LED Lighting Systems for Horticulture: Comparison
Please note this is a comparison between Version 1 by Ivan Paucek Pagan and Version 3 by Conner Chen.

       In recent years, research on light emitting diodes (LEDs) has highlighted their great potential as a lighting system for plant growth, development and metabolism control. The suitability of LED devices for plant cultivation has turned the technology into a main component in controlled or closed plant-growing environments, experiencing an extremely fast development of horticulture LED metrics. In this context, the hereby study aims to provide an insight into the current global horticulture LED industry and the present features and potentialities for LEDs’ applications. An updated review of this industry has been integrated through a database compilation of 301 manufacturers and 1473 LED lighting systems for plant growth. The research identifies Europe (40%) and North America (29%) as the main regions for production. Additionally, the current LED luminaires’ lifespans show 10 and 30% losses of light output after 45,000 and 60,000 working hours on average, respectively, while the vast majority of worldwide LED lighting systems present efficacy values ranging from 2 to 3 μmol J−1 (70%). Thus, an update on the status of the horticultural LED sector, applications and metrics, and the intense innovation are described and discussed.

  • light emitting diode
  • LED grow light
  • horticulture lighting
  • energy use efficiency
  • luminaire typology
  • greenhouse supplemental lighting
  • vertical farming
  • indoor cultivation
  • sustainability
Please wait, diff process is still running!

References

  1. Mangon, M.H. Production of the green matter of leaves under the influence of the electric light. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1861, 22, 327–328, doi:10.1080/14786446108643161.
  2. Mitchell, C.A.; Dzakovich, M.P.; Gomez, C.; Lopez, R.; Burr, J.F.; Hernández, R.; Kubota, C.; Currey, C.J.; Meng, Q.; Runkle, E.S.; et al. Light-emitting diodes in horticulture. Hortic. Rev. 2015, 43, 1–87, doi:10.1002/9781119107781.ch01.
  3. Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic. 2018, 235, 437–451, doi:10.1016/j.scienta.2018.02.058.
  4. Higuchi, Y.; Hisamatsu, T. Light Acts as a Signal for Regulation of Growth and Development. In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E.S., Eds.; Springer: Singapore, 2016; pp. 57–73, doi:10.1007/978-981-10-1848-0_5.
  5. Olle, M.; Viršile, A. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric. Food Sci. 2013, 22, 223–234, doi:10.23986/afsci.7897.
  6. Massa, G.D.; Kim, H.; Wheeler, R.M.; Mitchell, C.A. Plant Productivity in Response to LED Lighting. HortScience 2008, 43, 1951–1956, doi:10.21273/HORTSCI.43.7.1951.
  7. Bula, R.J.; Morrow, R.C.; Tibbitts, T.W.; Barta, D.J.; Ignatius, R.W.; Martin, T.S. Light-emitting Diodes as a Radiation Source for Plants. HortScience 1991, 26, 203–205, doi:10.21273/hortsci.26.2.203.
  8. Barta, D.J.; Tibbitts, T.W.; Bula, R.J.; Morrow, R.C. Evaluation of light emitting diode characteristics for a space-based plant irradiation source. Adv. Space Res. 1992, 12, 141–149, doi:10.1016/0273-1177(92)90020-x.
  9. Morrow, R.C. LED Lighting in Horticulture. HortScience 2008, 43, 1947–1950, doi:10.21273/HORTSCI.43.7.1947.
  10. Runkle, E.S. Recent Developments in Plant Lighting. In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E.S., Eds.; Springer: Singapore, 2016; pp. 233–236, doi:10.1007/978-981-10-1848-0_17.
  11. Illumitex. FARMVISIONAI™ System. Available online: https://illumitex.com/farmvisionai-2/ (accessed on 24 May 2020).
  12. Lumigrow. SmartPARTM Software. Available online: https://www.lumigrow.com/smartpar-software/ (accessed on 20 May 2020).
  13. Pinho, P.; Jokinen, K.; Halonen, L. Horticultural lighting–present and future challenges. Lighting Res. Technol. 2012, 44, 427–437, doi:10.1177/1477153511424986.
  14. Sipos, L.; Boros, I.F.; Csambalik, L.; Székely, G.; Jung, A.; Balázs, L. Horticultural lighting system optimalization: A review. Sci. Hortic. 2020, 273, 109631, doi:10.1016/j.scienta.2020.109631.
  15. Siekierski, A. Annual LED and Lighting Industry Directory 2018. Available online: https://issuu.com/lightingeu/docs/lighting.eu_spring_2018 (accessed on 15 April 2020).
