Network Function Virtualization and Service Function Chaining Frameworks: Comparison
Please note this is a comparison between Version 2 by Jason Zhu and Version 1 by Haruna Umar Adoga.

Network slicing has become a fundamental property for next-generation networks, especially because an inherent part of 5G standardisation is the ability for service providers to migrate some or all of their network services to a virtual network infrastructure, thereby reducing both capital and operational costs. With network function virtualisation (NFV), network functions (NFs) such as firewalls, traffic load balancers, content filters, and intrusion detection systems (IDS) are either instantiated on virtual machines (VMs) or lightweight containers, often chained together to create a service function chain (SFC). 

In this work, we review the state-of-the-art NFV and SFC implementation frameworks and present a taxonomy of the current proposals. Our taxonomy comprises three major categories based on the primary objectives of each of the surveyed frameworks: (1) resource allocation and service orchestration, (2) performance tuning, and (3) resilience and fault recovery. We also identify some key open research challenges that require further exploration by the research community to achieve scalable, resilient, and high-performance NFV/SFC deployments in next-generation networks.

  • Software-defined Networking
  • Network function Virtualisation
  • Service Function Chain
  • 5G
  • Virtualization
  • Networks
  • Next-generation Networks
  • vnf
  • Distributed Systems
Please wait, diff process is still running!

References

  1. Herrera, J.G.; Botero, J.F. Resource allocation in NFV: A comprehensive survey. IEEE Trans. Netw. Serv. Manag. 2016, 13, 518–532.
  2. Cherrared, S.; Imadali, S.; Fabre, E.; Gössler, G.; Yahia, I.G.B. A survey of fault management in network virtualization environments: Challenges and solutions. IEEE Trans. Netw. Serv. Manag. 2019, 16, 1537–1551.
  3. Paganelli, F.; Cappanera, P.; Cuffaro, G. Tenant-defined service function chaining in a multi-site network slice. Future Gener. Comput. Syst. 2021, 121, 1–18.
  4. Laghrissi, A.; Taleb, T. A survey on the placement of virtual resources and virtual network functions. IEEE Commun. Surv. Tutor. 2018, 21, 1409–1434.
  5. Bujari, A.; Palazzi, C.E.; Polonio, D.; Zanella, M. Service function chaining: A lightweight container-based management and orchestration plane. In Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019; pp. 1–4.
  6. Santos, J.; Wauters, T.; Volckaert, B.; De Turck, F. Towards delay-aware container-based service function chaining in fog computing. In Proceedings of the NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–9.
  7. Li, X.; Qian, C. A survey of network function placement. In Proceedings of the 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2016; pp. 948–953.
  8. Haleplidis, E.; Joachimpillai, D.; Salim, J.H.; Lopez, D.; Martin, J.; Pentikousis, K.; Denazis, S.; Koufopavlou, O. ForCES applicability to SDN-enhanced NFV. In Proceedings of the 2014 Third European Workshop on Software Defined Networks, Budapest, Hungary, 1–3 September 2014; pp. 43–48.
  9. Fei, X.; Liu, F.; Zhang, Q.; Jin, H.; Hu, H. Paving the Way for NFV Acceleration: A Taxonomy, Survey and Future Directions. ACM Comput. Surv. (CSUR) 2020, 53, 1–42.
  10. Zhang, T.; Qiu, H.; Linguaglossa, L.; Cerroni, W.; Giaccone, P. NFV platforms: Taxonomy, design choices and future challenges. IEEE Trans. Netw. Serv. Manag. 2020, 18, 30–48.
  11. Hantouti, H.; Benamar, N.; Taleb, T.; Laghrissi, A. Traffic steering for service function chaining. IEEE Commun. Surv. Tutor. 2018, 21, 487–507.
  12. Bonfim, M.S.; Dias, K.L.; Fernandes, S.F. Integrated NFV/SDN architectures: A systematic literature review. ACM Comput. Surv. (CSUR) 2019, 51, 1–39.
  13. Yang, M.; Li, Y.; Jin, D.; Zeng, L.; Wu, X.; Vasilakos, A.V. Software-defined and virtualized future mobile and wireless networks: A survey. Mob. Netw. Appl. 2015, 20, 4–18.
  14. Xie, Y.; Liu, Z.; Wang, S.; Wang, Y. Service function chaining resource allocation: A survey. arXiv 2016, arXiv:1608.00095.
  15. Medhat, A.M.; Taleb, T.; Elmangoush, A.; Carella, G.A.; Covaci, S.; Magedanz, T. Service function chaining in next generation networks: State of the art and research challenges. IEEE Commun. Mag. 2016, 55, 216–223.
