Endophytic Fungi Biosynthesize Important Therapeutic Drugs: Comparison
Please note this is a comparison between Version 3 by Nora Tang and Version 4 by Nora Tang.

In general, microbes produce a collection of secondary metabolites with therapeutic activities. Many are used as anticancer, immunosuppressive, hypocholesterolemic, antiparasitic, anti-inflammatory agents, or as enzyme inhibitors. Indeed, endophytic fungi have become a treasure trove for bioactive compounds of medicinal and agricultural importance. Several endophytic fungi produce important therapeutic drugs, initially discovered in traditional medicinal plants; for example, paclitaxel, podophyllotoxin, Vinca alkaloids, camptothecin, and fusidic acid.

  • bioactivity
  • chemotherapeutic
  • endophytic fungi
  • endophytism

1. Paclitaxel

Paclitaxel is possibly the most famous natural product of endophytic fungi. This highly functionalized diterpenoid is a potent antimitotic compound originally isolated from the stem bark of the western yew, Taxus brevifolia. It was the first natural substance that demonstrated antimycotic, antileukemic, and tumor inhibitory activities [1]. In 1993, the first endophytic fungi producing paclitaxel was reported. Taxomyces andreanae was isolated from the inner bark of T. brevifolia and produced paclitaxel and related compounds when grown in a semisolid synthetic medium [2]. Frequently, paclitaxel-producing endophytic fungi have been isolated from different sources other than Taxus trees, even at a higher concentrations than those isolated from Taxus trees; such is the case of studies focused on endophytes from plants used in traditional medicine [3][4][5][6]. For example, Cladosporium oxysporum, isolated from the medicinal plant Moringa oleifera yields 550 μg/L in liquid fermentation [7], a high concentration considering that Taxomyces andreanae yielded 0.05 μg/L at similar culture conditions. Likewise, Phoma betae from Ginkgo biloba leaves yielded 795 μg/L [5]. Now, hundreds of fungi isolated from yew and other plants have been shown to produce paclitaxel [8], including patents for the production of paclitaxel from endophytic fungi focused on optimization of the production process, methods for purification from the fermentation broth, and methods for screening paclitaxel-producing endophytic fungi [9].

2. Podophyllotoxin

Podophyllotoxin is an aryltetralin–lignan anticancer metabolite produced by several plants, mainly by Sinopodophyllum hexandrum; it is used in the East and Middle East as traditional medicine. Podophyllotoxin serves as a precursor to three key chemotherapeutic drugs: etoposide, teniposide, and etoposide phosphate [10]. Etoposide is widely used to treat various types of cancer and has recently been proposed as an adjunct treatment to immunosuppressants for critically ill COVID-19 patients [11][12]. Several endophytic fungi from different plant species have been reported to produce podophyllotoxin at different concentrations; likewise, two patents concerning methods for the identification of podophyllotoxin-producing fungi and production and recuperation processes of podophyllotoxin in liquid fermentation have been issued [9].

3. Vinca alkaloids

Vinca alkaloids (vincristine and vinblastine) and semisynthetic derivatives (vinorelbine, vindesine, and vinflunine) are remarkable antimitotic chemotherapeutics utilized in the treatment of hematological and lymphatic neoplasms. These indole terpenoids stop mitosis by inhibiting the formation of microtubules (at low concentration) or depolymerizing microtubules (at high concentrations) [13]. Some fungi produce vinblastine or vincristine under specific culture conditions, such as Botryosphaeria laricina CRS1, an endophyte of Catharanthus roseus, in which high yields of vinblastine and vincristine are dependent on elicitors present in extracts of the host plant [14]. In the case of Alternaria alternata and Talaromyces radius, the yield of vinblastine depends on media composition [15][16]. Despite the fact that Catharanthus roseus has many endophytic fungi, only some of them have been demonstrated to produce vinblastine or vincristine [17][18]. Other approaches include the use of endophytes to elicit the accumulation of Vinca alkaloids in the leaves of C. roseus. Inoculation of these plants with two of their endophytes (Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6) was found to enhance vindoline content by upregulating genes related to the terpenoid indole alkaloid biosynthesis in Croseus [19]. Similar results were observed in cell suspension cultures of the same plant [20].

