XPS Study Calcining Mixtures of Brucite with Titania: Comparison
Please note this is a comparison between Version 4 by Guadalupe Alan Castillo Rodriguez and Version 3 by Guadalupe Alan Castillo Rodriguez.

In tThis work, the phases in the Mg-Ti-O system are studied using the 1:1 formulation of MgO:TiO2 mixing synthetic brucite of Mexican origin with high purity TiO2 microparticles and with a heat treatment at 960°C for 1 h. The raw materials and formule X-ray stimulation photospectrometry technique known as XPS is applied to determine chemical bond characteristics of organic and inorganic substances. On the other hand, the processes of chemical substance formation are characterizcan be energetically activated by XPS and DRX techniques. The results demonstrate the presence of different oxidation states in titania and the formation of differentvarious mechanisms, one of them being thermal activation. Magnesium oxide (magnesia, MgO) and titanium oxides in the Mg-Ti-O system when mixed and calcined at 960°C; additionally, the formation of vacancies in the crystal lattice d (titania, TiO2) are substances that, due to their chemical and energetic nature, can chemically react to form other chemical compounds when subjected to relatively high temperatures. During the transformation from hexagonal brucite to magnesia with a cubic structure centered onsintering of MgO it is feasible to use some additives such as TiO2 to improve some properties, but during the process it is possible the faces is estimated. With the results, its thermal behavior is noticedormation of substances that limit its final application at high temperature. This review focuses on the relatively high-temperature synthesis and characterization of compounds based on the MgO-TiO2 phase diagramMgO:TiO2 in a 50:50 wt% ratio, using the XPS technique and supported by XRD.

  • sintering
  • magnesia
  • titania
  • XPS
  • ceramics
Please wait, diff process is still running!

References

  1. Callister, W. D. (1996). Introduction to Materials Science and Engineering (2nd ed., Vol. 2). Editorial Reverté.Schacht, C.. Refractories Handbook; Schacht, Charles A., Eds.; Marcel Dekker, Inc.: New York, 2004; pp. 109, 112.
  2. Martínez Leal, L.C. (1998, February). Classification and use of refractory materials in the steel industry (Thesis). University of San Carlos de Guatemala.Shand, M. A.. The Chemistry and Technology of Magnesia; John Wiley & Sons, Inc. Publication: Hoboken, New Jersey, 2006; pp. 12, 39, 33-35.
  3. Schacht, C. (2004). Refractories Handbook. Marcel Dekker, Inc.BRUCITE. (2018, 21 April). Fdminerals, Minerals and Fossils Collection. https://www.fdminerals.es/2018/04/21/brucita/
  4. Shand, M. A. (2006). The Chemistry and Technology of Magnesia. John Wiley & Sons.Hernández Reséndiz, M.; Estudio comparativo sobre los efectos en las propiedades microestructurales de la magnesia sinterizada con adiciones de nanopartículas de titania partiendo de precursores de Mg(OH)2 y MgO cáustico de origen sintético en México; Tesis, UANL México; 2021.
  5. Pasto, J. D., & Johnson, R.C. (2003). Determination of Organic Structures/Establishment of Organic Structures. Editorial Reverté.Castillo Rodríguez, G. A.; Estudio experimental de la fusión de magnesia por horno de arco eléctrico para la industria refractaria; Tesis UANL, México, 1992.
  6. Polytechnic University of Valencia (UPV). (2011, 24 October). Determination of crystal structures: X-ray diffraction [Video]. UPV. http://www.upv.es/visor/media/bc6e5368-2d78-1544-907c-45c9da6281f0/cCrist, B. V. & XPS International. (2004). Handbooks of Monochromatic XPS Spectra (Vol. 1). XPS International LLC.
  7. Mattox, D.M., & Sequeda, F. (n.d.). Educational guides for the processing, characterization and applications of thin layer coatings. UNIVALLE.Blasco T., Camblor M.A., Corma A., Perez-Pariente J.; The state of Ti in titanoaluminosilicates isomorphous with zeolite β; J. Am. Chem. Soc. 115, 11806 (1993).
  8. Phase Equilibria Diagrams Database (NIST Standard Reference Database 31), The American Ceramic Society and the National Institute of Standards and Technology, 2014. Figure Number 92-003; www.nist.gov/srd/nist31.cfmCh. Cardinaud - G. Lemperiere - M.C. Peignon - P.Y. Jouan, Characterisation of TiN coatings and of the TiN/Si interface by X-ray photoelectron spectroscopy and Auger electron spectroscopy, Applied Surface Science, Vol 68, pp. 595-603. 1993.