  16. Bhamare, D.; Jain, R.; Samaka, M.; Erbad, A. A survey on service function chaining. J. Netw. Comput. Appl. 2016, 75, 138–155.
  17. Hamdan, M.; Hassan, E.; Abdelaziz, A.; Elhigazi, A.; Mohammed, B.; Khan, S.; Vasilakos, A.V.; Marsono, M.N. A comprehensive survey of load balancing techniques in software-defined network. J. Netw. Comput. Appl. 2021, 174, 102856.
  18. Mirjalily, G.; Zhiquan, L. Optimal network function virtualization and service function chaining: A survey. Chin. J. Electron. 2018, 27, 704–717.
  19. Bera, S.; Misra, S.; Vasilakos, A.V. Software-defined networking for internet of things: A survey. IEEE Internet Things J. 2017, 4, 1994–2008.
  20. Kaur, K.; Mangat, V.; Kumar, K. A comprehensive survey of service function chain provisioning approaches in SDN and NFV architecture. Comput. Sci. Rev. 2020, 38, 100298.
  21. Hantouti, H.; Benamar, N.; Taleb, T. Service Function Chaining in 5G and Beyond Networks: Challenges and Open Research Issues. IEEE Netw. 2020, 34, 320–327.
  22. Quinn, P.; Beliveau, A. Service Function Chaining (SFC) Architecture. draft-quinn-sfc-arch-04. 2014. Available online: https://www.ietf.org/proceedings/89/slides/slides-89-sfc-10.pdf (accessed on 20 January 2022).
  23. Gasparakis, J.; Smith, K.; Zhou, D. Evaluating Dynamic Service Function Chaining for the Gi-LAN. In White Paper; Intel: Santa Clara, CA, USA, 2016.
  24. Halpern, J.; Pignataro, C. Service Function Chaining (sfc) Architecture. In RFC 7665; IETF: 2015; pp. 1–28. Available online: https://www.hjp.at/(de)/doc/rfc/rfc7665.html (accessed on 20 January 2022).
  25. Grønsund, P.; Mahmood, K.; Millstein, G.; Noy, A.; Solomon, G.; Sahai, A. A solution for SGi-LAN services virtualization using NFV and SDN. In Proceedings of the 2015 European Conference on Networks and Communications (EuCNC), Paris, France, 29 June–2 July 2015; pp. 408–412.
  26. Naik, P.; Vutukuru, M. libVNF: A Framework for Building Scalable High Performance Virtual Network Functions. In Proceedings of the 8th Asia-Pacific Workshop on Systems, Mumbai, India, 2 September 2017; pp. 1–8.
  27. Turk, Y.; Zeydan, E. An Implementation of Network Service Chaining for SDN-enabled Mobile Packet Data Networks. In Proceedings of the 2019 International Symposium on Networks, Computers and Communications (ISNCC), Istanbul, Turkey, 18–20 June 2019; pp. 1–6.
  28. Kaur, K.; Kumar, K.; Mangat, V. A road to network function virtualization and applications. Adv. Math. Sci. J. 2020, 9, 4059–4066.
  29. Brown, G.; Reading, H. Service Chaining in Carrier Networks. Heavy Read. 2015. Available online: https://www.qosmos.com/wp-content/uploads/Service-Chaining-in-Carrier-Networks_WP_Heavy-Reading_Qosmos_Feb2015.pdf (accessed on 20 January 2022).
  30. Shojafar, M.; Pooranian, Z.; Sookhak, M.; Buyya, R. Recent advances in cloud data centers toward fog data centers. Concurr. Comput. Pract. Exp. 2019, 31, e5164.
  31. Cunha, V.A.; Cardoso, I.D.; Barraca, J.P.; Aguiar, R.L. Policy-driven vCPE through dynamic network service function chaining. In Proceedings of the 2016 IEEE NetSoft Conference and Workshops (NetSoft), Seoul, Korea, 6–10 June 2016; pp. 156–160.
  32. Yan, Z.; Zhang, P.; Vasilakos, A.V. A security and trust framework for virtualized networks and software-defined networking. Secur. Commun. Netw. 2016, 9, 3059–3069.
  33. Liu, Y.; Zhou, F.; Chen, C.; Zhu, Z.; Shang, T.; Torres-Moreno, J.M. Disaster protection in Inter-DataCenter networks leveraging cooperative storage. IEEE Trans. Netw. Serv. Manag. 2021, 18, 2598–2611.