  16. Mukish, P.; Boulay, P.; Vallo, M. Status of the Solid-State Lighting Source Industry 2019; Market and Technology Report Sample; Yole Développement: Lyon, France, July 2019.
  17. Hayashi, E.; Higgins, C. Global LED Lighting Players, Economic Analysis, and Market Creation for PFALs. In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E.S., Eds.; Springer: Singapore, 2016; pp. 317–345, doi:10.1007/978-981-10-1848-0_24.
  18. Marondedze, C.; Liu, X.; Huang, S.; Wong, C.; Zhou, X.; Pan, X.; An, H.; Xu, N.; Tian, X.; Wong, A. Towards a tailored indoor horticulture: A functional genomics guided phenotypic approach. Hort. Res. 2018, 5, doi:10.1038/s41438-018-0065-7.
  19. LEDinside. OSRAM Steadily Occupies the First Supplier of Horticultural Lighting with Its Superior LED Chip and Packing Technology. Available online: https://www.ledinside.com/interview/2020/5/osram_interview_horticulture_led (accessed on 17 April 2020).
  20. Zissis, G.; Bertoldi, P. Status of LED-Lighting World Market in 2017; Technical Report by the Joint Research Centre, European Commission: Ispra, Italia, 2018.
  21. Mukish, P.; Boulay, P.; Andrieu, O.; Thome, J.; Pons, A. Horticultural LED Lighting; Technology, Industry, and Market Trends Report Sample; Yole Développement: Lyon, France, November 2017.
  22. Hayashi, E. Current status of commercial plant factories with LED lighting market in Asia, Europe, and other regions. In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E.S., Eds.; Springer: Singapore, 2016; pp. 295–308, doi:10.1007/978-981-10-1848-0_22.
  23. Heuvelink, E.; Bakker, M.J.; Hogendonk, L.; Janse, J.; Kaarsemaker, R.; Maaswinkel, R. Horticultural Lighting in the Netherlands: New Developments. Acta Hortic. 2006, 711, 25–34, doi:10.17660/ActaHortic.2006.711.1.
  24. Hammond, D.; Goodman, S.; Wadsworth, E.; Rynard, V.; Boudreau, C.; Hall, W. Evaluating the impacts of cannabis legalization: The International Cannabis Policy Study. Int. J. Drug Policy 2020, 77, 102698, doi:10.1016/j.drugpo.2020.102698.
  25. Reese, S.; Horowitz, K.; Mann, M.; Remo, T. Research note: LED lighting—A global enterprise. Lighting Res. Technol. 2020, 0, 1–7, doi:10.1177/1477153520901757.
  26. Van den Broeck, G.; Maertens, M. Horticultural exports and food security in developing countries. Glob. Food Sec. 2016, 10, 11–20, doi:10.1016/j.gfs.2016.07.007.
  27. Nelson, J.A.; Bugbee, B. Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures. PLoS ONE 2014, 9, e99010, doi:10.1371/journal.pone.0099010.
  28. Jiang, C.; Johkan, M.; Hohjo, M.; Tsukagoshi, S.; Ebihara, M.; Nakaminami, A.; Maruo, T. Photosynthesis, plant growth, and fruit production of single-truss tomato improves with supplemental lighting provided from underneath or within the inner canopy. Sci. Hortic. 2017, 222, 221–229, doi:10.1016/j.scienta.2017.04.026.
  29. GE lighting. Online Catalogue of GE LED Grow Bulbs. Available online: https://www.gelighting.com/led-bulbs/grow-light-led (accessed on 25 April 2020).
  30. Blackcob. Online Catalogue of Blackcob Lamps. Available online: https://www.blackcob.cl/iluminacion (accessed on 26 April 2020).
  31. Fluence by Osram. Online Catalogue of Fluence by Osram Lighting Solutions for Controlled Environment Commercial Crop Production. Available online: https://shop.fluence.science/ (accessed on 4 May 2020).
  32. Valoya. Online Catalogue of Valoya Lamps. Available online: https://www.valoya.com/wp-content/uploads/2020/05/EN_Product-Brochure_2020.2.pdf (accessed on 4 May 2020).
  33. Fluence by Osram. Online Catalogue of VYPR Series. Available online: https://fluence.science/products/vypr-series/ (accessed on 6 May 2020).
  34. Paucek, I.; Pennisi, G.; Pistillo, A.; Appolloni, E.; Crepaldi, A.; Calegari, B.; Spinelli, F.; Cellini, A.; Gabarrell, X.; Orsini, F.; et al. Supplementary LED Interlighting Improves Yield and Precocity of Greenhouse Tomatoes in the Mediterranean. Agronomy 2020, 10, 1002, doi:10.3390/agronomy10071002.
