You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Graphene: Comparison
Please note this is a comparison between Version 1 by Mattia Bartoli and Version 2 by Catherine Yang.

Graphene is the new generation material, which finds potential and practical applications in a vast range of research areas. It has unrivalled characteristics, chiefly in terms of electronic conductivity, mechanical robustness and large surface area, which allow the attainment of outstanding performances in many fields of materials science.

Graphene (/ˈɡræfiːn/) is an allotrope of carbon consisting of a single layer of atoms arranged in a two-dimensional honeycomb lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds. Each atom in a graphene sheet is connected to its three nearest neighbors by a strong σ-bond, and contributes to a valence band one electron that extends over the whole sheet. This is the same type of bonding seen in carbon nanotubes and polycyclic aromatic hydrocarbons, and (partially) in fullerenes and glassy carbon. The valence band is touched by a conduction band, making graphene a semimetal with unusual electronic properties that are best described by theories for massless relativistic particles. Charge carriers in graphene show linear, rather than quadratic, dependence of energy on momentum, and field-effect transistors with graphene can be made that show bipolar conduction. Charge transport is ballistic over long distances; the material exhibits large quantum oscillations and large and nonlinear diamagnetism. Graphene conducts heat and electricity very efficiently along its plane. The material strongly absorbs light of all visible wavelengths, which accounts for the black color of graphite; yet a single graphene sheet is nearly transparent because of its extreme thinness. The material is about 100 times as strong as would be the strongest steel of the same thickness. Scientists theorized the potential existence and production of graphene for decades. It has likely been unknowingly produced in small quantities for centuries, through the use of pencils and other similar applications of graphite. It was possibly observed in electron microscopes in 1962, but studied only while supported on metal surfaces. In 2004, the material was rediscovered, isolated and investigated at the University of Manchester, by Andre Geim and Konstantin Novoselov. In 2010, Geim and Novoselov were awarded the Nobel Prize in Physics for their "groundbreaking experiments regarding the two-dimensional material graphene". High-quality graphene proved to be surprisingly easy to isolate. Graphene has become a valuable and useful nanomaterial due to its exceptionally high tensile strength, electrical conductivity, transparency, and being the thinnest two-dimensional material in the world. The global market for graphene was $9 million in 2012, with most of the demand from research and development in semiconductor, electronics, electric batteries, and composites. The IUPAC (International Union for Pure and Applied Chemistry) recommends use of the name "graphite" for the three-dimensional material, and "graphene" only when the reactions, structural relations, or other properties of individual layers are discussed. A narrower definition, of "isolated or free-standing graphene" requires that the layer be sufficiently isolated from its environment, but would include layers suspended or transferred to silicon dioxide or silicon carbide.
  • Li-ion battery
  • electrode material
  • graphene
  • reduced graphene oxide
  • graphene oxide
Please wait, diff process is still running!

References

  1. Di Wei; Jani Kivioja; Graphene for energy solutions and its industrialization. Nanoscale 2013, 5, 10108-10126, 10.1039/c3nr03312k.
  2. Luca Lavagna; Silvia Marchisio; Alessandra Merlo; Roberto Nisticò; Matteo Pavese; Polyvinyl butyral‐based composites with carbon nanotubes: Efficient dispersion as a key to high mechanical properties. Polymer Composites 2020, in press, in press, 10.1002/pc.25661.
  3. Amit Kumar; Kamal Sharma; Amit Rai Dixit; A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. Journal of Materials Science 2018, 54, 5992-6026, 10.1007/s10853-018-03244-3.
  4. Mehran Dadkhah; A. Saboori; Paolo Fino; An Overview of the Recent Developments in Metal Matrix Nanocomposites Reinforced by Graphene.. Materials 2019, 12, 2823, 10.3390/ma12172823.
  5. Paloma Hidalgo-Manrique; Xianzhang Lei; Ruoyu Xu; Mingyu Zhou; Ian A. Kinloch; R. J. Young; Copper/graphene composites: a review. Journal of Materials Science 2019, 54, 12236-12289, 10.1007/s10853-019-03703-5.
  6. Emilie J. Siochi; Graphene in the sky and beyond. Nature Nanotechnology 2014, 9, 745-747, 10.1038/nnano.2014.231.
  7. Luca Lavagna; Davide Burlon; Roberto Nisticò; Vincenza Brancato; Andrea Frazzica; Matteo Pavese; Eliodoro Chiavazzo; Cementitious composite materials for thermal energy storage applications: a preliminary characterization and theoretical analysis. Scientific Reports 2020, 10, 1-13, 10.1038/s41598-020-69502-0.
  8. Sood, A.K.; Lund, I.; Puri, Y.R.; Efstathiadis, H.; Haldar, P.; Dhar, N.K.; Lewis, J.; Dubey, M.; Zakar, E.; Wijewarnasuriya, P.. Review of Graphene Technology and Its Applications for Electronic Devices; Graphene—New Trends Development; Intech: London, 2015; pp. 59.