  34. Zhong, X.; Wang, Y.; Qiu, X. Service function chain orchestration across multiple clouds. China Commun. 2018, 15, 99–116.
  35. Medhat, A.M.; Carella, G.A.; Pauls, M.; Monachesi, M.; Corici, M.; Magedanz, T. Resilient orchestration of Service Functions Chains in a NFV environment. In Proceedings of the 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Palo Alto, CA, USA, 7–10 November 2016; pp. 7–12.
  36. Sarmiento, D.E.; Lebre, A.; Nussbaum, L.; Chari, A. Decentralized SDN Control Plane for a Distributed Cloud-Edge Infrastructure: A Survey. IEEE Commun. Surv. Tutor. 2021, 23, 256–281.
  37. Medved, J.; Varga, R.; Tkacik, A.; Gray, K. Opendaylight: Towards a model-driven sdn controller architecture. In Proceeding of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, Sydney, NSW, Australia, 19 June 2014; pp. 1–6.
  38. Kaur, S.; Singh, J.; Ghumman, N.S. Network programmability using POX controller. In Proceedings of the International Conference on Communication, Computing & Systems (ICCCS); 2014; Volume 138, pp. 134–138. Available online: https://docplayer.net/11300937-Network-programmability-using-pox-controller.html (accessed on 20 January 2022).
  39. Zhang, T.; Linguaglossa, L.; Giaccone, P.; Iannone, L.; Roberts, J. Performance benchmarking of state-of-the-art software switches for NFV. Comput. Netw. 2021, 188, 107861.
  40. Bosshart, P.; Daly, D.; Gibb, G.; Izzard, M.; McKeown, N.; Rexford, J.; Schlesinger, C.; Talayco, D.; Vahdat, A.; Varghese, G.; et al. P4: Programming protocol-independent packet processors. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 87–95.
  41. ETSI. Network Functions Virtualisation (NFV): Architectural Framework; Technical Report 002 V1.1.1; 2013. Available online: https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf (accessed on 20 January 2022).
  42. Binu, A.; Kumar, G.S. Virtualization techniques: A methodical review of XEN and KVM. In International Conference on Advances in Computing and Communications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 399–410.
  43. Wray, M.J.; Dalton, C.I. Network Virtualization. US Patent 8,223,770, 17 July 2012. Available online: https://uspto.report/patent/grant/8,223,770 (accessed on 20 January 2022).
  44. Wang, M.; Cheng, B.; Wang, S.; Chen, J. Availability-and traffic-aware placement of parallelized SFC in data center networks. IEEE Trans. Netw. Serv. Manag. 2021, 18, 182–194.
  45. Özdem, M.; Alkan, M. Subscriber aware dynamic service function chaining. Comput. Netw. 2021, 194, 108138.
  46. Li, Y.; Chen, M. Software-defined network function virtualization: A survey. IEEE Access 2015, 3, 2542–2553.
  47. Yousaf, F.Z.; Bredel, M.; Schaller, S.; Schneider, F. NFV and SDN—Key technology enablers for 5G networks. IEEE J. Sel. Areas Commun. 2017, 35, 2468–2478.
  48. Kak, A. Towards 6G Through SDN and NFV-Based Solutions for Terrestrial and Non-Terrestrial Networks. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2021.
  49. Qadri, Y.A.; Nauman, A.; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The future of healthcare internet of things: A survey of emerging technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167.
  50. Huang, M.; Liu, A.; Xiong, N.N.; Wang, T.; Vasilakos, A.V. An effective service-oriented networking management architecture for 5G-enabled internet of things. Comput. Netw. 2020, 173, 107208.
  51. Morocho-Cayamcela, M.E.; Lee, H.; Lim, W. Machine learning for 5G/B5G mobile and wireless communications: Potential, limitations, and future directions. IEEE Access 2019, 7, 137184–137206.
  52. Berardinelli, G.; Mahmood, N.H.; Rodriguez, I.; Mogensen, P. Beyond 5G wireless IRT for industry 4.0: Design principles and spectrum aspects. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6.
  53. Katz, M.; Matinmikko-Blue, M.; Latva-Aho, M. 6Genesis flagship program: Building the bridges towards 6G-enabled wireless smart society and ecosystem. In Proceedings of the 2018 IEEE 10th Latin-American Conference on Communications (LATINCOM), Guadalajara, Mexico, 14–16 November 2018; pp. 1–9.
  54. Abdelwahab, S.; Hamdaoui, B.; Guizani, M.; Znati, T. Network function virtualization in 5G. IEEE Commun. Mag. 2016, 54, 84–91.
