Early Injection Strategy for Low-emission Premixed-Combustion Engine: Comparison
Please note this is a comparison between Version 2 by Peter Tang and Version 1 by liang xingyu.

Low-emission and high-efficiency have always been the targets for Internal Combustion Engine development. For diesel engines, homogeneous charge (aka. HCCI) and premixed charge (aka. PCCI) combustion modes provide both low-emission and high-efficiency simultaneously. To achieve these advanced combustion modes, early injection is needed as a relatively longer air-fuel mixing time is guaranteed. Several key parameters, such as the injection timing, pressure, angle, directly determine the final combustion process and thus the emission and efficiency performance. The pros and cons of these key parameters are discussed in detail here to provide a good review of the early-injection strategy.

  • early injection
  • HCCI
  • PCCI
  • Internal Combustion Engine
  • Diesel Engine
  • NOx
  • Soot
Please wait, diff process is still running!

References

  1. Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw Hill: New York, NY, USA, 1988.
  2. Mansoury, M.; Jafarmadar, S.; Talei, M.; Lashkarpour, S.M. Optimization of HCCI (Homogeneous Charge Compression Ignition) engine combustion chamber walls temperature to achieve optimum IMEP using LHS and Nelder Mead algorithm. Energy 2017, 119, 938–949.
  3. Onishi, S.; Jo, S.H.; Shoda, K.; Jo, P.D.; Kato, S. Active Thermo-Atmosphere Combustion (ATAC)—A New Combustion Process for Internal Combustion Engines; SAE International: Warrendale, PA, USA, 1979.
  4. Noguchi, M.; Tanaka, Y.; Tanaka, T.; Takeuchi, Y. A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products During Combustion; SAE International: Warrendale, PA, USA, 1979.
  5. Stanglmaier, R.H.; Roberts, C.E. Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromise, and Future Engine Applications; SAE International: Warrendale, PA, USA, 1999.
  6. Yao, M.F.; Zheng, Z.L.; Liu, H.F. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Prog. Energy Combust. Sci. 2009, 35, 398–437.
  7. Lu, X.C.; Han, D.; Huang, Z. Fuel design and management for the control of advanced compression-ignition combustion modes. Prog. Energy Combust. Sci. 2011, 37, 741–783.
  8. Swor, T.A.; Kokjohn, S.; Andrie, M.; Reitz, R.D. Improving Diesel Engine Performance Using Low and High Pressure Split Injections for Single Heat Release and Two-Stage Combustion; SAE International: Warrendale, PA, USA, 2010.
  9. Harada, A.; Shimazaki, N.; Sasaki, S.; Miyamoto, T.; Akagawa, H.; Tsujimura, K. The Effects of Mixture Formation on Premixed Lean Diesel Combustion; SAE International: Warrendale, PA, USA, 1998.
  10. Simescu, S.; Fiveland, S.B.; Dodge, L.G. An Experimental Investigation of PCCI-DI Combustion and Emissions in a Heavy-Duty Diesel Engine; SAE International: Warrendale, PA, USA, 2003.
  11. Kanda, T.; Hakozaki, T.; Uchimoto, T.; Hatano, J.; Kitayama, N.; Sono, H. PCCI Operation with Early Injection of Conventional Diesel Fuel; SAE International: Warrendale, PA, USA, 2005.
  12. Simescu, S.; Ryan, T.W.; Neely, G.D.; Matheaus, A.C.; Surampudi, B. Partial Pre-Mixed Combustion with Cooled and Uncooled EGR in a Heavy-Duty Diesel Engine; SAE International: Warrendale, PA, USA, 2002.
  13. Weiskirch, C.; Mueller, E. Advanced in Diesel Engine Combustion: Split Combustion; SAE International: Warrendale, PA, USA, 2007.
  14. Eastwood, P.G.; Morris, T.; Tufail, K.;Winstanley, T.; Hardalupas, Y.; Taylor, A.M.K.P. The Effects of Fuel-InjectionSchedules on Emissions of NOx and Smoke in a Diesel Engine during Partial-Premix Combustion; SAE International: Warrendale, PA, USA, 2007.
  15. Boot, M.; Rijk, E.; Luijten, C.; Somers, B.; Albrecht, B. Spray Impingement in the Early Direct Injection Premixed Charge Compression Ignition Regime; SAE International: Warrendale, PA, USA, 2010.
  16. Han, M.; Assanis, D.N.; Bohac, S.V. Sources of hydrocarbon emissions from low-temperature premixed compression ignition combustion from a common rail direct injection diesel engine. Combust. Sci. Technol. 2009, 181, 496–517.
