinforcement in the development of NFC, aiming to investigate their performance in selected matrices as well as the behavior of the end NFC.

  • luffa natural fiber composites
  • mechanical properties
  • physical properties
  • thermal properties
  • chemical properties
  • morphological properties
  1. Introduction

1. Introduction

Fiber-reinforced composites are becoming significantly popular in various engineering fields due to their low density as well as their remarkable mechanical characteristics. Composite materials’ properties are based on the selected components, viz., matrix and fibers [1–3][1][2][3][4][5]. Hitherto, the utilized matrices and fibers are generally obtained from petroleum origins. Although they possess attractive properties, the aforementioned composite materials are restricted from being used for long periods, yet can endure regular environmental conditions for tens of years [4–9][6][7][8][9][10][11]. Moreover, composite recycling and reprocessing methods are unavailable. The manufacturing of most synthetic fibers has several environmental effects, as it requires high power, is toxic for humans, as well as may deplete the ozone layer, cause global warming and eutrophication [10–13][12][13][14][15]. The increased attentiveness to environmental matters has augmented the search for an alternative natural source in order to increase the utilization of renewable materials, reduce waste production, boost recycling, and so on [14,15][4][5].

Hence, numerous scientists and engineers tend toward green materials that can enhance the products’ environmental aspects [13,16–19][16][17][18][19]. Thus, materials extracted from natural resources gained more attention as an alternative to synthetic fibers in composite materials. Natural fibers (NFs) are found in many parts of a plant, e.g., fruit, bast, leaf, trunk, roots, and so on. Throughout the decades, these natural fibers have been widely utilized in countless applications due to their advantages, as they are strong, lightweight, tough, recyclable, biodegradable, abundant in nature, and have negligible cost and low density [20–27][20][21][22][23][24][25][26][27]. Additionally, their environmental advantages include decreased respiratory and dermal irritation, improved energy consumption, less wear and abrasion on tools, and minimal health hazards. Natural fiber composites (NFCs) have been significantly involved in various engineering fields such as automotive, marine, sports gear, construction, and aerospace [17,28–34][28][29][30][31][32][33][34].

NFs, also named lignocellulosic fibers, comprise wheat straw, sea grass, softwood kraft, sisal, rice husk, ramie, rachis, pineapple, oil palm, date palm, jute, hemp, flax, coconut, coir, cotton, banana, bamboo, abaca, mesta, roselle, oat, maize, sabia, kapok, etc. [35–43][35][36][37][38][39][40][41][42][43]. Figure 1 shows the main fiber categories. Besides the prosperous characteristics of natural fibers, they have a few disadvantages due to their hydrophilic behavior. However, there are several methods that can reduce these drawbacks, like adding coupling agents and fiber treatment. Luffa fruit comprise lightweight natural fibers that have the potential to be utilized in reinforcing lightweight composites due to their polyporous structure, abundance, cheap price, as well as their surface morphology, which can provide a good adhesion with the matrix. The main focus of this review paper is to compile, compare, and summarize the research on luffa natural fiber composites (LNFCs) by considering the physical, morphological, mechanical, chemical, electrical, and thermal properties, in addition to acoustic, water absorption, x-ray diffraction, differential scanning calorimetric, thickness swelling, and so on.

Figure 1. General classifications of natural fibers.

  1. Luffa and Its Composite Materials

2. Luffa and Its Composite Materials

Luffa is a category of the Cucurbitaceae family (cucumber), its ripe fruits are utilized as natural cleaning sponges, while its immature fruits are consumed as vegetables. It is spread from south Asia to east and central Asia. Luffa vegetables are widespread in Vietnam and China. Figure 2 shows the mature luffa fruit and its fiber structure. Luffa fibers comprise significant toughness, strength, and stiffness, similar to the ones observed in various metals with same density ranges [44].

Figure 2. Luffa and its internal structure.

Luffa chemical composition mostly consists of lignin and hemicellulose/cellulose, as well as includes some inorganic elements like glycosides, polypeptides, amino acids, proteins, and so on [45–47][45][46][47]. However, the hemicellulose content ranges between 8% and 22%, lignin content is between 10% and 23%, and cellulose content is between 55% and 90%. Table 1 shows the physical and chemical properties of luffa. At the early stage of luffa growth, its cellular structure begins with numerous single fibers and turn into fibrous mat at the end [48].

Table 1. Physical properties and chemical composition of luffa fibers [49–51][49][50][51].

Physical Properties

Chemical Composition

Density

(gm/cm3)

Diameter

(μm)

Aspect

ratio

Micro

fibrillar

angle (°)

Cellulose

(%)

Lignin

(%)

Hemi

cellulose

(%)

Ash (%)

0.56−0.92

270 ± 20

340 ± 5

12 ± 2

63.0 ± 2.5

11.69 ± 1.2

20.88 ± 1.4

0.4 ± 0.10

As Table 1 shows, luffa density varies from 0.56 to 0.92 g/cm3, it has an average diameter of ~270 μm, and its microfibrillar angle is around 12°. The chemical composition of luffa consists of 63% cellulose, 20.88% hemicellulose, 11.69% lignin, and 0.4% ash. It is worth mentioning that in addition to its use as a vegetable and cleaning sponge, luffa is also utilized in Chinese medication, military filters, and shock absorbers [52].