  55. Huang, H.; Zeng, C.; Zhao, Y.; Min, G.; Zhu, Y.Y.; Miao, W.; Hu, J. Scalable Service Function Chain Orchestration in NFV-enabled Networks: A Federated Reinforcement Learning Approach. IEEE J. Sel. Areas Commun. 2021, 39, 2558–2571.
  56. Sun, G.; Xu, Z.; Yu, H.; Chen, X.; Chang, V.; Vasilakos, A.V. Low-latency and resource-efficient service function chaining orchestration in network function virtualization. IEEE Internet Things J. 2019, 7, 5760–5772.
  57. Ballani, H.; Costa, P.; Gkantsidis, C.; Grosvenor, M.P.; Karagiannis, T.; Koromilas, L.; O’Shea, G. Enabling end-host network functions. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 493–507.
  58. Palkar, S.; Lan, C.; Han, S.; Jang, K.; Panda, A.; Ratnasamy, S.; Rizzo, L.; Shenker, S. E2: A framework for NFV applications. In Proceedings of the 25th Symposium on Operating Systems Principles, Monterey, CA, USA, 4 October 2015; pp. 121–136.
  59. Kouchaksaraei, H.R.; Dierich, T.; Karl, H. Pishahang: Joint orchestration of network function chains and distributed cloud applications. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal, QC, Canada, 25–29 June 2018; pp. 344–346.
  60. Kouchaksaraei, H.R.; Karl, H. Service Function Chaining Across OpenStack and Kubernetes Domains. In Proceedings of the 13th ACM International Conference on Distributed and Event-Based Systems, Darmstadt, Germany, 24 June 2019; pp. 240–243.
  61. Katsikas, G.P.; Enguehard, M.; Kuźniar, M.; Maguire Jr, G.Q.; Kostić, D. SNF: Synthesizing high performance NFV service chains. PeerJ Comput. Sci. 2016, 2, e98.
  62. Carella, G.A.; Magedanz, T. Open baton: A framework for virtual network function management and orchestration for emerging software-based 5G networks. Newsletter 2015, 2016, 190.
  63. Katsikas, G.P.; Barbette, T.; Kostic, D.; Steinert, R.; Maguire, G.Q., Jr. Metron: NFV Service Chains at the True Speed of the Underlying Hardware. In Proceedings of the 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), Renton, WA, USA, 9–11 April 2018; pp. 171–186.
  64. Dab, B.; Fajjari, I.; Rohon, M.; Auboin, C.; Diquélou, A. An Efficient Traffic Steering for Cloud-Native Service Function Chaining. In Proceedings of the 2020 23rd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris, France, 24–27 February 2020; pp. 71–78.
  65. Anwer, B.; Benson, T.; Feamster, N.; Levin, D. Programming slick network functions. In Proceedings of the 1st ACM Sigcomm Symposium on Software Defined Networking Research, Santa Clara, CA, USA, 17 June 2015; pp. 1–13.
  66. Bremler-Barr, A.; Harchol, Y.; Hay, D. OpenBox: A software-defined framework for developing, deploying, and managing network functions. In Proceedings of the 2016 ACM SIGCOMM Conference, Florianopolis, Brazil, 22 August 2016; pp. 511–524.
  67. Kohler, E.; Morris, R.; Chen, B.; Jannotti, J.; Kaashoek, M.F. The Click modular router. ACM Trans. Comput. Syst. (TOCS) 2000, 18, 263–297.
  68. Mafioletti, D.R.; Dominicini, C.K.; Martinello, M.; Ribeiro, R.M.; Villaca, R.d.S. PIaFFE: A Place-as-you-go In-network Framework for Flexible Embedding of VNFs. In Proceedings of the IEEE International Conference on Communications, Dublin, Ireland, 7–11 June 2020.
  69. Katsikas, G.P.; Barbette, T.; Kostić, D.; Maguire, J.G.Q.; Steinert, R. Metron: High-performance NFV Service Chaining Even in the Presence of Blackboxes. ACM Trans. Comput. Syst. (TOCS) 2021, 38, 1–45.
  70. Meng, Z.; Bi, J.; Wang, H.; Sun, C.; Hu, H. CoCo: Compact and optimized consolidation of modularized service function chains in NFV. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–7.
  71. Li, L.; Ota, K.; Dong, M. DeepNFV: A lightweight framework for intelligent edge network functions virtualization. IEEE Netw. 2018, 33, 136–141.
  72. Cziva, R.; Jouet, S.; White, K.J.; Pezaros, D.P. Container-based network function virtualization for software-defined networks. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015; pp. 415–420.