  17. Jeong, K.; Lee, D.; Park, S.; Lee, C.S. Effect of Two-Stage Fuel Injection Parameters on NOx Reduction Characteristics in a DI Diesel Engine. Energies 2011, 4, 2060.
  18. Fang, T.G.; Coverdill, R.E.; Lee, C.F.F.; White, R.A. Effects of injection angles on combustion processes using multiple injection strategies in an HSDI diesel engine. Fuel 2008, 87, 3239.
  19. Shimazaki, N.; Tsurushima, T.; Nishimura, T. Dual Mode Combustion Concept with Premixed Diesel Combustion by Direct Injection near Top Dead Center; SAE International: Warrendale, PA, USA, 2003.
  20. Kiplimo, R.; Tomita, E.; Kawahara, N.; Yokobe, S. Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine. Appl. Therm. Eng. 2012, 37, 175.
  21. Liu, H.F.; Ma, S.Y.; Zhang, Z.; Zheng, Z.Q.; Yao, M.F. Study of the control strategies on soot reduction under early-injection conditions on a diesel engine. Fuel 2015, 139, 481.
  22. Chen, L.; Yang, F.Y.; Yang, Y.P.; Yang, X.Q.; Ouyang, M.G. Application of Narrow Cone Angle Injectors to Achieve Advanced Compression Ignition on a Mass-Production Diesel Control Strategy and Engine Performance Evaluation; SAE International: Warrendale, PA, USA, 2009.
  23. Siewert, R.M. Spray Angle and Rail Pressure Study for Low NOx Diesel Combustion; SAE International: Warrendale, PA, USA, 2007.
  24. Park, S.H.; Cha, J.; Kim, H.J.; Lee, C.S. Effect of early injection strategy on spray atomization and emission reduction characteristics in bioethanol blended diesel fueled engine. Energy 2012, 39, 387.
  25. Arun, K.S.; Ashok, K.; Murugan, S. Experimental investigation of the effect of compression ratio, injection timing & pressure in a DI (direct injection) diesel engine running on carbon black-water-diesel emulsion. Energy 2015, 93, 520.
  26. Nanthagopal, K.; Ashok, B.; Raj, R.T.K. Influence of fuel injection pressures on Calophyllum inophyllum methylester fuelled direct injection diesel engine. Energy Convers. Manag. 2016, 116, 173.
  27. Benajes, J.; Garcia-Oliver, J.M.; Novella, R.; Kolodziej, C. Increased particle emissions from early fuel injection timing Diesel low temperature combustion. Fuel 2012, 94, 190.
  28. Kim, M.Y.; Lee, C.S. Effect of a narrow fuel spray angle and a dual injection configuration on the improvement of exhaust emissions in a HCCI diesel engine. Fuel 2007, 86, 2880.
  29. Kook, S.; Park, S.; Bae, C. Influence of Early Fuel Injection Timings on Premixing and Combustion in a Diesel Engine. Energy Fuels 2008, 22, 337.
  30. Fang, T.G.; Coverdill, R.E.; Lee, C.F.; White, R.A. Smokeless Combustion within a Small-Bore HSDI Diesel Engine Using a Narrow Angle Injector; SAE International: Warrendale, PA, USA, 2007.
  31. Kim, H.M.; Kitn, Y.J.; Lee, K.H. A Study of the Characteristics of Mixture Formation and Combustion in a PCCI Engine Using an Early Multiple Injection Strategy. Energy Fuels 2008, 22, 1548.
  32. Kim, H.; Ryu, J.; Lee, K. A Study on the Characteristics of Spray and Combustion in a HCCI Engine according to Various Injection Angles and Timings. J. Mech. Sci. Technol. 2007, 21, 140.
  33. Miyamoto, T.; Tsurushima, T.; Shimazaki, N.; Harada, A.; Sasaki, S.; Hayashi, K. Modeling Ignition and Combustion in Direct Injection Compression Ignition Engines Employing Very Early Injection Timing. JSME Int. J. 2002, 45, 872–880.
  34. Yoon, S.H.; Cha, J.P.; Lee, C.S. An investigation of the effects of spray angle and injection strategy on dimethyl ether (DME) combustion and exhaust emission characteristics in a common-rail diesel engine. Fuel Process. Technol. 2010, 91, 1372.
  35. Kim, K.; Kim, D.; Jung, Y.; Bae, C. Spray and combustion characteristics of gasoline and diesel in a direct injection compression ignition engine. Fuel 2013, 109, 626.