2.1. Fiber Treatment

Water absorption and moisture retention harm the fiber/matrix adhesion in composite materials. Moreover, NFs have high moisture absorption properties as they are naturally hydrophilic. Such properties cause a reduction in bond strength, and thus matrix and fibers detach from each other. Hence, these composite materials exhibit negligible mechanical characteristics in wet environments [53]. Therefore, treating an NF with a convenient chemical solution can influence its chemical composition, remove surface impurities, as well as reduce its water absorption character. Table 2 shows the treatments applied to luffa fibers in LNFC studies.[54][55][56][57][58][59][60]

Table 2. Luffa fiber treatments.

Treatment

Reference

Sodium Hydroxide (NaOH)

[25,44,49–51,54–76]

[54][59][61][62][63][64][65][66][67][68]

Hydrogen Peroxide (H2O2)

[27,54,55,65–67]

[69][70][71]

Acetic Acid (CH3COOH)

[27,54,55]

[54][55]

Carbamide CO(NH2)

[55]

Methacrylamide

[60,69]

[60][72]

Benzoyl Chloride Permanganate (KMnO4)

[51,75]

[73]

Acetic Anhydride, and Acetone

[65]

[69]

Furfuryl Alcohol followed by oxidation (sodium chlorite + acetic acid)

[50]

CaCl2, H2SO4, and Na2HPO4

[57]

Hypochlorite (NaClO)

[58]

Ethanol, BTDA Dianhydrides

[64]

[74]

HCl

[56]

Chlorine Bleach

[46,77]

[75]

Calcium

Phosphate and Calcium Carbonate

[78]

[76]

CaOH2 and Silane

[71]

[77]

Thermo-mechanical treatment and thermo-hydromechanical treatment

[79]

[78]

Heat treatment

[80]

[79]

Sodium hydroxide (NaOH)/alkaline treatment evidenced its capability in improving luffa fibers’ microstructure by changing its chemical composition as well as removing all impurities [49,59–63,70][80]. Treating luffa fibers with 4% NaOH at 120 °C for 3 h revealed the highest fiber crystallinity index and, in addition, combined chemical treatments switched luffa from a mat into a filament structure [67][71]. Contrary to other chemical solutions, methacrylamide treatment caused a serious deterioration in luffa fiber integrity [69][72]. Mixing NaOH with other solutions like CH3COOH can drastically improve LNFC mechanical performance as well as significantly decrease its water absorption; in contrast, mixing with H2O2 deteriorated its mechanical characteristics [55][55][56]. The tensile strength of LNFC created with HCl treated fibers was lower than that of LNFC treated with alkaline [56]. Cyanoethylating and acetylation improved fiber/matrix adhesion, resulting in an enhancement in mechanical characteristics [65,66][70]. Furfuryl alcohol followed by oxidation treatment revealed higher performance compared to alkaline, where it improved the surface structure and reduced hemicellulose, lignin, and wax quantities [50][70]. As shown in Table 2, sodium hydroxide was mostly utilized to chemically treat luffa fibers, followed by hydrogen peroxide and acetic acid.

2.2. Matrices Selected for LNFCs

Composites have a combination of fibers and matrix properties, and in addition to matrix properties, they behave as a structure that holds all fibers together, as well as a protection from the surrounding environment (water, heat, etc.) [1,81–83][81][82][83]. Thus, studying the performance of a new NFC involves choosing a suitable matrix that exhibits good properties with a considerable interaction with the selected NF. Several studies investigated luffa as a pure mat (without a matrix); however, others studied different thermoplastics and thermosets like epoxy, polyester, resorcinol-formaldehyde, vinyl ester, and so on [84–86][84][85][86]. Matrices considered in recent LNFC studies are listed in Table 3.

Table 3. Thermoplastics and thermosets used in luffa natural fiber composite (LNFC) development.

Matrix

Reference

Epoxy

[25,44,49–51,54,59,61–63,72–75,84,87–93][87][88][89][90][91][92][93]

Polyester

[24,56,60,65,66,70,71,84,94–96][94][95][96]

Resorcinol-formaldehyde

[57,78,97][97]

Polylactic acid

[58,80][80]

Bio-based polyethylene (HDPE)

[98]

Vinyl ester

[7,64][7]

Polyurethane foam

[45]

Polyurethane (PU)

[99]

Polypropylene

[68]

Geopolymer

[100]

Pre-gelatinized cassava starch

[101]

Eva resin

[102]

Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O) and potassium iodide

[76]

Concrete

[103]

LNFC studies have involved diverse polymeric matrices with different weight ratios (fiber volume fraction), which ranged from 2 wt% to 50 wt%, however, the most common weight composition was 30 wt% [24,49,50,62,70]. Although the majority of studies considered luffa as rectangular mat, some utilized it as randomly chopped fibers between 2 mm and 6 cm. As clearly shown in Table 3, epoxy resin was selected most often in the LNFC area, followed by polyester and resorcinol-formaldehyde, which is due to matrix properties as well as matrix/fiber compatibility.