4. Camptothecin

Together with paclitaxel and Vinca alkaloids, camptothecin (including its analogs) belongs to the most important chemotherapeutic drugs. Camptothecin is an indole-terpene alkaloid extracted from the bark of Camptotheca acuminata [21], used as the precursor of two more potent camptothecin analogs: topotecan, and irinotecan. Different from the previously described substances, which are antimitotic drugs, camptothecins belong to the group of topoisomerase inhibitors, particularly camptothecins that act by inhibiting DNA topoisomerase I, an enzyme found in significantly high levels in many cancer surgical specimens [13][22]. Commercially, camptothecin is extracted from C. acuminata and Nothapodytes nimmoniana with yields up to 0.3% of dry weight [23]. Most endophytic camptothecin-producing fungi have been isolated from those host plants (Table 6). Aspergillus nigerAlternaria alternata, and Fusarium solani were isolated from Piper betleMiquelia dentata, and Apodytes dimidiata, respectively [24][25][26]. The highest yield was obtained from Trichoderma atroviride LY357, isolated from C. acuminata, about 197.82 µg/L [27]. Despite the high yield among endophytic fungi, it is little exploited in industry [28].

5. Fusidic Acid

Fusidic acid is an antibiotic isolated in 1962 from the fermentation broth of a strain of Fusidium coccineum [29]. Chemically, it is a fusidane triterpenoid inhibitor of prokaryotic elongation factor (EF-G), hence it stops protein synthesis [30]. This antibiotic is particularly important in infections by staphylococci, including the methicillin-resistant Staphylococcus aureus (MRSA) [31]. Recently, the endophytic fungus Acremonium pilosum F47 has been reported to produce authentic fusidic acid, two known analogs (16-desacetylfusidic acid and 3β,20-dihydroxy-protosta-16,24-dien-29-oic acid), and a new derivative, acremonidiol A. [32]. A few more fungi, such as Sarocladium oryzae, an endophyte of Oryza rufipogon Griff. (Dongxiang wild rice) [33], and Xylaria sp., endophyte of Anoectochilus setaceus [34], have been shown to produce other fusidane-type antibiotics, including helvolic acid.
Table 1.
 Endophytic fungi that produce important therapeutic drugs.
Secondary Metabolite Representative Endophytic Fungi References
Paclitaxel (anticancer chemotherapy drug) Aspergillus candidusChaetomella raphigeraCladosporium cladosporioidesCladosporium oxysporumLasiodiplodia theobromaePenicillium aurantiogriseumPericonia sp., Pestalotiopsis microsporaPestalotiopsis versicolorPhoma betaePhomopsis sp., Phomopsis sp., Phomopsis sp., Phyllosticta citricarpaPhyllosticta melochiae [5][6][7][35][36][37][38][39][40][41][42][43][44]
Camptothecin and analogs (anticancer chemotherapy drug) Fusarium solaniFusarium oxysporumEntrophospora infrequensTrichoderma atrovirideNeurospora sp., Alternaria alstroemeriaeAlternaria burnsiiAlternaria sp., Alternaria alternataXylaria sp., Aspergillus sp., Aspergillus niger [24][25][26][27][45][46][47][48][49][50][51][52]
Vinblastine and vincristine (anticancer chemotherapy drug) Alternaria alternata sp, Fusarium oxysporumTalaromyces radicusCurvularia verruculosaBotryosphaeria laricina [14][15][16][53][54]
Podophyllotoxin (anticancer chemotherapy) Phialocephala fortinii (0.5 to 189 μg/L)Alternaria tenuissimaMucor fragilisTrametes hirsutaAlternaria sp. Fusarium solani [55][56][57][58][59][60]
Fusidic acid (antibiotic) Acremonium pilosum [32]