  36. Wamankar, A.K.; Murugan, S. Effect of injection timing on a DI diesel engine fuelled with a synthetic fuel blend. J. Energy Inst. 2015, 88, 413.
  37. Abdullah, N.R.; Mamat, R.; Wyszynski, M.L.; Tsolakis, A.; Xu, H.M. Effects of pilot injection timing and EGR on a modern V6 common rail direct injection diesel engine. ICMER 2013, 50, 012008.
  38. Torregrosa, A.J.; Broatch, A.; Garcia, A.; Monico, L.F. Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines. Appl. Energy 2013, 104, 157.
  39. Kim, Y.J.; Kim, K.B.; Lee, K.H. Effect of a 2-stage injection strategy on the combustion and flame characteristics in a PCCI engine. Int. J. Automot. Technol. 2011, 12, 644.
  40. Kook, S.; Bae, C. Combustion Control Using Two-Stage Diesel Fuel Injection in a Single-Cylinder PCCI Engine; SAE International: Warrendale, PA, USA, 2004.
  41. Mobasheri, R.; Peng, Z.J. A Computational Investigation into the Effects of Included Spray Angle on Heavy-Duty Diesel Engine Operating Parameters; SAE International: Warrendale, PA, USA, 2012.
  42. Yin, B.; Wang, J.; Yang, K.; Jia, H. Optimization of EGR and Split Injection Strategy for Light Vehicle Diesel Low Temperature Combustion. Int. J. Automot. Technol. 2014, 15, 1051.
  43. Yamane, K.; Shimamoto, Y. Combustion and Emission Characteristics of Direct-Injection Compression Ignition Engines by Means of Two-Stage Split and Early Fuel Injection. Trans. ASME 2002, 124, 667.
  44. Yao, M.F.;Wang, H.; Zheng, Z.Q.; Yue, Y. Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions. Fuel 2010, 89, 2201.
  45. Zhuang, J.; Qiao, X.Q.; Bai, J.L.; Hu, Z. Effect of injection-strategy on combustion, performance and emission characteristics in a DI-diesel engine fueled with diesel from direct coal liquefaction. Fuel 2014, 121, 148.
  46. Zheng, Z.Q.; Yue, L.; Liu, H.F.; Zhu, Y.X.; Zhong, X.F.; Yao, M.F. Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel. Energy Convers. Manag. 2015, 90, 11.
  47. Coskun, G.; Soyhan, H.S.; Demir, U.; Turkcan, A.; Ozsezen, A.N.; Canakci, M. Influences of second injection variations on combustion and emissions of an HCCI-DI engine: Experiments and CFD modelling. Fuel 2014, 136, 287–294.
  48. Yoon, H.; Jeon, J.; Bae, C. The Effects of Two-Stage Fuel Injection on Dimethyl-ether (DME) Homogeneous ChargeCompression Ignition Engine Combustion; SAE International: Warrendale, PA, USA, 2009.
  49. Vanegas, A.; Won, H.; Peters, N. Influence of the Nozzle Spray Angle on Pollutant Formation and Combustion efficiency for a PCCI Diesel Engine; SAE International: Warrendale, PA, USA, 2009.
  50. Park, S.H.; Yoon, S.H.; Lee, C.S. HC and CO emissions reduction by early injection strategy in a bioethanol blended diesel-fueled engine with a narrow angle injection system. Appl. Energy 2013, 107, 88.
  51. Kiplimo, R.; Tomita, E.; Kawahara, N.; Yokobe, S. Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine. Appl. Therm. Eng. 2012, 37, 175.
  52. Ryan, T.W.; Matheaus, A.C. Fuel Requirements for HCCI Engine Operation; SAE International: Warrendale, PA, USA, 2003.
  53. Aceves, S.M.; Flowers, D.; Martinez-Frias, J.; Espinosa-Loza, F.; Pitz, W.J.; Dibble, R. Fuel and Additive Characterization for HCCI Combustion; SAE International: Warrendale, PA, USA, 2003.
  54. Kawano, D.; Naito, H.; Suzuki, H.; Ishii, H.; Hori, S.; Goto, Y.; Odaka, M. Effects of Fuel Properties on Combustion and Exhaust Emissions of Homogeneous Charge Compression Ignition (HCCI) Engine; SAE International: Warrendale, PA, USA, 2004.
