Effect of Protein Genotypes on Physicochemical Properties: Comparison
Please note this is a comparison between Version 2 by Nora Tang and Version 1 by Nan Gai.

High protein content was reported by Ikonen et al.in milk genotyped A1A1-BB, A1A2-AB and A1A1-AB, while a low protein content was related to the A1A1-EE genotype. For the composite genotype of αS1-β-κ-CN, B-A1-B was reported to be positively correlated with percentages of fat and protein in Holstein cows, Brown Swiss cowsand Finnish Ayshire cows, as well as in a local Italian Reggiana cows, but negatively correlated with milk yield. Haplotype C-A2-B has similar effects to B-A1-B, and also leads to low milk yield and high protein concentration.

  • protein genetic variants
  • genotype frequency
  • milk physiochemical properties
  • milk functionality

1. Introduction

As the demand for milk and milk products increases continuously, and since milk provides essential nutrients in the human diet [1[1][2],2], studies on milk and dairy products have generated a lot of attention in dairy related research.

Protein is a macronutrient for the human body [1], and accounts for about 3.5% of milk mass, typically comprising approximately 80% casein and 20% whey protein [2]. Four forms of casein are found in milk protein, including α S1 -CN, α S2 -CN, β-CN, and κ-CN, and their genes are found at bovine chromosome 6 [3[3][4],4], coded as CSN1S1, CSN1S2, CSN2 and CSN3, respectively [1,5][1][5]. These proteins have several genetic variants, as described by Caroli et al. [6] and Farrell et al. [7]. The gene of α-lactalbumin (α-lac) in the whey protein fraction is located on bovine chromosome 5, coded as LAA [3], and that of β-lactoglobulin (β-lg) is coded by the PAEP gene (or LBG gene) [1], which is situated on bovine chromosome 11 [8]. Polymorphisms of CSN1S1, CSN2, CSN3 and PAEP have widely been studied [6[6][9],9], but only a few polymorphs of LAA and CSN1S2 have been identified, mainly in French breeds [10]. The selection of milk protein phenotypes is regarded as a practical way for altering the composition of milk protein, and traditional methods for improving milk quality included estimating the bull breeding values by the phenotypes of their numerous female offspring [10].

2. Milk Protein Genetic Variants and Genotyping Frequency

Establishment of protein genetic variants discussed above is shown in Table 21 ; methods used to determine genotypes are listed, except where these were not clearly stated in the paperntry.

Table 1. Establishment of main protein genotypes in bovine milk.
ProteinGenotypeMethodologyDate
β-lgVariant A, variant BElectrophoresis1958 [11], 1959 [12], 1961 [13]
Variant CElectrophoresis1962 [14]
Variant D-1966 [15]
Variant E, variant F, variant GElectrophoresis1957 [16], 1963 [17] 1970 [18], 1973 [19], 1976 [20], 1981 [21]
Variant HIEF-IPG1988 [22][23]
Variant Wchromatofocusing1990 [24]
Variant I, variant JIon-exchange chromatography1996 [25]
α-lacVariant A, variant BElectrophoresis1963 [26][27]
Variant CElectrophoresis1981 [28]
αS1-CNVariant A, variant B, variant CElectrophoresis1962 [29][30]
Variant DElectrophoresis1965 [31]
Vaiant EElectrophoresis1963 [17], 1971 [32], 1976 [20]
Variant FpI1993 [33]
Variant GEndonucleases1992–1994 [34][35][36]
Variant HpI1999 [37]
Variant IIEF, PCR2009 [38]
αS2-CNVariant A, variant B, variant C, variant DElectrophoresis1984 [39]
β-CNVariant A, variant B, variant CElectrophoresis1961 [40], 1963 [41], 1964 [42]
Variant A1, variant A2, variant A3Electrophoresis1966 [43][44]
Variant DAmino acid composition1969 [45]
Variant E-1972 [46], 1974 [47]
Variant A4Electrophoresis1981 [28], 1995 [48]
Variant BZ (special case)Peptide profiling1970 [49]
Variant F, variant GRP-HPLC1995 [50], 1998 [51]
Variant H1Electrophoresis, PCR2000 [52]
Variant H2LC-MS2002 [53]
Variant IPCR2002 [54]
κ-CNVariant A, variant BElectrophoresis1966 [55], 1975 [56]
Variant JRP-HPLC1999 [37]
Variant B2Nucleotide sequencing1987 [57]
Variant C, variant ERP-HPLC1993 [58]
Variant F1PCR1992 [59]
Variant F2PCR1996 [60]
Variant G1IEF1996 [61]
Variant G2PCR1996 [62]
Variant H, Variant IDNA sequencing1999 [63]

In several studies, frequencies of these protein genetic variants have been reported, as discussed below.