References

  1. Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971, 93, 2325–2327.
  2. Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993, 260, 214–216.
  3. Gangadevi, V.; Murugan, M.; Muthumary, J. Taxol determination from Pestalotiopsis pauciseta, a fungal endophyte of a medicinal plant. Chin. J. Biotechnol. 2008, 24, 1433–1438.
  4. Gangadevi, V.; Muthumary, J. Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol. Appl. Biochem. 2009, 52, 9–15.
  5. Kumaran, R.S.; Choi, Y.K.; Lee, S.; Jeon, H.J.; Jung, H.; Kim, H.J. Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma betae. Afr. J. Biotechnol. 2012, 11, 950–960.
  6. Pandi, M.; Kumaran, R.S.; Choi, Y.K.; Kim, H.J.; Muthumary, J. Isolation and detection of taxol, an anticancer drug produced from Lasiodiplodia theobromae, an endophytic fungus of the medicinal plant Morinda citrifolia. Afr. J. Biotechnol. 2011, 10, 1428–1435.
  7. Gokul Raj, K.; Manikandan, R.; Arulvasu, C.; Pandi, M. Anti-proliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15. Spectrochim Acta A Mol. Biomol. Spectrosc. 2015, 138, 667–674.
  8. Naik, B.S. Developments in taxol production through endophytic fungal biotechnology: A review. Orient. Pharm. Exp. Med. 2019, 19, 1–13.
  9. Torres-Mendoza, D.; Ortega, H.E.; Cubilla-Rios, L. Patents on endophytic fungi related to secondary metabolites and biotransformation applications. J. Fungi 2020, 6, 58.
  10. Kumari, A.; Singh, D.; Kumar, S. Biotechnological interventions for harnessing podophyllotoxin from plant and fungal species: Current status, challenges, and opportunities for its commercialization. Crit. Rev. Biotechnol. 2017, 37, 739–753.
  11. Montero-Baladía, M.; Buzón, L.; Astigarraga, I.; Delgado, P.; Iglesias, E.; Callejo, F.; López-Veloso, M.; Minguito, J.; Fernández-Regueras, M.; Ubeira, M.; et al. Etoposide treatment adjunctive to immunosuppressants for critically ill COVID-19 patients. J. Infect. 2020, 81, 452–482.
  12. Lovetrue, B. The AI-discovered aetiology of COVID-19 and rationale of the irinotecan + etoposide combination therapy for critically ill COVID-19 patients. Med. Hypotheses 2020, 144, 110180.
  13. Martino, E.; Casamassima, G.; Castiglione, S.; Cellupica, E.; Pantalone, S.; Papagni, F.; Rui, M.; Siciliano, A.M.; Collina, S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg. Med. Chem. Lett. 2018, 28, 2816–2826.
  14. Bandara, C.J.; Siriwardhana, A.; Karunaratne, D.N.; Ratnayake Bandara, B.M.; Wickramasinghe, A.; Krishnarajah, S.A.; Karunaratne, V. Production of vincristine and vinblastine by the endophytic fungus Botryosphaeria laricina strain (CRS1) is dependent on stimulating factors present in Catharanthus roseus. Nat. Prod. J. 2021, 11, 221–230.
  15. El-Sayed, E.R. Discovery of the anticancer drug vinblastine from the endophytic Alternaria alternata and yield improvement by gamma irradiation mutagenesis. J. Appl. Microbiol. in press.
  16. Palem, P.P.C.; Kuriakose, G.C.; Jayabaskaran, C. An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS ONE 2015, 10, e0144476.
  17. Dhayanithy, G.; Subban, K.; Chelliah, J. Diversity and biological activities of endophytic fungi associated with Catharanthus roseus. BMC Microbiol. 2019, 19, 1–14.
  18. Kharwar, R.N.; Verma, V.C.; Strobel, G.; Ezra, D. The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr. Sci. 2008, 95, 228–233.
  19. Pandey, S.S.; Singh, S.; Babu, C.V.; Shanker, K.; Srivastava, N.; Shukla, A.K.; Kalra, A. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci. Rep. 2016, 6, 1–14.