References

  1. Yusuf, S.; Islam, N.; Ali, H.; Akram, W.; Siddique, A. Impact Strength of Natural Fiber Reinforced Composites: Taguchi Method. Adv. Mater. Sci. 2020, 20, 54–70.
  2. Yuan, Y.; Zhao, K.; Zhao, Y.; Sahmani, S.; Safaei, B. Couple stress-based nonlinear buckling analysis of hydrostatic pressurized functionally graded composite conical microshells. Mech. Mater. 2020, 148, 103507, doi:10.1016/j.mechmat.2020.103507.
  3. Yuan, Y.; Zhao, K.; Han, Y.; Sahmani, S.; Safaei, B. Nonlinear oscillations of composite conical microshells with in-plane heterogeneity based upon a couple stress-based shell model. Thin-Walled Struct. 2020, 154, 106857, doi:10.1016/j.tws.2020.106857.
  4. Davoodi, M.; Sapuan, S.; Ahmad, D.; Aidy, A.; Khalina, A.; Jonoobi, M. Effect of polybutylene terephthalate (PBT) on impact property improvement of hybrid kenaf/glass epoxy composite. Mater. Lett. 2012, 67, 5–7.
  5. Alhijazi, M.; Zeeshan, Q.; Safaei, B.; Asmael, M.; Qin, Z. Recent Developments in Palm Fibers Composites: A Review. J. Polym. Environ. 2020, doi:10.1007/s10924-020-01842-4.
  6. Mitra, B. Environment friendly composite materials: Biocomposites and green composites. Defence Sci. J. 2014, 64, 244, doi: 10.14429/dsj.64.7323.
  7. Safaei, B. The effect of embedding a porous core on the free vibration behavior of laminated composite plates. Steel Compos. Struct. 2020, 35, 659–670.
  8. Rajkumar, D.R.; Santhy, K.; Padmanaban, K.P. Influence of Mechanical Properties on Modal Analysis of Natural Fiber Reinforced Laminated Composite Trapezoidal Plates. J. Nat. Fibers. 2020, 1–17, doi:10.1080/15440478.2020.1724230.
  9. Navaneethakrishnan, G.; Karthikeyan, T.; Saravanan, S.; Selvam, V.; Parkunam, N.; Sathishkumar, G.; Jayakrishnan, S. Structural analysis of natural fiber reinforced polymer matrix composite. Mater. Today 2020, 21, 7–9.
  10. Javanbakht, Z.; Hall, W.; Virk, A.S.; Summerscales, J.; Öchsner, A. Finite element analysis of natural fiber composites using a self-updating model. J. Compos. Mater. 2020, 54, 3275–3286, doi:10.1177/0021998320912822.
  11. Fan, F.; Lei, B.; Sahmani, S.; Safaei, B. On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates. Thin-Walled Struct. 2020, 154, 106841, doi: 10.1016/j.tws.2020.106841.
  12. Huzaifah, M.; Sapuan, S.; Leman, Z.; Ishak, M.; Maleque, M. A review of sugar palm (Arenga pinnata): Application, fibre characterisation and composites. Multidiscip. Model. Mater. Struct. 2017, 13, 678–698, doi:10.1108/MMMS-12-2016-0064.
  13. Behdinan, K.; Moradi-Dastjerdi, R.; Safaei, B.; Qin, Z.; Chu, F.; Hui, D. Graphene and CNT impact on heat transfer response of nanocomposite cylinders. Nanotechnol. Rev. 2020, 9, 41–52.
  14. Mazzanti, V.; Pariante, R.; Bonanno, A.; Ruiz de Ballesteros, O.; Mollica, F.; Filippone, G. Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Compos. Sci. Technol. 2019, 180, 51–59, doi:10.1016/j.compscitech.2019.05.015.
  15. Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581, doi:10.1016/j.jclepro.2017.10.101.
  16. Ishak, M.; Leman, Z.; Sapuan, S.; Rahman, M.; Anwar, U. Chemical composition and FT-IR spectra of sugar palm (Arenga pinnata) fibers obtained from different heights. J. Nat. Fibers. 2013, 10, 83–97.
  17. Moghaddam, M.K.; Mortazavi, S.M. Physical and chemical properties of natural fibers extracted from typha australis leaves. J. Nat. Fibers. 2016, 13, 353–361.
  18. Saravanakumar, S.; Kumaravel, A.; Nagarajan, T.; Moorthy, I.G. Investigation of physico-chemical properties of alkali-treated Prosopis juliflora fibers. Int. J. Polym. Anal. Charact. 2014, 19, 309–317.
  19. Vignesh, V.; Balaji, A.; Karthikeyan, M. Extraction and characterization of new cellulosic fibers from Indian mallow stem: An exploratory investigation. Int. J. Polym. Anal. Charact. 2016, 21, 504–512.
  20. Safri, S.N.A.; Sultan, M.T.H.; Jawaid, M.; Jayakrishna, K. Impact behaviour of hybrid composites for structural applications: A review. Compos. B Eng. 2018, 133, 112–121, doi:10.1016/j.compositesb.2017.09.008.