The main variants of β-CN are A 1, A 2, A 3, B and C [83,94][54][64]. The A 2 variant is regarded as the ancient original variant, while A 1 is the product of mutation through natural selection [95,96][65][66]. It is important to note that the A 1 variant is only found in bovine milk [95,97][65][67] and commercial bovine milk often contains both variants [98][68].

Genotype frequencies of β-lg among breeds vary, where the A variant is more frequent than B in Holstein-Friesian cows, while B is more frequent than A in Jerseys cows [10,101,115][10][69][70] and Norwegian Red cows [100][71]. BB is more common than AB or AA in Norwegian Red cows [100][71], while AB is more common than AA and BB in Czech cows [109][72]. In Finnish Ayrshire cows, the AA variant is the rarest [114][73].

3. Impact of Protein Genotype on Milk Protein Structure

Protein structure and functionality are closely linked [119][74] and are the basis of its interaction with other milk components [120][75]. In product processing, some undesirable behaviours are associated with protein structures, or changes in structure during processing, such as gelling in processing equipment, or non-coagulation in milk curd processing, i.e., cheese-making [121][76].

The structures of the main proteins in bovine milk, including β-CN, α S1 -CN, α S2 -CN, κ-CN, α-lac and β-lg are influenced by genetic variants, as these lead to modifications of amino acid sequences [122][77]. These structural differences affect milk composition and quality, as well as the isoelectric points and electric charges of the proteins [7[7][9],9], and ultimately influence the physicochemical properties of milk [101][69].

However, it has been concluded in an European Food Safety Authority (EFSA) science report in 2009 that no relationship exists between the consumption of A 1 milk and reported illness [150][78], while Küllenberg de Gaudry et al. [151][79] reported that the correlation between the consumption of A 1 or A 2 milk and negative effects on human health are not significantly or clinically different, and that results of relevant studies are inconclusive due to the insufficient evidence or uncomprehensive study design.

In addition, the substitutions at position 67 and 122 of the A 1 and B variants exist in the hydrophobic part of β-CN, which could affect milk functionality, i.e., emulsifying properties [152][80]. The B variant has one or two more positive charges compared to the A 1 and A 2, respectively, which allows it to more easily bind with other functional proteins [152][80].

4. Milk Coagulation

Milk coagulation properties, including rennet coagulation and acid coagulation properties, are the basis of cheese-making, and cheese yield and quality depend on rennet and acid coagulation properties of milk [115,153][70][81]. These properties are influenced by milk composition [100][71], casein micelle size [174[82][83],175], milk protein genotypes [115][70], milk protein content and composition [115[70][82],174], proportion of caseins and whey proteins [176][84], mineral and total salts contents and their distributions [115[70][83],175], as well as cow’s health status [177[85][86],178], lactation stage [179][87], breed [153[81][88],180], season [181][89] and feeding [182][90].

To define milk rennet coagulation properties, some key parameters may be measured using a Formagraph, including rennet coagulation time (RCT), curd firming time (k 20, in min) and curd firmness (a 30, in mm) [186][91]. Gel formation can also be determined using rheology, through measurement of G’, the storage modulus, with RCT being determined from the time when G’ begins to increase [187][92].

Milk composition is an important parameter which affects milk coagulation properties [100][71]. Higher protein content improves a 30, GFR and G 30, and impairs k 20; higher casein content has a positive effect on a 30, GFR and G 30, and a negative effect on k 20 and GT; higher fat content leads to shorter RCT but produces weak acid gels, and higher lactose content is associated with better rennet and acid coagulation properties [84,100,188][93][71][94]. An optimal fat-to-casein ratio is also important for good milk coagulation properties [189][95].

Casein micelle size and fat globule size could affect milk rennet and acid coagulation properties; larger fat globule size leads to poorer acid coagulation properties, and larger casein micelles are associated with weak acid and rennet gels [100,174,190][71][82][96]. The beneficial effect of small micelle size on coagulation might be due to the large surface area for gel network formation [100][71], which leads to faster aggregation and stronger gel formation [174][82].