  73. Meng, Z.; Bi, J.; Wang, H.; Sun, C.; Hu, H. MicroNF: An efficient framework for enabling modularized service chains in NFV. IEEE J. Sel. Areas Commun. 2019, 37, 1851–1865.
  74. Panda, A.; Han, S.; Jang, K.; Walls, M.; Ratnasamy, S.; Shenker, S. NetBricks: Taking the V out of NFV. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2 November 2016; pp. 203–216.
  75. Eisenbud, D.E.; Yi, C.; Contavalli, C.; Smith, C.; Kononov, R.; Mann-Hielscher, E.; Cilingiroglu, A.; Cheyney, B.; Shang, W.; Hosein, J.D. Maglev: A fast and reliable software network load balancer. In Proceedings of the 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16), Santa Clara, CA, USA, 16–18 March 2016; pp. 523–535.
  76. Yasukata, K.; Huici, F.; Maffione, V.; Lettieri, G.; Honda, M. HyperNF: Building a high performance, high utilization and fair NFV platform. In Proceedings of the 2017 Symposium on Cloud Computing, Santa Clara, CA, USA, 24 September 2017; pp. 157–169.
  77. Lombardo, A.; Manzalini, A.; Schembra, G.; Faraci, G.; Rametta, C.; Riccobene, V. An open framework to enable NetFATE (Network Functions at the edge). In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft), London, UK, 13–17 April 2015; pp. 1–6.
  78. Martins, J.; Ahmed, M.; Raiciu, C.; Olteanu, V.; Honda, M.; Bifulco, R.; Huici, F. ClickOS and the art of network function virtualization. In Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), Seattle, WA, USA, 2–4 April 2014; pp. 459–473.
  79. Zhang, W.; Liu, G.; Zhang, W.; Shah, N.; Lopreiato, P.; Todeschi, G.; Ramakrishnan, K.; Wood, T. OpenNetVM: A platform for high performance network service chains. In Proceedings of the 2016 Workshop on Hot topics in Middleboxes and Network Function Virtualization, Florianopolis, Brazil, 22 August 2016; pp. 26–31.
  80. Castanho, M.S.; Dominicini, C.K.; Villacça, R.S.; Martinello, M.; Ribeiro, R.M. Phantomsfc: A fully virtualized and agnostic service function chaining architecture. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 354–359.
  81. Quinn, P.; Elzur, U.; Pignataro, C. Network Service Header (NSH). In RFC 8300; 2018; pp. 1–40. Available online: https://www.hjp.at/doc/rfc/rfc8300.html (accessed on 20 January 2022).
  82. Zheng, C.; Lu, Q.; Li, J.; Liu, Q.; Fang, B. A flexible and efficient container-based nfv platform for middlebox networking. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing, Pau, France, 9 April 2018; pp. 989–995.
  83. Ghaznavi, M.; Jalalpour, E.; Wong, B.; Boutaba, R.; Mashtizadeh, A.J. Fault tolerant service function chaining. In Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications Technologies, Architectures, and Protocols for Computer Communication, Virtual Event, USA, 30 July 2020; pp. 198–210.
  84. Wang, L.; Mao, W.; Zhao, J.; Xu, Y. DDQP: A double deep Q-learning approach to online fault-tolerant SFC placement. IEEE Trans. Netw. Serv. Manag. 2021, 18, 118–132.
  85. Kulkarni, S.G.; Liu, G.; Ramakrishnan, K.; Arumaithurai, M.; Wood, T.; Fu, X. REINFORCE: Achieving Efficient Failure Resiliency for Network Function Virtualization-Based Services. IEEE/ACM Trans. Netw. 2020, 28, 695–708.
  86. Sherry, J.; Gao, P.X.; Basu, S.; Panda, A.; Krishnamurthy, A.; Maciocco, C.; Manesh, M.; Martins, J.; Ratnasamy, S.; Rizzo, L.; et al. Rollback-recovery for middleboxes. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, London, UK, 17 August 2015; pp. 227–240.
  87. Hmaity, A.; Savi, M.; Musumeci, F.; Tornatore, M.; Pattavina, A. Virtual network function placement for resilient service chain provisioning. In Proceedings of the 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM), Halmstad, Sweden, 13–15 September 2016; pp. 245–252.
  88. Nguyen, H.B.; Dinh, N.T.; Oh, J.; Kim, Y. An Openflow-based Scheme for Service Chaining’s High Availability in Cloud Network. In Proceedings of the International Conference on ICT Convergence, Jeju, Korea, 16–18 October 2019.
More
Video Production Service