  21. Safaei, B.; Fattahi, A.; Chu, F. Finite element study on elastic transition in platelet reinforced composites. Microsyst. Technol. 2018, 24, 2663–2671.
  22. Lau, K.-t.; Hung, P.-y.; Zhu, M.-H.; Hui, D. Properties of natural fibre composites for structural engineering applications. Compos. B Eng. 2018, 136, 222–233, doi:10.1016/j.compositesb.2017.10.038.
  23. Elanchezhian, C.; Ramnath, B.V.; Ramakrishnan, G.; Rajendrakumar, M.; Naveenkumar, V.; Saravanakumar, M.K. Review on mechanical properties of natural fiber composites. Mater. Today 2018, 5, 1785–1790, doi:10.1016/j.matpr.2017.11.276.
  24. Dhanola, A.; Bisht, A.S.; Kumar, A.; Kumar, A. Influence of natural fillers on physico-mechanical properties of luffa cylindrica/ polyester composites. Mater. Today 2018, 5, 17021–17029, doi:10.1016/j.matpr.2018.04.107.
  25. Bisen, H.B.; Hirwani, C.K.; Satankar, R.K.; Panda, S.K.; Mehar, K.; Patel, B. Numerical Study of Frequency and Deflection Responses of Natural Fiber (Luffa) Reinforced Polymer Composite and Experimental Validation. J. Nat. Fibers. 2018, 17, 505–519, doi:10.1080/15440478.2018.1503129.
  26. Kiruthika, A.V. A review on physico-mechanical properties of bast fibre reinforced polymer composites. J. Build. Eng. 2017, 9, 91–99, doi:10.1016/j.jobe.2016.12.003.
  27. Chen, Y.; Su, N.; Zhang, K.; Zhu, S.; Zhao, L.; Fang, F.; Ren, L.; Guo, Y. In-Depth Analysis of the Structure and Properties of Two Varieties of Natural Luffa Sponge Fibers. Materials 2017, 10, 479, doi:10.3390/ma10050479.
  28. Chandramohan, D.; Presin Kumar, A.J. Experimental data on the properties of natural fiber particle reinforced polymer composite material. Data Brief 2017, 13, 460–468, doi:10.1016/j.dib.2017.06.020.
  29. Jauhari, N.; Mishra, R.; Thakur, H. Natural fibre reinforced composite laminates—A review. Mater. Today 2015, 2, 2868–2877.
  30. Yan, L.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. B Eng. 2014, 56, 296–317, doi:10.1016/j.compositesb.2013.08.014.
  31. Węcławski, B.T.; Fan, M.; Hui, D. Compressive behaviour of natural fibre composite. Compos. B Eng. 2014, 67, 183–191, doi:10.1016/j.compositesb.2014.07.014.
  32. Sathishkumar, T.P.; Navaneethakrishnan, P.; Shankar, S.; Rajasekar, R.; Rajini, N. Characterization of natural fiber and composites—A review. J. Reinf. Plast. Compos. 2013, 32, 1457–1476, doi:10.1177/0731684413495322.
  33. Nguong, C.; Lee, S.; Sujan, D. A review on natural fibre reinforced polymer composites. Proc. World Acad. Sci. Eng. Technol. 2013, 7, 52–59.
  34. Koronis, G.; Silva, A.; Fontul, M. Green composites: A review of adequate materials for automotive applications. Compos. B Eng. 2013, 44, 120–127, doi:10.1016/j.compositesb.2012.07.004.
  35. AL-Oqla, F.M.; Alothman, O.Y.; Jawaid, M.; Sapuan, S.; Es-Saheb, M. Processing and properties of date palm fibers and its composites. In Biomass Bioenergy; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–25.
  36. Jawaid, M.; Khalil, H.A. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011, 86, 1–18.
  37. Ho, M.-p.; Wang, H.; Lee, J.-H.; Ho, C.-k.; Lau, K.-t.; Leng, J.; Hui, D. Critical factors on manufacturing processes of natural fibre composites. Compos. B Eng. 2012, 43, 3549–3562, doi:10.1016/j.compositesb.2011.10.001.
  38. Bajpai, P.K.; Singh, I.; Madaan, J. Joining of natural fiber reinforced composites using microwave energy: Experimental and finite element study. Mater. Des. 2012, 35, 596–602, doi:10.1016/j.matdes.2011.10.007.
  39. Rokbi, M.; Osmani, H.; Imad, A.; Benseddiq, N. Effect of Chemical treatment on Flexure Properties of Natural Fiber-reinforced Polyester Composite. Procedia Eng. 2011, 10, 2092–2097, doi:10.1016/j.proeng.2011.04.346.
  40. Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. B Eng. 2011, 42, 856–873, doi:10.1016/j.compositesb.2011.01.010.
  41. Alves, C.; Silva, A.; Reis, L.; Freitas, M.; Rodrigues, L.; Alves, D. Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 2010, 18, 313–327.