References

  1. Kolenda, M.; Sitkowska, B. The Polymorphism in Various Milk Protein Genes in Polish Holstein-Friesian Dairy Cattle. Animals 2021, 11, 389.
  2. Marangoni, F.; Pellegrino, L.; Verduci, E.; Ghiselli, A.; Bernabei, R.; Calvani, R.; Cetin, I.; Giampietro, M.; Perticone, F.; Piretta, L. Cow’s Milk Consumption and Health: A Health Professional’s Guide. J. Am. Coll. Nutr. 2019, 38, 197–208.
  3. Hayes, H.; Petit, E.; Bouniol, C.; Popescu, P. Localization of the αS2-Casein Gene (CASAS2) to the Homoeologous Cattle, Sheep, and Goat Chromosomes 4 by in Situ Hybridization. Cytogenet. Genome Res. 1993, 64, 281–285.
  4. Popescu, C.P.; Long, S.; Riggs, P.; Womack, J.; Schmutz, S.; Fries, R.; Gallagher, D.S. Standardization of Cattle Karyotype Nomenclature: Report of the Committee for the Standardization of the Cattle Karyotype. Cytogenet. Genome Res. 1996, 74, 259–261.
  5. Sebastiani, C.; Arcangeli, C.; Ciullo, M.; Torricelli, M.; Cinti, G.; Fisichella, S.; Biagetti, M. Frequencies Evaluation of β-Casein Gene Polymorphisms in Dairy Cows Reared in Central Italy. Animals 2020, 10, 252.
  6. Caroli, A.M.; Chessa, S.; Erhardt, G.J. Invited Review: Milk Protein Polymorphisms in Cattle: Effect on Animal Breeding and Human Nutrition. J. Dairy Sci. 2009, 92, 5335–5352.
  7. Farrell, H.M., Jr.; Jimenez-Flores, R.; Bleck, G.T.; Brown, E.M.; Butler, J.E.; Creamer, L.K.; Hicks, C.L.; Hollar, C.M.; Ng-Kwai-Hang, K.F.; Swaisgood, H.E. Nomenclature of the Proteins of Cows’ Milk—Sixth Revision. J. Dairy Sci. 2004, 87, 1641–1674.
  8. Hayes, H.C.; Petit, E.J. Mapping of the β-Lactoglobulin Gene and of an Immunoglobulin M Heavy Chain-like Sequence to Homoeologous Cattle, Sheep, and Goat Chromosomes. Mamm. Genome 1993, 4, 207–210.
  9. Grosclaude, F. Le Polymorphisme Génétique Des Principales Lactoprotéines Bovines. Relations Avec La Quantité, La Composition et Les Aptitudes Fromagères Du Lait. Prod. Anim. 1988, 1, 5–17.
  10. Hallén, E.; Wedholm, A.; Andrén, A.; Lundén, A. Effect of β-casein, κ-casein and β-lactoglobulin Genotypes on Concentration of Milk Protein Variants. J. Anim. Breed. Genet. 2008, 125, 119–129.
  11. Timasheff, S.N.; Townend, R. The Association Behaviour of β-lactoglobulins A and B. J. Am. Chem. Soc. 1958, 80, 4433–4434.
  12. Timasheff, S.N. The Stoichiometry of β-Lactoglobulin Association. In Proceedings of the 135th Meeting of the American Chemical Society, Boston, MA, USA, 5–10 April 1959; American Chemical Society: Washington, DC, USA, 1959. Abstr. No. 34.
  13. Timasheff, S.N.; Townend, R. Molecular Interactions in β-Lactoglobulin. VI. Dissociation of the Genetic Species of β-Lactoglobulin at Acid pH’s. J. Am. Chem. Soc. 1961, 83, 470–473.
  14. Bell, K. One-Dimensional Starch-Gel Electrophoresis of Bovine Skim-Milk. Nature 1962, 195, 705–706.
  15. Grosclancle, F.; Pujolle, J.; Garnier, J.; Ribadeau-Dumas, B. Evidence for Two Additional Variants in Proteins of Cow’s Milk: αS1-Casein D and β-Lactoglobulin, D. Ann. Biol. Anim. Biochim. Biophys. 1966, 6, 215.
  16. Aschaffenburg, R.; Drewry, J. Genetics of the β-Lactoglobulins of Cow’s Milk. Nature 1957, 180, 376–378.
  17. Peterson, R.F. High Resolution of Milk Proteins Obtained by Gel Electrophoresis. J. Dairy Sci. 1963, 46, 1136–1139.