  9. Pickering, W. F. (2021). Modern Analytical Chemistry. Reverte.Xudong Jiang, Yupeng Zhang, Jing Jiang, Yongsen Rong, Yancheng Wang, Yichu Wu, and Chunxu Pan; Characterization of Oxygen Vacancy Associates within Hydrogenated TiO2: A Positron Annihilation Study. American Chemical Society J. Phys. Chem. C 2012, 116, 22619−22624 doi.org/10.1021/jp307573c
  10. Chapter IV. Differential thermal analysis. (n.d.). Digital Library of Universidad de los Andes. Retrieved September 3, 2021, from http://bdigital.ula.ve/storage/pdf/31865.pdfEnjun Wang, Wensheng Yang, and Yaan Cao; Unique Surface Chemical Species on Indium Doped TiO2 and Their Effect on the Visible Light Photocatalytic Activity. J. Phys. Chem. C 2009, 113, 20912–20917
  11. What is titanium dioxide? (2020, 2 March). TDMA. https://tdma.info/es/que-es-el-dioxido-de-titanio/P. T. Hsieh, Y.C. Chen, K. S. Kao and C.M. Wang; Luminescence mechanism of ZnO thin film investigated by XPS measurement. Appl. Phys. A 90, 317–321 (2008). DOI: 10.1007/s00339-007-4275-3
  12. Pulluaim, R. (2020, May 13). Uses of titanium dioxide | Chemical safety information. ChemicalSafetyFacts.org. https://www.chemicalsafetyfacts.org/es/dioxido-de-titanio/Ju.F. Huravlev - M.V. Kuznetsov - V.A. Gubanov; XPS analysis of adsorption of oxygen molecules on the surface of Ti and TiNx films in vacuum. Journal of Electron Spectroscopy and Related Phenomena, Vol 38, 169-176, 1992. No. public. 208, http://www.lasurface.com/database/liaisonxps.php?bib=208
  13. Alvarado Barrera, E. A.B. (1998). Thesis: Production of oxide powders from different precursors. http://eprints.uanl.mx/6383/1/1080098257.PDFT. Ször ́enyi, L.D. Laude, I. Bert ́oti, Z. K ́antor, Z. Geretovszky, J. Appl.Phys.78, 6211 (1995)
  14. Flores, M. E. F. F. (2018). Synthesis of Laminar Materials in one Step and their performance in the Photo-Conversion of Carbon Dioxide to Renewable Fuels. UANL Thesis.A. Casagrande, A. Glisenti, E. Lanzoni, E. Tondello, L. Mirenghi, M. Casarin, R. Bertoncello (1992), Surface and Interface Analysis (Vol 18).
  15. BRUCITE. (2018, 21 April). Fdminerals, Minerals and Fossils Collection. https://www.fdminerals.es/2018/04/21/brucita/T.L. Barr; The nature of the relative bonding chemistry in zeolites: an XPS study. Journal Phys. Chem., Vol 10, 760-765, Dec 1990. No. public. 191, http://www.lasurface.com/database/liaisonxps.php?bib=191
  16. Bolívar, G. (2019, August 12). Magnesium Hydroxide: Structure, Properties, Nomenclature, Uses. Lifeder. Https://Www.Lifeder.Com/Hidroxido-De-Magnesio/B. Vincent Crist, Ph.D.; Handbook of The Elements and Native Oxides, XPS International, Inc,3408 Emerald Drive, Ames, Iowa, 50010 USA. anuary 1999.
  17. Perales, I. A. P.M. (2015). Synthesis of TiO2-based Nanostructures Obtained by the Microwave-Assisted Hydrothermal Method. Thesis IPICYT.Wagner,CD., Zatko,D.A., Raymond,RH. Anal.Chern.52,1445(1980).
  18. Crist, B. V. & XPS International. (2004). Handbooks of Monochromatic XPS Spectra (Vol. 1). XPS International LLC.Haycock, D.E., Nicholls, e.J., Drch, D.S., Webber, M.J., Wiech, G. l. Chern. Soc. Dalton Trans., 1791 (1978).
  19. Moulder, J. F., Chastain, J., & King, R.C. (1995). Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics.Ling Wang, Guorui Yang, Shengjie Peng, Jianan Wang,Dongxiao Ji, Wei Yan, Seeram Ramakrishna; Fabrication of MgTiO3 nanofibers by electrospinning and their photocatalytic water splitting activity. International Journal of Hydrogen Energy 42 (2017) 25882-25890. https://doi.org/10.1016/j.ijhydene.2017.08.194
  20. Table of Elements | Thermo Fisher Scientific - NL. (n.d.). Thermofisher. https://www.thermofisher.com/nl/en/home/materials-science/learning-center/periodic-table.htmlNi Zhang, Huiyuan Xue and Rongrong Hu; The activity and stability of CeO2@CaO catalysts to produce biodiesel. The Royal Society of Chemistry 2018; Adv., 2018, 8, 32922–32929. https://doi.org/10.1039/c8ra06884d
  21. D. Briggs, M.P. Seah. (1993), Practical surface analysis, John WILLEY & SONS. (Vol. 1)Phase Equilibria Diagrams Database (NIST Standard Reference Database 31), The American Ceramic Society and the National Institute of Standards and Technology, 2014. Figure Number 92-003; www.nist.gov/srd/nist31.cfm
  22. Journal of Electron Spectroscopy and Related Phenomena: Tables of Contents (Vol. 63). (1993). Elsevier.
  23. A. Casagrande, A. Glisenti, E. Lanzoni, E. Tondello, L. Mirenghi, M. Casarin, R. Bertoncello (1992), Surface and Interface Analysis (Vol 18).