  42. Silva, G.; Kim, S.; Aguilar, R.; Nakamatsu, J. Natural fibers as reinforcement additives for geopolymers–A review of potential eco-friendly applications to the construction industry. SM&T 2020, 23, e00132, doi:10.1016/j.susmat.2019.e00132.
  43. Dawit, J.B.; Regassa, Y.; Lemu, H.G. Property characterization of acacia tortilis for natural fiber reinforced polymer composite. Results Mater. 2020, 5, 100054, doi:10.1016/j.rinma.2019.100054.
  44. Jino, R.; Pugazhenthi, R.; Ashok, K.G.; Ilango, T.; Chakravarthy, P.R.K. Enhancement of Mechanical Properties of Luffa Fiber/Epoxy Composite Using B4C. J. Adv. Microsc. Res. 2017, 12, 89–91, doi:10.1166/jamr.2017.1324.
  45. Ekici, B.; Kentli, A.; Küçük, H. Improving Sound Absorption Property of Polyurethane Foams by Adding Tea-Leaf Fibers. Arch. Acoust. 2012, 37, 515–520, doi:10.2478/v10168-012-0052-1.
  46. Shen, J.; Min Xie, Y.; Huang, X.; Zhou, S.; Ruan, D. Mechanical properties of luffa sponge. J. Mech. Behav. Biomed. Mater. 2012, 15, 141–152, doi:10.1016/j.jmbbm.2012.07.004.
  47. Chen, Q.; Shi, Q.; Gorb, S.N.; Li, Z. A multiscale study on the structural and mechanical properties of the luffa sponge from Luffa cylindrica plant. J. Biomech. 2014, 47, 1332–1339, doi:10.1016/j.jbiomech.2014.02.010.
  48. Sinnott, E.W.; Bloch, R. Development of the fibrous net in the fruit of various races of Luffa cylindrica. Bot. Gaz. 1943, 105, 90–99.
  49. Sabarinathan, P.; Rajkumar, K.; Gnanavelbabu, A. Investigation of mechanical properties of Luffa cylindrical and flax reinforced hybrid polymer composite. J. Adv. Eng. Res. 2016, 3, 124–127.
  50. Saw, S.K.; Purwar, R.; Nandy, S.; Ghose, J.; Sarkhel, G. Fabrication, characterization, and evaluation of luffa cylindrica fiber reinforced epoxy composites. BioResources 2013, 8, 4805–4826.
  51. Mohanta, N.; Acharya, S.K. Fiber surface treatment: Its effect on structural, thermal, and mechanical properties of Luffa cylindrica fiber and its composite. J. Compos. Mater. 2016, 50, 3117–3131, doi:10.1177/0021998315615654.
  52. Porterfield, W. Loofah—The sponge gourd. Econ. Bot. 1955, 9, 211–223.
  53. Ray, D.; Sarkar, B.K.; Rana, A.; Bose, N.R. Effect of alkali treated jute fibres on composite properties. Bull. Mater. Sci. 2001, 24, 129–135.
  54. Jino, R.; Sriraman, M.; Arthika, B.; Ashok, K. Studies on mechanical properties of luffa acutangula/lignite fly ash reinforced composites. Int. J. Eng. Technol. 2018, 7, 251–254.
  55. Chen, Y.; Su, N.; Zhang, K.; Zhu, S.; Zhu, Z.; Qin, W.; Yang, Y.; Shi, Y.; Fan, S.; Wang, Z.; et al. Effect of fiber surface treatment on structure, moisture absorption and mechanical properties of luffa sponge fiber bundles. Ind. Crops Prod. 2018, 123, 341–352, doi:10.1016/j.indcrop.2018.06.079.
  56. Thangaraju, R.; Aravindakumar, A. Experimental study on the characteristics of surface treated luffa fiber composites. Int. J. Chem. Pharm. Rev. Res. 2016, 9, 646–651.
  57. Parida, C.; Dash, S.K.; Das, S.C. Effect of Fiber Treatment and Fiber Loading on Mechanical Properties of Luffa-Resorcinol Composites. Indian J. Eng. Mater. Sci. 2015, 2015, 1–6, doi:10.1155/2015/658064.
  58. Parida, C.; Dash, S.K.; Chaterjee, P. Mechanical properties of injection molded poly (lactic) Acid—Luffa fiber composites. SNL 2015, 5, 65, doi:10.4236/snl.2015.54008.
  59. Anbukarasi, K.; Kalaiselvam, S. Study of effect of fibre volume and dimension on mechanical, thermal, and water absorption behaviour of luffa reinforced epoxy composites. Mater. Des 2015, 66, 321–330, doi:10.1016/j.matdes.2014.10.078.
  60. Tanobe, V.; Flores-Sahagun, T.; Amico, S.; Muniz, G.; Satyanarayana, K. Sponge Gourd (Luffa Cylindrica) Reinforced Polyester Composites: Preparation and Properties. Defence Sci. J. 2014, 64, 273–280, doi:10.14429/dsj.64.7327.
  61. Srinivasan, C.; Sathish, S.; Vignesh, K. Mechanical properties of chemically treated Luffa Aegyptiaca fiber reinforced epoxy matrix composites. Int. J. Sci. Res. Manag. 2014, 2, 1515–1524.
  62. Panneerdhass, R.; Gnanavelbabu, A.; Rajkumar, K. Mechanical Properties of Luffa Fiber and Ground nut Reinforced Epoxy Polymer Hybrid Composites. Procedia Eng. 2014, 97, 2042–2051, doi:10.1016/j.proeng.2014.12.447.