  20. Tang, Z.; Rao, L.; Peng, G.; Zhou, M.; Shi, G.; Liang, Y. Effects of endophytic fungus and its elicitors on cell status and alkaloid synthesis in cell suspension cultures of Catharanthus roseus. J. Med. Plants Res. 2011, 5, 2192–2200.
  21. Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. Plant Antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc. 1966, 88, 3888–3890.
  22. Wall, M.E.; Wani, M.C. Camptothecin and Taxol: Discovery to clinic—Thirteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 1995, 55, 753–760.
  23. Padmanabha, B.V.; Chandrashekar, M.; Ramesha, B.T.; Gowda, H.C.H.; Gunaga, R.P.; Suhas, S.; Vasudeva, R.; Ganeshaiah, K.N.; Shaanker, R.U. Patterns of accumulation of camptothecin, an anti-cancer alkaloid in Nothapodytes nimmoniana Graham., in the Western Ghats, India: Implications for identifying high-yielding sources of the alkaloid. Curr. Sci. 2006, 90, 95–100.
  24. Shweta, S.; Gurumurthy, B.R.; Ravikanth, G.; Ramanan, U.S.; Shivanna, M.B. Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomedicine 2013, 20, 337–342.
  25. Aswini, A.; Soundhari, C. Production of camptothecin from endophytic fungi and characterization by high-performance liquid chromatography and anticancer activity against colon cancer cell line. Asian J. Pharm. Clin. Res. 2018, 11, 166–170.
  26. Shweta, S.; Zuehlke, S.; Ramesha, B.T.; Priti, V.; Mohana Kumar, P.; Ravikanth, G.; Spiteller, M.; Vasudeva, R.; Shaanker, R.U. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 2010, 71, 117–122.
  27. Pu, X.; Qu, X.; Chen, F.; Bao, J.; Zhang, G.; Luo, Y. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Appl. Microbiol. Biotechnol. 2013, 97, 9365–9375.
  28. Kai, G.; Wu, C.; Gen, L.; Zhang, L.; Cui, L.; Ni, X. Biosynthesis and biotechnological production of anti-cancer drug camptothecin. Phytochem. Rev. 2015, 14, 525–539.
  29. Godtfredsen, W.O.; Jahnsen, S.; Lorck, H.; Roholt, K.; Tybring, L. Fusidic acid: A new antibiotic. Nature 1962, 193, 987.
  30. Wilson, D.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 2014, 12, 35–48.
  31. Verbist, L. The antimicrobial activity of fusidic acid. J. Antimicrob. Chemother. 1990, 25, 1–5.
  32. Tian, C.; Gao, H.; Peng, X.-P.; Li, G.; Lou, H.-X. Fusidic acid derivatives from the endophytic fungus Acremonium pilosum F47. J. Asian Nat. Prod. Res. 2021, 1–8.
  33. Zhang, Z.-B.; Du, S.-Y.; Ji, B.; Ji, C.-J.; Xiao, Y.-W.; Yan, R.-M.; Zhu, D. New helvolic acid derivatives with antibacterial activities from Sarocladium oryzae DX-THL3, an endophytic fungus from Dongxiang wild rice (Oryza rufipogon Griff.). Molecules 2021, 26, 1828.
  34. Ratnaweera, P.B.; Williams, D.E.; de Silva, E.D.; Wijesundera, R.L.C.; Dalisay, D.S.; Andersen, R.J. Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka. Mycology 2014, 5, 23–28.
  35. Zhang, P.; Zhou, P.-P.; Yu, L.-J. An endophytic taxol-producing fungus from Taxus x media, Aspergillus candidus MD3. FEMS Microbiol. Lett. 2009, 293, 155–159.
  36. Gangadevi, V.; Muthumary, J. A novel endophytic taxol-producing fungus Chaetomella raphigera isolated from a medicinal plant, Terminalia arjuna. Appl. Biochem. Biotechnol. 2009, 158, 675–684.
  37. Zhang, P.; Zhou, P.-P.; Yu, L.-J. An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr. Microbiol. 2009, 59, 227.
  38. Yang, Y.; Zhao, H.; Barrero, R.A.; Zhang, B.; Sun, G.; Wilson, I.W.; Xie, F.; Walker, K.D.; Parks, J.W.; Bruce, R.; et al. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genom. 2014, 15, 69.