  35. Fluence by Osram. Online Catalogue of RAZR Series. Available online: https://fluence.science/products/razr-series (accessed on 7 May 2020).
  36. Fluence by Osram. Online Catalogue of SPYDRx Plus. Available online: https://shop.fluence.science/store/spydr-series/spydrx-plus/ (accessed on 7 May 2020).
  37. Vipple. Online Catalogue of Vipple lamps. Available online: https://www.vipple.cn/products/ (accessed on 11 May 2020).
  38. Horticulture Lighting Group. Online Catalogue of Quantum Boards. Available online: https://horticulturelightinggroup.com/collections/quantum-boards (accessed on 12 May 2020).
  39. American Bright. Online Catalogue of Flexible Horticulture LED Solution. Available online: https://drive.google.com/file/d/1iH0myEiRWrqub3E6MlN65VjEioDDiXTu/view (accessed on 15 May 2020).
  40. Genesis Scientific. Online Catalogue of LED Grow Light Interflex. Available online: https://gs-horti.com/images/PDF/LED%20Grow%20light%20INTERFLEX%20series-gs-horti.com.pdf (accessed on 15 May 2020).
  41. Heilux. Online Catalogue of Growfilm Lamps. Available online: https://heiluxllc.com/new-index (accessed on 15 May 2020).
  42. Bever Innovations. Online Catalogue of Bever Innovations Lamps. Available online: https://horticulture.beverinnovations.com/en/products/ (accessed on 18 May 2020).
  43. Parus. Online Catalogue of Plant Factory Systems. Available online: http://www.parus.co.kr/list.php?ca_id=40 (accessed on 18 May 2020).
  44. Higgins, C. Current Status of Commercial Vertical Farms with LED Lighting Market in North America. In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E.S., Eds.; Springer: Singapore, 2016; pp. 309–315, doi:10.1007/978-981-10-1848-0_23.
  45. Goto, E. Measurement of Photonmetric and Radiometric Characteristics of LEDs for Plant Cultivation. In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E.S., Eds.; Springer: Singapore, 2016; pp. 395-402, doi:10.1007/978-981-10-1848-0_28.
  46. Fluence by Osram. How to compare Grow Lights. Available online: https://fluence.science/science-articles/how-to-compare-grow-lights/ (accessed on 26 May 2020).
  47. Yano, A.; Configuration, Function, and Operation of LED Lighting Systems. In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E.S., Eds.; Springer: Singapore, 2016; pp. 403–415, doi:10.1007/978-981-10-1848-0_29.
  48. Fujiwara, K.; Radiometric, Photometric and Photonmetric Quantities and Their Units. In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E.S., Eds.; Springer: Singapore, 2016; pp. 367–376, doi:10.1007/978-981-10-1848-0_26.
  49. Piromalis, D.; Arvanitis, K.G.; Papageorgas, P.; Ferentinos, K.P. Smart Precision Lighting for Urban and Landscape Closed Controlled Horticultural Environments. In Urban Horticulture: Sustainability for the Future; Nandwani, D., Ed.; Springer: Singapore, 2018; pp. 107–140, doi:10.1007/978-3-319-67017-1_6.
  50. Kusuma, P.; Pattison, P.M.; Bugbee, B. From physics to fixtures to food: Current and potential LED efficacy. Hortic. Res. 2020, 7, 56, doi:10.1038/s41438-020-0283-7.
  51. Gago-Calderón, A.; Orejón-Sánchez, R.D.; Hermoso-Orzáez, M.J. DC Network Indoor and Outdoor LED Lighting. In Light-Emitting Diode-An Outlook on the Empirical Features and Its Recent Technological Advancements; Thirumalai, J., Ed.; IntechOpen: London, UK, 2018; pp. 15–35, doi:10.5772/intechopen.74974.
  52. Pattison, P.M.; Hansen, M.; Tsao, J.Y. LED lighting efficacy: Status and directions. C. R. Phys. 2018, 19, 134–145, doi:10.1016/j.crhy.2017.10.013.
  53. Tiu, A.L.; Odulio, C.M. A Dimmable Open-Loop Resonant LED Driver for a Horticulture Grow Light. In Proceedings of the TENCON 2018-2018 IEEE Region 10 Conference, Jeju, Korea, 28–31 October 2018; pp. 2357–2361, doi:10.1109/tencon.2018.8650334
  54. Piromalis, D.; Arvanitis, K.; Papageorgas, P.; Tseles, D.; Psomopoulos, C. LEDWIRE: A Versatile Networking Platform for Smart LED Lighting Applications using LIN-Bus and WSNs. Sens. Transducers 2016, 200, 50–59.