  63. Panneerdhass, R.; Baskaran, R.; Rajkumar, K.; Gnanavelbabu, A. Mechanical Properties of Chopped Randomly Oriented Epoxy-Luffa Fiber Reinforced Polymer Composite. Appl. Mech. Mater. 2014, 591, 103–107, doi:10.4028/www.scientific.net/AMM.591.103.
  64. Demir, H.; Atikler, U.; Balköse, D.; Tıhmınlıoğlu, F. The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–luffa fiber composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 447–456, doi:10.1016/j.compositesa.2005.05.036.
  65. Dharmalingam, S.; Meenakshisundaram, O.; Kugarajah, V. Effect of Degree of Silanization of Luffa on the properties of Luffa-Epoxy Composites. Colloids Surf. A Physicochem. Eng. Aspects 2020, 603, 125273, doi: 10.1016/j.colsurfa.2020.125273.
  66. Ashok, K.; Kalaichelvan, K.; Damodaran, A. Effect of Nano Fillers on Mechanical Properties of Luffa Fiber Epoxy Composites. J. Nat. Fibers. 2020, 1–18, doi:10.1080/15440478.2020.1779898.
  67. Mohana Krishnudu, D.; Sreeramulu, D.; Reddy, P.V.; Rajendra Prasad, P. Influence of Filler on Mechanical and Di-electric Properties of Coir and Luffa Cylindrica Fiber Reinforced Epoxy Hybrid Composites. J. Nat. Fibers. 2020, 17, 1–10, doi:10.1080/15440478.2020.1745115.
  68. Yang, X.; Wang, X.; Zhao, Y.; Xu, L.; Wang, T.; Zhang, X. Preparation of recyclable BiOI/luffa fiber composite and its highly efficient visible light photocatalytic properties. J. Clean. Prod. 2018, 200, 945–953.
  69. Ghali, L.H.; Aloui, M.; Zidi, M.; Daly, H.B.; Msahli, S.; Sakli, F. Effect of chemical modification of luffa cylindrica fibers on the mechanical and hygrothermal behaviours of polyester/luffa composites. BioResources 2011, 6, 3836–3849.
  70. Ghali, L.; Msahli, S.; Zidi, M.; Sakli, F. Effects of Fiber Weight Ratio, Structure and Fiber Modification onto Flexural Properties of Luffa-Polyester Composites. Adv. Mater. Phys. Chem. 2011, 1, 78–85, doi:10.4236/ampc.2011.13013.
  71. Ghali, L.; Msahli, S.; Zidi, M.; Sakli, F. Effect of pre-treatment of Luffa fibres on the structural properties. Mater. Lett. 2009, 63, 61–63, doi:10.1016/j.matlet.2008.09.008.
  72. Tanobe, V.O.A.; Sydenstricker, T.H.D.; Munaro, M.; Amico, S.C. A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polym. Test. 2005, 24, 474–482, doi:10.1016/j.polymertesting.2004.12.004.
  73. Chakrabarti, D.; Islam, M.S.; Jubair, K.; Sarker, M.R.H. Effect of Chemical Treatment on the Mechanical Properties of Luffa Fiber Reinforced Epoxy Composite. J. Eng. Adv. 2020, 1, 37–42, doi:10.38032/jea.2020.02.002.
  74. Botaro, V.R.; Novack, K.M.; Siqueira, É.J. Dynamic mechanical behavior of vinylester matrix composites reinforced by Luffa cylindrica modified fibers. J. Appl. Polym. Sci. 2012, 124, 1967–1975, doi:10.1002/app.35019.
  75. Shen, J.; Xie, Y.M.; Huang, X.; Zhou, S.; Ruan, D. Behaviour of luffa sponge material under dynamic loading. Int. J. Impact Eng. 2013, 57, 17–26, doi:10.1016/j.ijimpeng.2013.01.004.
  76. Parida, C.; Das, S.C.; Dash, S.K. Mechanical Analysis of Bio Nanocomposite Prepared from Luffa cylindrica. Procedia Chem. 2012, 4, 53–59, doi:10.1016/j.proche.2012.06.008.
  77. Kalusuraman, G.; Siva, I.; Munde, Y.; Selvan, C.P.; Kumar, S.A.; Amico, S.C. Dynamic-mechanical properties as a function of luffa fibre content and adhesion in a polyester composite. Polym. Test. 2020, 87, 106538, doi:10.1016/j.polymertesting.2020.106538.
  78. Pires, C.; Motta, L.A.d.C.; Ferreira, R.A.d.R.; Caixeta, C.d.O.; Savastano, H. Thermomechanical and Thermo-hydro-mechanical Treatments of Luffa Cylindrical Fibers. J. Nat. Fibers. 2020, 17, 1–13, doi:10.1080/15440478.2020.1726245.
  79. Kakar, A.; Jayamani, E.; Soon, K.H.; Bakri, M.K.B. Study of dielectric properties of luffa-polylactide quadratic splint composites: The effect of cyclic absorption and desorption of water. J. Vinyl. Addit. Technol. 2018, 24, 388–394, doi:10.1002/vnl.21610.
  80. Boynard, C.; Monteiro, S.; d’Almeida, J. Aspects of alkali treatment of sponge gourd (Luffa cylindrica) fibers on the flexural properties of polyester matrix composites. J. Appl. Polym. Sci. 2003, 87, 1927–1932.