  18. Bell, K.; McKenzie, H.A.; Murphy, W.H.; Shaw, D.C. β-Lactoglobulin Droughtmaster: A Unique Protein Variant. Biochim. Biophys. Acta 1970, 214, 427–436.
  19. Brignon, G.; Dumas, B.R. Localisation Dans La Chaine Peptidique de La β Lactoglobuline Bovine de La Substitution Glu/Gln Differenciant Les Variants Genetiques B et D. FEBS Lett. 1973, 33, 73–76.
  20. Grosclaude, F.; Marie-Françoise, M.; Mercier, J.C.; Bonnemaire, J.; Teissier, J.H. Polymorphisme des lactoprotéines de bovinés népalais. I.—Mise en evidence, chez le yak, et caractérisation biochimique de deux nouveaux variants: β-lactoglobuline Dyak et caséine αS1E. Ann. Genet. Sel. Anim. 1976, 8, 461–479.
  21. Bell, K.; McKenzie, H.A.; Shaw, D.C. Bovine beta-Lactoglobulin E, F and G of Bali (Banteng) Cattle, Bos (Bihos) Javanicus. Aust. J. Biol. Sci. 1981, 34, 133–148.
  22. Conti, A.; Napolitano, L.; Maria Cantisani, A.; Davoli, R.; Dall’Olio, S. Bovine β-Lactoglobulin H: Isolation by Preparative Isoelectric Focusing in Immobilized PH Gradients and Preliminary Characterization. J. Biochem. Biophys. Methods 1988, 16, 205–214.
  23. Davoli, R.; Dall’Olio, S.; Bigi, D. A New Beta-Lactoglobulin Variant in Bovine Milk. Sci. E Tec. Latt. -Casearia 1988, 39, 439–442.
  24. Godovac-Zimmermann, J.; Krause, I.; Buchberger, J.; Weiss, G.; Klostermeyer, H. Genetic variants of bovine beta-lactoglobulin. A novel wild-type beta-lactoglobulin W and its primary sequence. Biol. Chem. Hoppe-Seyler 1990, 371, 255–260.
  25. Godovac-Zimmermann, J.; Krause, I.; Baranyi, M.; Fischer-Frühholz, S.; Juszczak, J.; Erhardt, G.; Buchberger, J.; Klostermeyer, H. Isolation and Rapid Sequence Characterization of Two Novel Bovine β-Lactoglobulins I and J. J. Protein Chem. 1996, 15, 743–750.
  26. Aschaffenburg, R. Milk Protein Polymorphisms; Mourant, A.E., Zeuner, F.E., Eds.; Royal Anthropological Institute: London, UK, 1963; p. 18.
  27. Bhattacharya, S.D.; Roychoudhury, A.K.; Sinha, N.K.; Sen, A. Inherited α-Lactalbumin and β-Lactoglobulin Polymorphism in Indian Zebu Cattle. Comparison of Zebu and Buffalo α-Lactalbumins. Nature 1963, 197, 797–799.
  28. Bell, K.; Hopper, K.E.; McKenzie, H.A. Bovine Alpha-Lactalbumin C and Alpha S1-, Beta-and Kappa-Caseins of Bali (Banteng) Cattle, Bos (Bibos) Javanicus. Aust. J. Biol. Sci. 1981, 34, 149–159.
  29. Thompson, M.P.; Zittle, C.A.; Pepper, L.; Kiddy, C.A. Casein Variants in Milk from Individual Cows. J. Dairy Sci. 1962, 45, 650.
  30. Thompson, M.P.; Kiddy, C.A.; Pepper, L.; Zittle, C.A. Variations in the α S-Casein Fraction of Individual Cow’s Milk. Nature 1962, 195, 1001–1002.
  31. Thompson, M.P.; Tarassuk, N.P.; Jenness, R.; Lillevik, H.A.; Ashworth, U.S.; Rose, D. Nomenclature of the Proteins of Cow’s Milk—Second Revision: Report of the Committee on Milk Protein Nomenclature, Classification, and Methodology of the Manufacturing Section of ADSA for 1963-64. J. Dairy Sci. 1965, 48, 159–169.
  32. Thompson, M.P. αs- and β-Caseins. In Milk Proteins: Chemistry and Molecular Biology; McKenzie, H.A., Ed.; Academic Press: Cambridge, MA, USA, 1971; Volume II, pp. 117–174.
  33. Erhardt, G. A New αS1-casein Allele in Bovine Milk and Its Occurrence in Different Breeds. Anim. Genet. 1993, 24, 65–66.