  9. K.R. Ratinac; Wenrong Yang; Simon P. Ringer; Filip Braet; Toward Ubiquitous Environmental Gas Sensors—Capitalizing on the Promise of Graphene. Environmental Science & Technology 2010, 44, 1167-1176, 10.1021/es902659d.
  10. Gan Cui; Zhenxiao Bi; Ruiyu Zhang; Jianguo Liu; Xin Yu; Zili Li; A comprehensive review on graphene-based anti-corrosive coatings. Chemical Engineering Journal 2019, 373, 104-121, 10.1016/j.cej.2019.05.034.
  11. J. Nine; Martin A. Cole; Diana N. H. Tran; Dusan Losic; Graphene: a multipurpose material for protective coatings. Journal of Materials Chemistry A 2015, 3, 12580-12602, 10.1039/c5ta01010a.
  12. Anindya Nag; Arkadeep Mitra; Subhas Chandra Mukhopadhyay; Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical 2018, 270, 177-194, 10.1016/j.sna.2017.12.028.
  13. Editorial; 15 years of graphene electronics. Nature Electronics 2019, 2, 369-369, 10.1038/s41928-019-0312-4.
  14. Stephanie J. Heerema; Cees Dekker; Graphene nanodevices for DNA sequencing. Nature Nanotechnology 2016, 11, 127-136, 10.1038/nnano.2015.307.
  15. Jingquan Liu; Liang Cui; Dusan Losic; Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomaterialia 2013, 9, 9243-9257, 10.1016/j.actbio.2013.08.016.
  16. Maher F. El-Kady; Yuanlong Shao; Richard B. Kaner; Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials 2016, 1, 16033, 10.1038/natrevmats.2016.33.
  17. Pistoia, G. Lithium-Ion Batteries; Elsevier: Amsterdam, 2013; pp. 1-20.
  18. Maxwell Woody; Maryam Arbabzadeh; Geoffrey M. Lewis; Gregory A. Keoleian; Anna Stefanopoulou; Strategies to limit degradation and maximize Li-ion battery service lifetime - Critical review and guidance for stakeholders. Journal of Energy Storage 2020, 28, 101231, 10.1016/j.est.2020.101231.
  19. NCA103450 : Lithium-ion Batteries . industrial.panasonic.com. Retrieved 2020-10-8
  20. NCR18650BF : Lithium-ion Batteries . industrial.panasonic.com. Retrieved 2020-10-8
  21. https://setis.ec.europa.eu/sites/default/files/set_plan_batteries_implementation_plan.pdf
  22. Jean-Marie Tarascon; Is lithium the new gold?. Nature Chem 2010, 2, 510, https://doi.org/10.1038/nchem.680.
  23. Luca Lavagna; Giuseppina Meligrana; Claudio Gerbaldi; Alberto Tagliaferro; Mattia Bartoli; Graphene and Lithium-Based Battery Electrodes: A Review of Recent Literature. Energies 2020, 13, 4867, 10.3390/en13184867.
  24. Tarascon, J.; Is lithium the new gold?. Nature Chem 2010, 2, 510, https://doi.org/10.1038/nchem.680.
  25. Camille Grosjean; Pamela Herrera Miranda; Marion Perrin; Philippe Poggi; Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renewable and Sustainable Energy Reviews 2012, 16, 1735-1744, 10.1016/j.rser.2011.11.023.
  26. Franco, A.A.; Rucci, A.; Brandell, D.; Frayret, C.; Gaberscek, M.; Jankowski, P.; Johansson, P. Boosting; Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality?. Chem. Rev. 2019, 119, 4569–4627, https://doi.org/10.1021/acs.chemrev.8b00239.
  27. Zhongbao Wei; Difan Zhao; Hongwen He; Wanke Cao; Guangzhong Dong; A noise-tolerant model parameterization method for lithium-ion battery management system. Applied Energy 2020, 268, 114932, 10.1016/j.apenergy.2020.114932.
  28. Zhongbao Wei; Jiyun Zhao; Dongxu Ji; King Jet Tseng; A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model. Applied Energy 2017, 204, 1264-1274, 10.1016/j.apenergy.2017.02.016.
  29. Ponrouch, A.; Palacín, M.; Post-Li batteries: Promises and challenges. Philosophical Transactions of the Royal Society A 2019, 377, 20180297, https://doi.org/10.1098/rsta.2018.0297.
  30. Claude Delmas; Sodium and Sodium-Ion Batteries: 50 Years of Research. Advanced Energy Materials 2018, 8, 1703137., 10.1002/aenm.201703137.
  31. James C. Pramudita; Divya Sehrawat; Damian Goonetilleke; Neeraj Sharma; An Initial Review of the Status of Electrode Materials for Potassium-Ion Batteries. Advanced Energy Materials 2017, 7, 1602911, 10.1002/aenm.201602911.