  81. Al-Mobarak, T.; Mina, M.; Gafur, M. Improvement in mechanical properties of sponge-gourd fibers through different chemical treatment as demonstrated by utilization of the Weibull distribution model. J. Nat. Fibers. 2020, 17, 573–588.
  82. Yin, S.; Wang, H.; Li, J.; Ritchie, R.O.; Xu, J. Light but tough bio-inherited materials: Luffa sponge based nickel-plated composites. J. Mech. Behav. Biomed. 2019, 94, 10–18.
  83. Guo, Y.; Wang, L.; Chen, Y.; Luo, P.; Chen, T. Properties of luffa fiber reinforced phbv biodegradable composites. Polymers 2019, 11, 1765.
  84. Sivakandhan, C.; Balaji, R.; Loganathan, G.B.; Madan, D.; Murali, G. Investigation of mechanical behaviour on sponge/ridge gourd (Luffa aegyptiaca) natural fiber using epoxy and polyester resin. Mater. Today 2020, 22, 705–714.
  85. Kalusuraman, G.; Kumaran, S.T.; Siva, I.; Kumar, S.A. Cutting performance of luffa cylindrica fiber–reinforced composite by abrasive water jet. J. Test. Eval. 2020, 48, 20180330, doi:10.1520/JTE20180330.
  86. Daniel-Mkpume, C.; Ugochukwu, C.; Okonkwo, E.; Fayomi, O.; Obiorah, S. Effect of Luffa cylindrica fiber and particulate on the mechanical properties of epoxy. Int. J. Adv. Manuf. Technol. 2019, 102, 3439–3444.
  87. Koruk, H.; Genc, G. Investigation of the acoustic properties of bio luffa fiber and composite materials. Mater. Lett. 2015, 157, 166–168, doi:10.1016/j.matlet.2015.05.071.
  88. Mohanta, N.; Acharya, S. Tensile, flexural and interlaminar shear properties of Luffa cylindrica fibre reinforced epoxy composites. Int. J. Macromol. Sci 2013, 3, 6–10.
  89. Genc, G.; Körük, H. Investigation of the vibro-acoustic behaviors of luffa bio composites and assessment of their use for practical applications. In Proceedings of the 23rd International Congress on Sound and Vibration 2016, ICSV 2016, Athens, Greece, 10–14 July 2016; pp. 1–8, doi:10.1016/j.matlet.2015.05.071.
  90. Mohanta, N.; Acharya, S.K. Mechanical and tribological performance of Luffa cylindrica fibre-reinforced epoxy composite. BioResources 2015, 10, 8364–8377.
  91. Mohanta, N.; Acharya, S.K. Investigation of mechanical properties of luffa cylindrica fibre reinforced epoxy hybrid composite. Int. J. Eng. Sci. Technol. 2015, 7, doi:10.4314/ijest.v7i1.1.
  92. Genc, G.; Sarikas, A.; Kesen, U.; Aydin, S. Luffa/Epoxy composites: Electrical properties for PCB application. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 933–940, doi:10.1109/TCPMT.2020.2988456.
  93. Saygili, Y.; Genc, G.; Sanliturk, K.Y.; Koruk, H. Investigation of the acoustic and mechanical properties of homogenous and hybrid jute and luffa bio composites. J. Nat. Fibers. 2020,17, 1–9.
  94. Boynard, C.A.; D’Almeida, J.R.M. Morphological Characterization and Mechanical Behavior of Sponge Gourd (Luffa Cylindrica)–Polyester Composite Materials. Polym. Plast. Technol. Eng. 2000, 39, 489–499, doi:10.1081/ppt-100100042.
  95. Boynard, C.; d’Almeida, J. Water absorption by sponge gourd (luffa cylindrica)-polyester composite materials. J. Mater. Sci. Lett. 1999, 18, 1789–1791.
  96. NagarajaGanesh, B.; Muralikannan, R. Extraction and characterization of lignocellulosic fibers fromLuffa cylindricafruit. Int. J. Polym. Anal. Charact. 2016, 21, 259–266, doi:10.1080/1023666x.2016.1146849.
  97. Akgül, M.; Korkut, S.; Çamlıbel, O.; Ayata, Ü. Some chemical properties of luffa and its suitability for medium density fiberboard (MDF) production. BioResources 2013, 8, 1709–1717.
  98. Escocio, V.A.; Visconte, L.L.Y.; Cavalcante, A.d.P.; Furtado, A.M.S.; Pacheco, E.B.A.V. Study of mechanical and morphological properties of bio-based polyethylene (HDPE) and sponge-gourds (Luffa-cylindrica) agroresidue composites. In AIP Conference Proceedings; AIP: Cleveland, Ohio, USA, 2015; p. 060012, doi:10.1063/1.4918430.
  99. Jamaluddin, J.; Firouzi, A.; Islam, M.; Yahaya, A. Effects of luffa and glass fibers in polyurethane-based ternary sandwich composites for building materials. SN Appl. Sci. 2020, 2, 1–10.