  34. Rando, A.; Ramunno, L.; Di Gregorio, P.; Davoli, R.; Masina, P. A rare insertion in the bovine as l-casein gene. Anim. Genet. 1992, 23, 55.
  35. Rando, A.; Ramunno, L.; Di Gregorio, P.; Fiorella, A.; Davoli, R.; Masina, P. Localizzazione di siti polimorfi nella regione di DNA che contiene il gene della caseina αS1 di bovino. Proc. Assoc. Sci. Prod. Anim. Bologna Italy 1993, 10, 617–620.
  36. Ramunno, L.; Rando, A.; Pappalardo, M.; Fiorella, A.; Di Gregorio, P.; Capuano, M.; Masina, P. Molecular analyses on quantitative alleles at goat β-CN and cow αS1-CN loci. Proc. Soc. Ital. Per Il Prog. Della Zootec. Milano Italy 1994, 29, 233–240.
  37. Mahé, M.F.; Miranda, G.; Queval, R.; Bado, A.; Zafindrajaona, P.S.; Grosclaude, F. Genetic Polymorphism of Milk Proteins in African Bos Taurus and Bos Indicus Populations. Characterization of Variants αS1-Cn H and κ-Cn, J. Genet. Sel. Evol. GSE 1999, 31, 239.
  38. Lühken, G.; Caroli, A.; Ibeagha-Awemu, E.M.; Erhardt, G. Characterization and Genetic Analysis of Bovine αS1-casein I Variant. Anim. Genet. 2009, 40, 479–485.
  39. Eigel, W.N.; Butler, J.E.; Ernstrom, C.A.; Farrell, H.M., Jr.; Harwalkar, V.R.; Jenness, R.; Whitney, R.M. Nomenclature of Proteins of Cow’s Milk: Fifth Revision. J. Dairy Sci. 1984, 67, 1599–1631.
  40. Aschaffenburg, R. Inherited Casein Variants in Cow’s Milk. Nature 1961, 192, 431–432.
  41. Aschaffenburg, R. Inherited Casein Variants in Cow’s Milk: II. Breed Differences in the Occurrence of β-Casein Variants. J. Dairy Res. 1963, 30, 251–258.
  42. Thompson, M.P.; Kiddy, C.A.; Johnston, J.O.; Weinberg, R.M. Genetic Polymorphism in Caseins of Cows’ Milk. II. Confirmation of the Genetic Control of β-Casein Variation. J. Dairy Sci. 1964, 47, 378–381.
  43. Peterson, R.F.; Kopfler, F.C. Detection of New Types of β-Casein by Polyacrylamide Gel Electrophoresis at Acid PH: A Proposed Nomenclature. Biochem. Biophys. Res. Commun. 1966, 22, 388–392.
  44. Kiddy, C.A.; Peterson, R.F.; Kopfler, F.C. Genetic control of variants of beta-casein A. J. Dairy Sci. 1966, 49, 742.
  45. Thompson, M.P.; Gordon, W.G.; Pepper, L.; Greenberg, R. Amino Acid Composition of β-Caseins from the Milks of Bos Indicus and Bos Taurus Cows: A Comparative Study. Comp. Biochem. Physiol. 1969, 30, 91–98.
  46. Voglino, G.F. A New Β-casein Variant in Piedmont Cattle. Anim. Blood Groups Biochem. Genet. 1972, 3, 61–62.
  47. Grosclaude, F.; Mahe, M.-F.; Voglino, G.-F. Le Variant ΒE et Le Code de Phosphorylation Des Caséines Bovines. FEBS Lett. 1974, 45, 3–5.
  48. Chung, E.R.; Han, S.K.; Rhim, T.J. Milk Protein Polymorphisms as Genetic Marker in Korean Native Cattle. Asian-Australas. J. Anim. Sci. 1995, 8, 187–194.
  49. Rose, D.; Brunner, J.R.; Kalan, E.B.; Larson, B.L.; Melnychyn, P.; Swaisgood, H.E.; Waugh, D.F. Nomenclature of the Proteins of Cow’s Milk: Third Revision. J. Dairy Sci. 1970, 53, 1–17.
  50. Visser, S.; Slangen, C.J.; Lagerwerf, F.M.; van Dongen, W.D.; Haverkamp, J. Identification of a New Genetic Variant of Bovine β-Casein Using Reversed-Phase High-Performance Liquid Chromatography and Mass Spectrometric Analysis. J. Chromatogr. A 1995, 711, 141–150.