  24. Ch. Cardinaud - G. Lemperiere - M.C. Peignon - P.Y. Jouan, Characterisation of TiN coatings and of the TiN/Si interface by X-ray photoelectron spectroscopy and Auger electron spectroscopy, Applied Surface Science, Vol 68, pp. 595-603. 1993.
  25. Blasco T., Camblor M.A., Corma A., Perez-Pariente J.; The state of Ti in titanoaluminosilicates isomorphous with zeolite β; J. Am. Chem. Soc. 115, 11806 (1993).
  26. B. Vincent Crist, Ph.D;; Handbooks of Monochromatic XPS Spectra, Volume 1 - The Elements and Native Oxides. XPS International, Inc. 1999.
  27. Xudong Jiang, Yupeng Zhang, Jing Jiang, Yongsen Rong, Yancheng Wang, Yichu Wu, and Chunxu Pan; Characterization of Oxygen Vacancy Associates within Hydrogenated TiO2: A Positron Annihilation Study. American Chemical Society J. Phys. Chem. C 2012, 116, 22619−22624 doi.org/10.1021/jp307573c
  28. Enjun Wang, Wensheng Yang, and Yaan Cao; Unique Surface Chemical Species on Indium Doped TiO2 and Their Effect on the Visible Light Photocatalytic Activity. J. Phys. Chem. C 2009, 113, 20912–20917
  29. P. T. Hsieh, Y.C. Chen, K. S. Kao and C.M. Wang; Luminescence mechanism of ZnO thin film investigated by XPS measurement. Appl. Phys. A 90, 317–321 (2008). DOI: 10.1007/s00339-007-4275-3
  30. Ju.F. Huravlev - M.V. Kuznetsov - V.A. Gubanov; XPS analysis of adsorption of oxygen molecules on the surface of Ti and TiNx films in vacuum. Journal of Electron Spectroscopy and Related Phenomena, Vol 38, 169-176, 1992. No. public. 208, http://www.lasurface.com/database/liaisonxps.php?bib=208
  31. T. Ször ́enyi, L.D. Laude, I. Bert ́oti, Z. K ́antor, Z. Geretovszky, J. Appl.Phys.78, 6211 (1995)
  32. Ch. Cardinaud - G. Lemperiere - M.C. Peignon - P.Y. Jouan; Characterisation of TiN coatings and of TiN/Si interface by x-ray photoelectron spectroscopy and Auger electron spectroscopy. Applied Surface Science, Vol 68, 595-603, 1993. No. public. 43, http://www.lasurface.com/database/liaisonxps.php?bib=43
  33. A. Casagrande - A. Glisenti - E. Lanzoni - E. Tondello - L. Mirenghi - M. Casarin - R. Bertoncello; TiN, TiC and Ti(C,N) film characterization and its relationship to tribological behaviour. Surface and Interface Analysis, Vol 18, 525-531, Jan 1992. No. public. 197, http://www.lasurface.com/database/liaisonxps.php?bib=197
  34. T.L. Barr; The nature of the relative bonding chemistry in zeolites: an XPS study. Journal Phys. Chem., Vol 10, 760-765, Dec 1990. No. public. 191, http://www.lasurface.com/database/liaisonxps.php?bib=191
  35. B. Vincent Crist, Ph.D.; Handbook of The Elements and Native Oxides, XPS International, Inc,3408 Emerald Drive, Ames, Iowa, 50010 USA. anuary 1999.
  36. Wagner,CD., Zatko,D.A., Raymond,RH. Anal.Chern.52,1445(1980).
  37. Haycock, D.E., Nicholls, e.J., Drch, D.S., Webber, M.J., Wiech, G. l. Chern. Soc. Dalton Trans., 1791 (1978).
  38. Ling Wang, Guorui Yang, Shengjie Peng, Jianan Wang,Dongxiao Ji, Wei Yan, Seeram Ramakrishna; Fabrication of MgTiO3 nanofibers by electrospinning and their photocatalytic water splitting activity. International Journal of Hydrogen Energy 42 (2017) 25882-25890. https://doi.org/10.1016/j.ijhydene.2017.08.194
  39. Ni Zhang, Huiyuan Xue and Rongrong Hu; The activity and stability of CeO2@CaO catalysts to produce biodiesel. The Royal Society of Chemistry 2018; Adv., 2018, 8, 32922–32929. https://doi.org/10.1039/c8ra06884d
More
ScholarVision Creations