  100. Alshaaer, M.; Mallouh, S.A.; Al-Kafawein, J.a.; Al-Faiyz, Y.; Fahmy, T.; Kallel, A.; Rocha, F. Fabrication, microstructural and mechanical characterization of Luffa Cylindrical Fibre-Reinforced geopolymer composite. Appl. Clay Sci. 2017, 143, 125–133, doi:10.1016/j.clay.2017.03.030.
  101. Kaewtatip, K.; Thongmee, J. Studies on the structure and properties of thermoplastic starch/luffa fiber composites. Mater. Des. 2012, 40, 314–318, doi:10.1016/j.matdes.2012.03.053.
  102. Chen, Y.; Yuan, F.; Guo, Y.; Hu, D.; Zhu, Z.; Zhang, K.; Zhu, S. A novel mattress filling material comprising of luffa fibers and EVA resin. Ind. Crops Prod. 2018, 124, 213–215.
  103. Quadri, A.I.; Alabi, O. Assessment of Sponge Gourd (Luffa Aegyptical) Fiber as a Polymer Reinforcement in Concrete. J. Civil Eng. Mater. Appl. 2020, 4, 125–132.
  104. NagarajaGanesh, B.; Ganeshan, P.; Ramshankar, P.; Raja, K. Assessment of natural cellulosic fibers derived from Senna auriculata for making light weight industrial biocomposites. Ind. Crops Prod. 2019, 139, 111546.
  105. Bhingare, N.H.; Prakash, S.; Jatti, V.S. A review on natural and waste material composite as acoustic material. Polym. Test. 2019, 80, 106142, doi:10.1016/j.polymertesting.2019.106142.
  106. Mittal, V.; Saini, R.; Sinha, S. Natural fiber-mediated epoxy composites–a review. Compos. B Eng. 2016, 99, 425–435.
  107. Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25.
  108. Al-Oqla, F.M.; Sapuan, S. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 2014, 66, 347–354.
  109. Yang, Q.; Zhai, Y.; Li, X.; Li, H. Synthesis of Fe3O4/Pr-BiOCl/Luffa composites with enhanced visible light photoactivity for organic dyes degradation. Mater. Res. Bull. 2018, 106, 409–417.
  110. Satankar, R.K.; Sharma, N.; Panda, S.K.; Mohapatra, S.S. Experimental and simulation study of eigen frequency responses of Luffa cylindrica sponge fibre polymer composite. Mater. Today 2020, doi:10.1016/j.matpr.2020.03.552.
  111. Shih, Y.-J.; Dong, C.-D.; Huang, Y.-H.; Huang, C. Electro-sorption of ammonium ion onto nickel foam supported highly microporous activated carbon prepared from agricultural residues (dried Luffa cylindrica). Sci. Total Environ. 2019, 673, 296–305.
  112. Wu, Y.; Hu, W.; Xie, R.; Liu, X.; Yang, D.; Chen, P.; Zhang, J.; Zhang, F. Composite of nano-goethite and natural organic luffa sponge as template: Synergy of high efficiency adsorption and visible-light photocatalysis. Inorg. Chem. Commun. 2018, 98, 115–119.
  113. Sreeramulu, D.; Ramesh, N. Synthesis, characterization, and properties of epoxy filled Luffa cylindrica reinforced composites. Mater. Today 2018, 5, 6518–6524.
  114. Saw, S.K. Effect of stacking patterns on morphological and mechanical properties of luffa/coir hybrid fiber-reinforced epoxy composite laminates. In Hybrid Polymer Composite Materials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 313–333.
  115. Mohanta, N.; Acharya, S.K. Effect of alkali treatment on the flexural properties of a Luffa cylindrica-reinforced epoxy composite. Sci. Eng. Compos. Mater. 2018, 25, 85–93.
  116. Malkapuram, R.; Kumar, V.; Negi, Y.S. Recent development in natural fiber reinforced polypropylene composites. J. Reinf. Plast. Compos. 2009, 28, 1169–1189.
  117. O’donnell, A.; Dweib, M.; Wool, R. Natural fiber composites with plant oil-based resin. Compos. Sci. Technol. 2004, 64, 1135–1145.
  118. Wang, Z.; Ma, H.; Chu, B.; Hsiao, B.S. Super-hydrophobic modification of porous natural polymer “luffa sponge” for oil absorption. Polymer 2017, 126, 470–476.
  119. Saraiva, A.B.; Pacheco, E.B.; Gomes, G.M.; Visconte, L.L.; Bernardo, C.; Simoes, C.L.; Soares, A.G. Comparative lifecycle assessment of mango packaging made from a polyethylene/natural fiber-composite and from cardboard material. J. Clean. Prod. 2016, 139, 1168–1180.
  120. Kocak, D.; Mistik, S.; Akalin, M.; Merdan, N. The use of Luffa cylindrica fibres as reinforcements in composites. In Biofiber Reinforcements in Composite Materials; Elsevier: Amsterdam, The Netherlands, 2015; pp. 689–699.
More
Video Production Service