  55. Littlefuse. Designing for LED Horticulture Applications with Proper Circuit Protection. Available online: https://www.littelfuse.com/~/media/electronics/application_notes/littelfuse_horticulture_application_note.pdf.pdf (accessed on 5 June 2020).
  56. Hinov, N.; Tsankov, P.; Ibrishimov, H. Innovative LED Lighting. In Proceedings of the 2019 International Conference on Creative Business for Smart and Sustainable Growth (CREBUS), Sandanski, Bulgaria, 18–21 March 2019; doi:10.1109/crebus.2019.8840095.
  57. Wu, B.S.; Hitti, Y.; MacPherson, S.; Orsat, V.; Lefsrud, M.G. Comparison and perspective of conventional and LED lighting for photobiology and industry applications. Environ. Exp. Bot. 2020, 171, 103953, doi:10.1016/j.envexpbot.2019.103953.
  58. Gupta, D.S.; Agarwal, A. Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment. In Light Emitting Diodes for Agriculture; Gupta, D.S., Ed.; Springer: Singapore, 2017; pp. 1–25, doi:10.1007/978-981-10-5807-3_1.
  59. Fluence by Osram. Online catalogue of RAY Series. Available online: https://1gt3sd9flvb3kwgha3wmyhbu-wpengine.netdna-ssl.com/wp-content/uploads/2019/12/FLU-SpecSheet_RAY_WEB_2019-12.pdf (accessed on 15 June 2020).
  60. Smart Grow Systems. Online Catalogue of Goldeni 500. Available online: https://smartgrow.systems/wp-content/uploads/2018/12/GOLDENi-500-VERTICAL-FRAMEZ.pdf (accessed on 15 June 2020).
  61. Nardelli, A.; Deuschle, E.; de Azevedo, L.D.; Pessoa, J.L.N.; Ghisi, E. Assessment of Light Emitting Diodes technology for general lighting: A critical review. Renew. Sust. Energ. Rev. 2017, 75, 368–379, doi:10.1016/j.rser.2016.11.002.
  62. National Electrical Manufacturers Association (NEMA). ANSI/IEC 60529-2004: Degrees of Protection Provided by Enclosures (IP Code). Available online: https://www.nema.org/docs/default-source/standards-document-library/ansi-iec-60529.pdf (accessed on 22 June 2020).
  63. Lumigrow. IP Rating in Greenhouse Equipment. Available online: https://www.lumigrow.com/learning-center/blogs/ip-rating-greenhouse-equipment/ (accessed on 24 June 2020).
  64. Lumigrow. IP Rating in Greenhouse Equipment. Available online: https://www.lumigrow.com/learning-center/blogs/ip-rating-greenhouse-equipment/ (accessed on 24 June 2020).
  65. Sanlight Gmbh. Online Catalogue of Sanlight Flex Series. Available online: https://www.sanlight.com/en/luminaires/sanlight-flex-series/ (accessed on 25 June 2020).
  66. Marcelis, L.F.M.; Buwalda, F.; Dieleman, J.A.; Dueck, T.A.; Elings, A.; de Gelder, A.; Hemming, H.; Kempkes, F.L.K.; Lil, T., van Noort, F.; et al. Innovations in crop production: A matter of physiology and technology. Acta Hortic. 2014, 1037, 39–45, doi:10.17660/actahortic.2014.1037.1.
  67. Cocetta, G.; Casciani, D.; Bulgari, R.; Musante, F.; Kolton, A.; Rossi, M.; Ferrante, A. Light use efficiency for vegetables production in protected and indoor environments. Eur. Phys. J. Plus 2017, 132, 43, doi:10.1140/epjp/i2017-11298-x.
  68. Radetsky, L.C. LED and HID Horticultural Luminaire Testing Report; Report by Lighting Research Center, Rensselaer Polytechnic Institute: Troy, MI, USA, 2018.
  69. Tungsram. Online Catalogue of Tungsram Greenhouse Linear Toplight. Available online: https://agritech.tungsram.com/en/products/toplight/linear-single# (accessed on 2 July 2020).
  70. Hyperion Grow Lights. Online Catalogue of Hyperion™ 3k Top Light. Available online: http://www.hyperiongrowlights.com/products/hyperion3k/ (accessed on 2 July 2020).
  71. GE Current. Online Catalogue of Arize Element Top Lighting LED Growing System. Available online: https://products.gecurrent.com/horticulture/arize-element (accessed on 2 July 2020).
More