  55. Agarwal, A.K. Biofuels (alcohols and biodiesel) applications as fuels in internal combustion engines. Prog. Energy Combust. Sci. 2007, 32, 233–271.
  56. Demirbas, A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci. 2005, 31, 466–487.
  57. Graboski, M.S.; McCormick, R.L. Combustion of fat and vegetable oil derived fuels in diesel engines. Prog. Energy Combust. Sci. 1998, 24, 125–164.
  58. Komninos,N.P.; Rakopoulos, C.D.ModelingHCCI combustion of biofuels: A review. Renew. Sustain. Energy Rev. 2012, 16, 588–610.
  59. Teng, H.; McCandless, J.C.; Schneyer, J.B. Compression Ignition Delay (Physical + Chemical) of Dimethyl Ether—an Alternative Fuel for Compression—Ignition Engines; SAE International: Warrendale, PA, USA, 2003.
  60. Yao, M.F.; Zheng, Z.Q.; Xu, S.D.; Fu, M.L. Experimental Study on the Combustion Process of Dimethyl Ether (DME); SAE International: Warrendale, PA, USA, 2003.
  61. Sahin, Z.; Durgun, O. Prediction of the effects of ethanol–diesel fuel blends on diesel engine performance characteristics, combustion, exhaust emissions, and cost. Energy Fuel 2009, 23, 1707–1717.
  62. Mohammadi, A.; Kee, S.S.; Ishiyama, T.; Kakuta, T.; Matsumoto, T. Implementation of Ethanol Diesel Blend Fuels in PCCI Combustion; SAE International: Warrendale, PA, USA, 2005.
  63. Park, S.H.; Cha, J.; Lee, C.S. Effects of bioethanol-blended diesel fuel on combustion and emission reduction characteristics in a direct-injection diesel engine with exhaust gas recirculation (EGR). Energy Fuels 2010, 24, 3872–3883.
  64. Chen, Z.; Liu, J.P.; Han, Z.Y.; Du, B.; Liu, Y.; Lee, C. Study on performance and emissions of a passenger-car diesel engine fuelled with butanol–diesel blends. Energy 2013, 55, 638–646.
  65. Bessonette, P.W.; Schleyer, C.H.; Duffy, K.P.; Hardy, W.L.; Liechty, M.P. Effects of Fuel Property Changes on Heavy-Duty HCCI Combustion; SAE International: Warrendale, PA, USA, 2007.
  66. Inagaki, K.; Fuyuto, T.; Nishikawa, K.; Nakatita, K.; Sakata, I. Dual-Fuel PCI Combustion Controlled by in-Cylinder Stratification of Ignitability; SAE International: Warrendale, PA, USA, 2006.
  67. Yao, M.F.; Zhang, B.; Zheng, Z.Q.; Chen, Z. Experimental study on homogeneous charge compression ignition combustion with primary reference fuel. Combust. Sci. Technol. 2007, 179, 2539–2559.
  68. Liu, H.F.; Yao, M.F.; Zhang, B.; Zheng, Z.Q. Influence of fuel and operating conditions on combustion characteristics of a homogeneous charge compression ignition engine. Energy Fuels 2009, 23, 1422–1430.
  69. Yang, B.B.; Li, S.J.; Zheng, Z.Q.; Yao, M.F.; Cheng,W. A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel; SAE International: Warrendale, PA, USA, 2012.
  70. Leermakers, C.A.J.; Van den Berge, B.; Luijten, C.; Somers, L.M.T.; de Goey, L.P.H.; Albrecht, B.A. Gasoline–Diesel Dual Fuel: Effect of Injection Timing and Fuel Balance; SAE International: Warrendale, PA, USA, 2011.
  71. Fang, T.G.; Lin, Y.C.; Foong, T.M.; Lee, C.F. Biodiesel combustion in an optical HSDI diesel engine under low load premixed combustion conditions. Fuel 2009, 88, 2162.
  72. Agarwal, A.K.; Dhar, A.; Gupta, J.G.; Kim,W.I.; Choi Lee, C.S.; Park, S. Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristic. Energy Convers. Manag. 2015, 91, 302–314.
  73. Guedes, A.D.M.; Braga, S.L.; Pradelle, F. Performance and combustion characteristics of a compression ignition engine running on diesel-biodiesel-ethanol (DBE) blends Part 2: Optimization of injection timing. Fuel 2018, 225, 183.
  74. Ma, S.Y.; Zheng, Z.Q.; Liu, H.F.; Zhang, Q.C.; Yao, M.F. Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. Appl. Energy 2013, 109, 212.
More