  32. M. E. Arroyo-Dedompablo; Alexandre Ponrouch; Patrik Johansson; M. Rosa Palacín; Achievements, Challenges, and Prospects of Calcium Batteries. Chemical Reviews 2019, 120, 6331-6357, 10.1021/acs.chemrev.9b00339.
  33. Rana Mohtadi; Fuminori Mizuno; Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein Journal of Nanotechnology 2014, 5, 1291-1311, 10.3762/bjnano.5.143.
  34. Jang Wook Choi; Doron Aurbach; Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1, 16013, 10.1038/natrevmats.2016.13.
  35. Ana S. Dobrota; Igor A. Pašti; Slavko V. Mentus; Börje Johansson; Natalia V. Skorodumova; Altering the reactivity of pristine, N- and P-doped graphene by strain engineering: A DFT view on energy related aspects. Applied Surface Science 2020, 514, 145937, 10.1016/j.apsusc.2020.145937.
  36. Yuanhe Sun; Daming Zhu; Zhaofeng Liang; Yuanxin Zhao; Weifeng Tian; Xiaochuan Ren; Juan Wang; Xiaoyan Li; Yi Gao; Wen Wen; et al.Yaobo HuangXiaolong LiRenzhong Tai Facile renewable synthesis of nitrogen/oxygen co-doped graphene-like carbon nanocages as general lithium-ion and potassium-ion batteries anode. Carbon 2020, 167, 685-695, 10.1016/j.carbon.2020.06.046.
  37. Qimeng Peng; Xuebu Hu; Tianbiao Zeng; Biao Shang; Minglei Mao; Xun Jiao; Guocui Xi; FeSb2S4 anchored on amine-modified graphene towards high-performance anode material for sodium ion batteries. Chemical Engineering Journal 2020, 385, 123857, 10.1016/j.cej.2019.123857.
  38. Xiaoyu Dong; Zheng Xing; Guojun Zheng; Xinran Gao; Haiping Hong; Zhicheng Ju; Quanchao Zhuang; MoS2/N-doped graphene aerogles composite anode for high performance sodium/potassium ion batteries. Electrochimica Acta 2020, 339, 135932, 10.1016/j.electacta.2020.135932.
  39. Yue Dong; Xieji Lin; Dengke Wang; Renlu Yuan; Su Zhang; Xiaohong Chen; Lyubov G. Bulusheva; Alexander V. Okotrub; Huaihe Song; Modulating the defects of graphene blocks by ball-milling for ultrahigh gravimetric and volumetric performance and fast sodium storage. Energy Storage Materials 2020, 30, 287-295, 10.1016/j.ensm.2020.05.016.
  40. Xu Zhao; Yundong Zhao; Bin Huang; Zhijian Yang; Wei Cai; Jiehe Sui; Guozhong Cao; Hong-En Wang; Dual interface coupled molybdenum diselenide for high-performance sodium ion batteries and capacitors. Journal of Power Sources 2020, 446, 227298, 10.1016/j.jpowsour.2019.227298.
  41. Love Dashairya; Partha Saha; Antimony Sulphide Nanorods Decorated onto Reduced Graphene Oxide Based Anodes for Sodium-Ion Battery. Materials Today: Proceedings 2020, 21, 1899-1904, 10.1016/j.matpr.2020.01.247.
  42. Junwei Han; Chen Zhang; Debin Kong; Xinzi He; Jing Xiao; Fanqi Chen; Ying Tao; Ying Wan; Quan-Hong Yang; Flowable sulfur template induced fully interconnected pore structures in graphene artefacts towards high volumetric potassium storage. Nano Energy 2020, 72, 104729, 10.1016/j.nanoen.2020.104729.
  43. Ruslan D. Yamaletdinov; Yuriy V. Pershin; Ultrafast lithium diffusion in bilayer buckled graphene: A comparative study of Li and Na. Scripta Materialia 2020, 178, 139-143, 10.1016/j.scriptamat.2019.11.017.
  44. M. Latha; Sanjay Biswas; J. Vatsala Rani; Application of WS2-G composite as cathode for rechargeable magnesium batteries. Ionics 2020, 26, 3395-3404, 10.1007/s11581-020-03512-w.
  45. Amir H. Farokh Niaei; Tanveer Hussain; Marlies Hankel; Debra J. Searles; Hydrogenated defective graphene as an anode material for sodium and calcium ion batteries: A density functional theory study. Carbon 2018, 136, 73-84, 10.1016/j.carbon.2018.04.034.
  46. Keith Share; Adam P. Cohn; Rachel Carter; Bridget Rogers; Cary L. Pint; Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes. ACS Nano 2016, 10, 9738-9744, 10.1021/acsnano.6b05998.
More
Academic Video Service