  51. Dong, C.; Ng-Kwai-Hang, K.F. Characterization of a Non-Electrophoretic Genetic Variant of β-Casein by Peptide Mapping and Mass Spectrometric Analysis. Int. Dairy J. 1998, 8, 967–972.
  52. Han, S.K.; Shin, Y.C.; Byun, H.D. Biochemical, Molecular and Physiological Characterization of a New Β-casein Variant Detected in Korean Cattle. Anim. Genet. 2000, 31, 49–51.
  53. Senocq, D.; Mollé, D.; Pochet, S.; Léonil, J.; Dupont, D.; Levieux, D. A New Bovine β-Casein Genetic Variant Characterized by a Met93→ Leu 93 Substitution in the Sequence A2. Le Lait 2002, 82, 171–180.
  54. Jann, O.; Ceriotti, G.; Caroli, A.; Erhardt, G. A New Variant in Exon VII of Bovine β-casein Gene (CSN2) and Its Distribution among European Cattle Breeds. J. Anim. Breed. Genet. 2002, 119, 65–68.
  55. Mackinlay, A.G.; Hill, R.J.; Wake, R.G. The Action of Rennin on χ-Casein the Heterogeneity and Origin of the Insoluble Products. Biochim. Biophys. Acta Gen. Subj. 1966, 115, 103–112.
  56. Swaisgood, H.E. Methods of Gel Electrophoresis of Milk Proteins; American Dairy Science Association: Champaign, IL, USA, 1975; p. 33.
  57. Gorodetskiĭ, S.I.; Kaledin, A.S. Nucleotide Sequence of the CDNA of Kappa Casein in Cows. Genetika 1987, 23, 596–604.
  58. Miranda, G.; Anglade, P.; Mahé, M.F.; Erhardt, G. Biochemical Characterization of the Bovine Genetic κ-casein C and E Variants. Anim. Genet. 1993, 24, 27–31.
  59. Sulimova, G.E.; Sokolova, S.S.; Semikozova, O.P.; Nguet, L.M.; Berberov, E.M. Analysis of DNA Polymorphism of Cluster Genes in Cattle: Casein Genes and Major Histocompatibility Complex (MHC) Genes. TSitologiia I Genet. 1992, 26, 18–26.
  60. Prinzenberg, E.; Hiendleder, S.; Ikonen, T.; Erhardt, G.; Prinzenberg, E.; Hiendleder, S.; Erhardt, G.; Ikonen, T. Molecular Genetic Characterization of New Bovine Kappa-casein Alleles CSN3F and CSN3G and Genotyping by PCR-RFLP. Anim. Genet. 1996, 27, 347–349.
  61. Erhardt, G. Detection of a New κ-casein Variant in Milk of Pinzgauer Cattle. Anim. Genet. 1996, 27, 105–108.
  62. Sulimova, G.E.; IuN, B.; Udina, I.G. Polymorphism of the Kappa-Casein Gene in Populations of the Subfamily Bovinae. Genetika 1996, 32, 1576–1582.
  63. Prinzenberg, E.; Krause, I.; Erhardt, G. SSCP Analysis at the Bovine CSN3 Locus Discriminates Six Alleles Corresponding to Known Protein Variants (A, B, C, E, F, G) and Three New DNA Polymorphisms (H, I, A1). Anim. Biotechnol. 1999, 10, 49–62.
  64. Zwierzchowski, L. Cattle Genomics-Functional Polymorphism in Milk Protein Genes and Other Genes Related to Milk and Meat Production. In Proceedings of the Workshop on Genomics and Bioinformatics in Animal Biotechnology, Jastrzebiec, Poland, 31 January–4 February 2005.
  65. Caroli, A.M.; Savino, S.; Bulgari, O.; Monti, E. Detecting β-Casein Variation in Bovine Milk. Molecules 2016, 21, 141.
  66. Brooke-Taylor, S.; Dwyer, K.; Woodford, K.; Kost, N. Systematic Review of the Gastrointestinal Effects of A1 Compared with A2 β-Casein. Adv. Nutr. 2017, 8, 739–748.
  67. Nguyen, H.T.H.; Ong, L.; Lopez, C.; Kentish, S.E.; Gras, S.L. Microstructure and Physicochemical Properties Reveal Differences between High Moisture Buffalo and Bovine Mozzarella Cheeses. Food Res. Int. 2017, 102, 458–467.
