2.2. Cytokines in Cachexia
Cytokines are small proteins released by cells that regulate cell contact and communication in unique ways. Cytokines can be pro-inflammatory or anti-inflammatory, and they can affect the cells that release them and nearby cells and, in certain situations, distant cells. They are frequently produced in a cascade, with one cytokine stimulating the production of additional cytokines by its target cells
[8]. Cytokines can work together or against each other. The long-term production of cytokines is increasingly recognized as a major contributor to diseases such as cancer, chronic infections, and cachexia
[43][21].
The occurrence of cachexia in cancer patients is influenced by the patient’s response to tumor progression, which includes the activation of the inflammatory response and energy inefficiency involving the mitochondria. Inflammation is a common occurrence in cancer patients, caused by the release of cytokines, chemokines, and other inflammatory mediators by tumor cells and activated immune cells
[44][22].
In addition to inflammatory mediators linked to muscle atrophy, cytokines stimulate transcription factor activation, contributing to cancer’s metabolic abnormalities
[44][22]. Inflammatory mediators such as IL-1, IL-6, TNF-α, and IFN-γ are generated in cancer cachexia, resulting in increased energy expenditure, decreased appetite, and muscular atrophy
[48][23]. These substances provide leptin-like signals to the hypothalamus in the brain
[49][24], increasing corticotropin-releasing hormone expression while reducing ghrelin
[50][25], resulting in appetite control.
2.3. SARS-CoV-2 (COVID-19) Induced Cytokine Storm in Muscle Wasting and Their Clinical Management
Systemic inflammation, hypoxemia, muscle fiber loss, metabolic changes, malnutrition, and exercise intolerance are common in patients with severe COVID-19 that contribute to a significant portion of weakness and weariness in patients
[80][26]. Researchers had to go profoundly into the molecular and cellular basis of SARS-CoV-2-induced immune responses to discover novel biomarkers, predictive tools, and a new therapeutic option. Once the virus has entered the body, it begins multiplication, and a chain of events occurs that causes epithelial and endothelial cell death and vascular leakage
[81][27]. As a result of this event, it stimulates to release of various pro-inflammatory cytokines and chemokines like C-reactive protein, IL family (IL-6, IL-10), ferritin, TNF-α, fibroblast growth factor, NF-kB, interferons (IFN)-induced protein 10 (IP-10), and others that are responsible for SARS-CoV-2’s aggressive inflammation
[82,83][28][29].
3. Clinical Management of Cancer Cachexia
Clinical research led to the licensing of several pro-inflammatory cytokines, which have anti-tumor effects in treating numerous cancers, despite their limited efficacy in animal models. Antibodies that suppress immunological checkpoints and chimeric antigen receptor T cells have recently been added to clinical practice. A surge in clinical trials examining the safety and efficacy of cytokine-based medications, both as single agents and in conjunction with other immunomodulatory drugs, has resulted from a growing interest in the anti-tumor capabilities of cytokines
[106][30].
Two pro-inflammatory cytokines, IL-2 and IFN-γ, showed some therapeutic benefit and were approved by the Food and Drug Administration (FDA) to treat a variety of cancers, including non-Hodgkin lymphoma, hairy cell leukemia, renal cell carcinoma, metastatic melanoma, and Kaposi’s sarcoma
[106][30]. However, low response rates and severe toxicity were the significant pitfalls with these high-dose treatments; therefore, these cytokines have been consigned to the sidelines in favor of targeted therapy and immune checkpoint inhibitors in clinical practice
[107,108][31][32]. Although these cytokines are not drugs to treat cachexia, they can provide a unique tool to formulate various survival responses for cachectic patients in clinical trials. Just a few medicines have shown promise in more significant phase III trials. The most notable clinical effects have been demonstrated by combining thalidomide, a glutamic acid derivative with immunomodulatory and anti-inflammatory activities, and a natural human IgG1k antibody (MABp1) against IL-1α
[109][33].
4. Conclusions
Cachexia is a multimodal clinically relevant symptom in cancer characterized by skeletal muscle or adipose tissue loss, loss of appetite, impaired anticancer treatment tolerance, and poor quality of life. Patients with cachexia reported higher rates of anorexia, inflammation, tiredness, and worse overall survival than patients without cachexia. While many molecular events in the cytokines or chemokines pathway play roles in tumor initiation and progression, invasion, migration, and metastasis, the steps involved in cachexia are not well understood. It is essential to investigate these underlying complex molecular events. Despite advancements in detection and treatment, effective pharmacological therapies to treat cancer-cachexia are lacking. As a result, a breakthrough in cytokine research will help researchers better grasp the factors that drive the start and progression of this multisystem disease. Recent research, including experiments on anti-cytokine drugs targeting one or more molecules (e.g., IL-1, IL-6, TNF-α, TGF-β, and others), has been studied in phase I and II clinical trials for the treatment of cachexia
[109,119,120][33][34][35]. In addition, COVID-19 patients have shown considerable musculoskeletal damage in the study, possibly due to various cytokines’ involvement and prolonged hospitalization. Because of the complicated mechanisms underlying cachexia, a multidisciplinary treatment plan incorporating pharmacological drugs, anti-cytokine/ chemokine therapy, and a combination of other factors such as movement practices along with nourishment is required. Such activities can improve treatment adherence, prognosis, and overall survival in patients with cancer or COVID-19 -induced cachexia.