  68. Nguyen, H.T.H.; Schwendel, H.; Harland, D.; Day, L. Differences in the Yoghurt Gel Microstructure and Physicochemical Properties of Bovine Milk Containing A1A1 and A2A2 β-Casein Phenotypes. Food Res. Int. 2018, 112, 217–224.
  69. Heck, J.M.L.; Schennink, A.; van Valenberg, H.J.F.; Bovenhuis, H.; Visker, M.; van Arendonk, J.A.M.; van Hooijdonk, A.C.M. Effects of Milk Protein Variants on the Protein Composition of Bovine Milk. J. Dairy Sci. 2009, 92, 1192–1202.
  70. Jensen, H.B.; Holland, J.W.; Poulsen, N.A.; Larsen, L.B. Milk Protein Genetic Variants and Isoforms Identified in Bovine Milk Representing Extremes in Coagulation Properties. J. Dairy Sci. 2012, 95, 2891–2903.
  71. Ketto, I.A.; Knutsen, T.M.; Øyaas, J.; Heringstad, B.; Ådnøy, T.; Devold, T.G.; Skeie, S.B. Effects of Milk Protein Polymorphism and Composition, Casein Micelle Size and Salt Distribution on the Milk Coagulation Properties in Norwegian Red Cattle. Int. Dairy J. 2017, 70, 55–64.
  72. Kučerova, J.; Matejicek, A.; Jandurová, O.M.; Sorensen, P.; Nemcova, E.; Stipkova, M.; Kott, T.; Bouska, J.; Frelich, J. Milk Protein Genes CSN1S1, CSN2, CSN3, LGB and Their Relation to Genetic Values of Milk Production Parameters in Czech Fleckvieh. Czech J. Anim. Sci. 2006, 51, 241.
  73. Ikonen, T.; Ojala, M.; Ruottinen, O. Associations between Milk Protein Polymorphism and First Lactation Milk Production Traits in Finnish Ayrshire Cows. J. Dairy Sci. 1999, 82, 1026–1033.
  74. Horne, D.S. Casein Structure, Self-Assembly and Gelation. Curr. Opin. Colloid Interface Sci. 2002, 7, 456–461.
  75. Smith, Y. Protein Structure and Function, News-Medical, 23 August 2018. Available online: https://www.news-medical.net/life-sciences/Protein-Structure-and-Function.aspx (accessed on 30 September 2021).
  76. Sawyer, L.; Barlow, P.N.; Boland, M.J.; Creamer, L.K.; Denton, H.; Edwards, P.J.B.; Holt, C.; Jameson, G.B.; Kontopidis, G.; Norris, G.E. Milk Protein Structure—What Can It Tell the Dairy Industry? Int. Dairy J. 2002, 12, 299–310.
  77. Caroli, A.; Rizzi, R.; Lühken, G.; Erhardt, G. Milk Protein Genetic Variation and Casein Haplotype Structure in the Original Pinzgauer Cattle. J. Dairy Sci. 2010, 93, 1260–1265.
  78. De Noni, I.; FitzGerald, R.J.; Korhonen, H.J.T.; le Roux, Y.; Livesey, C.T.; Thorsdottir, I.; Tomé, D.; Witkamp, R. Review of the Potential Health Impact of β-Casomorphins and Related Peptides. EFSA Sci. Rep. 2009, 231, 1–107.
  79. Küllenberg de Gaudry, D.; Lohner, S.; Schmucker, C.; Kapp, P.; Motschall, E.; Hörrlein, S.; Röger, C.; Meerpohl, J.J. Milk A1 β-Casein and Health-Related Outcomes in Humans: A Systematic Review. Nutr. Rev. 2019, 77, 278–306.
  80. Darewicz, M.; Dziuba, J. Formation and Stabilization of Emulsion with A1, A2 and B β-Casein Genetic Variants. Eur. Food Res. Technol. 2007, 226, 147–152.
  81. Wedholm, A.; Larsen, L.B.; Lindmark-Månsson, H.; Karlsson, A.H.; Andrén, A. Effect of Protein Composition on the Cheese-Making Properties of Milk from Individual Dairy Cows. J. Dairy Sci. 2006, 89, 3296–3305.
  82. Glantz, M.; Devold, T.G.; Vegarud, G.E.; Månsson, H.L.; Stålhammar, H.; Paulsson, M. Importance of Casein Micelle Size and Milk Composition for Milk Gelation. J. Dairy Sci. 2010, 93, 1444–1451.
  83. Gustavsson, F.; Glantz, M.; Buitenhuis, A.J.; Lindmark-Månsson, H.; Stålhammar, H.; Andrén, A.; Paulsson, M. Factors Influencing Chymosin-Induced Gelation of Milk from Individual Dairy Cows: Major Effects of Casein Micelle Size and Calcium. Int. Dairy J. 2014, 39, 201–208.
  84. Jõudu, I.; Henno, M.; Kaart, T.; Püssa, T.; Kärt, O. The Effect of Milk Protein Contents on the Rennet Coagulation Properties of Milk from Individual Dairy Cows. Int. Dairy J. 2008, 18, 964–967.
  85. Tyrisevä, A.-M.; Ikonen, T.; Ojala, M. Repeatability Estimates for Milk Coagulation Traits and Non-Coagulation of Milk in Finnish Ayrshire Cows. J. Dairy Res. 2003, 70, 91.
  86. Ikonen, T.; Morri, S.; Tyrisevä, A.-M.; Ruottinen, O.; Ojala, M. Genetic and Phenotypic Correlations between Milk Coagulation Properties, Milk Production Traits, Somatic Cell Count, Casein Content, and PH of Milk. J. Dairy Sci. 2004, 87, 458–467.
  87. Auldist, M.J.; Coats, S.J.; Sutherland, B.J.; Hardham, J.F.; McDowell, G.H.; Rogers, G.L. Effect of Somatic Cell Count and Stage of Lactation on the Quality and Storage Life of Ultra High Temperature Milk. J. Dairy Res. 1996, 63, 377–386.
  88. Auldist, M.J.; Mullins, C.; O’brien, B.; O’kennedy, B.T.; Guinee, T. Effect of Cow Breed on Milk Coagulation Properties. Milchwissenschaft 2002, 57, 140–143.
  89. O’brien, B.; Dillon, P.; Murphy, J.J.; Mehra, R.A.J.K.; Guinee, T.P.; Connolly, J.F.; Kelly, A.; Joyce, P. Effects of Stocking Density and Concentrate Supplementation of Grazing Dairy Cows on Milk Production, Composition and Processing Characteristics. J. Dairy Res. 1999, 66, 165–176.
  90. Verdier-Metz, I.; Coulon, J.-B.; Pradel, P.; Viallon, C.; Berdagué, J.-L. Effect of Forage Conservation (Hay or Silage) and Cow Breed on the Coagulation Properties of Milks and on the Characteristics of Ripened Cheeses. J. Dairy Res. 1998, 65, 9–21.
  91. Inglingstad, R.A.; Steinshamn, H.; Dagnachew, B.S.; Valenti, B.; Criscione, A.; Rukke, E.O.; Devold, T.G.; Skeie, S.B.; Vegarud, G.E. Grazing Season and Forage Type Influence Goat Milk Composition and Rennet Coagulation Properties. J. Dairy Sci. 2014, 97, 3800–3814.
  92. Glantz, M.; Månsson, H.L.; Stålhammar, H.; Paulsson, M. Effect of Polymorphisms in the Leptin, Leptin Receptor, and Acyl-Coenzyme A: Diacylglycerol Acyltransferase 1 (DGAT1) Genes and Genetic Polymorphism of Milk Proteins on Cheese Characteristics. J. Dairy Sci. 2011, 94, 3295–3304.
  93. Jensen, H.B.; Poulsen, N.A.; Andersen, K.K.; Hammershøj, M.; Poulsen, H.D.; Larsen, L.B. Distinct Composition of Bovine Milk from Jersey and Holstein-Friesian Cows with Good, Poor, or Noncoagulation Properties as Reflected in Protein Genetic Variants and Isoforms. J. Dairy Sci. 2012, 95, 6905–6917.
  94. Malacarne, M.; Franceschi, P.; Formaggioni, P.; Sandri, S.; Mariani, P.; Summer, A. Influence of Micellar Calcium and Phosphorus on Rennet Coagulation Properties of Cows Milk. J. Dairy Res. 2014, 81, 129–136.
  95. Mariani, P.; Battistotti, B. Milk Quality for Cheesemaking. In Proceedings of the ASPA Congress-Recent Progress in Animal Production Science, Piacenza, Italy, 21–24 June 1999.
  96. Ji, Y.D.; Lee, S.K.; Anema, S.G. Effect of Heat Treatments and Homogenisation Pressure on the Acid Gelation Properties of Recombined Whole Milk. Food Chem. 2011, 129, 463–471.
More
ScholarVision Creations