  39. Li, J.Y.; Sidhu, R.S.; Ford, E.J.; Long, D.M.; Hess, W.M.; Strobel, G.A. The induction of taxol production in the endophytic fungus—Periconia sp. from Torreya grandifolia. J. Ind. Microbiol. Biotechnol. 1998, 20, 259–264.
  40. Strobel, G.; Yang, X.; Sears, J.; Kramer, R.; Sidhu, R.S.; Hess, W.M. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 1996, 142, 435–440.
  41. Kumaran, R.S.; Kim, H.J.; Hur, B.-K. Taxol promising fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. J. Biosci. Bioeng. 2010, 110, 541–546.
  42. Kumaran, R.S.; Hur, B.-K. Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol. Appl. Biochem. 2009, 54, 21–30.
  43. Kumaran, R.S.; Muthumary, J.; Hur, B.-K. Taxol from Phyllosticta citricarpa, a leaf spot fungus of the angiosperm Citrus medica. J. Biosci. Bioengin. 2008, 106, 103–106.
  44. Kumaran, R.S.; Muthumary, J.; Hur, B.K. Isolation and identification of taxol, an anticancer drug from Phyllosticta melochiae Yates, an endophytic fungus of Melochia corchorifolia L. Food Sci. Biotechnol. 2008, 17, 1246–1253.
  45. Ran, X.; Zhang, G.; Li, S.; Wang, J. Characterization and antitumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminate. Afr. Health Sci. 2017, 17, 566–574.
  46. Puri, S.C.; Verma, V.; Amna, T.; Qazi, G.N.; Spiteller, M. An endophytic fungus from Nothapodytes foetida that produces camptothecin. J. Nat. Prod. 2005, 68, 1717–1719.
  47. Kusari, S.; Zühlke, S.; Spiteller, M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J. Nat. Prod. 2009, 72, 2–7.
  48. Rehman, S.; Shawl, A.S.; Kour, A.; Andrabi, R.; Sudan, P.; Sultan, P.; Verma, V.; Qazi, G.N. An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl. Biochem. Microbiol. 2008, 44, 203–209.
  49. Mohinudeen, I.A.H.K.; Pandey, S.; Kanniyappan, H.; Muthuvijayan, V.; Srivastava, S. Screening and selection of camptothecin producing endophytes from Nothapodytes nimmoniana. Sci. Rep. 2021, 11, 11205.
  50. Liu, K.; Ding, X.; Deng, B.; Chen, W. 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotechnol. Lett. 2010, 32, 689–693.
  51. Musavi, S.F.; Dhavale, A.; Balakrishnan, R.M. Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06. Prep. Biochem. Biotechnol. 2015, 45, 158–172.
  52. Mohinudeen, I.A.H.K.; Kanumuri, R.; Soujanya, K.N.; Shaanker, R.U.; Rayala, S.K.; Srivastava, S. Sustainable production of camptothecin from an Alternaria sp. isolated from Nothapodytes nimmoniana. Sci. Rep. 2021, 11, 1478.
  53. Kumar, A.; Patil, D.; Rajamohanan, P.R.; Ahmad, A. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 2013, 8, e71805.
  54. Parthasarathy, R.; Shanmuganathan, R.; Pugazhendhi, A. Vinblastine production by the endophytic fungus Curvularia verruculosa from the leaves of Catharanthus roseus and its in vitro cytotoxicity against HeLa cell line. Anal. Biochem. 2020, 593, 113530.
  55. Eyberger, A.L.; Dondapati, R.; Porter, J.R. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J. Nat. Prod. 2006, 69, 1121–1124.
  56. Liang, Z.; Zhang, J.; Zhang, X.; Li, J.; Zhang, X.; Zhao, C. Endophytic fungus from Sinopodophyllum emodi (Wall.) Ying that produces podophyllotoxin. J. Chromatogr. Sci. 2015, 54, 175–178.
  57. Huang, J.-X.; Zhang, J.; Zhang, X.-R.; Zhang, K.; Zhang, X.; He, X.-R. Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm. Biol. 2014, 52, 1237–1243.
  58. Puri, S.C.; Nazir, A.; Chawla, R.; Arora, R.; Riyaz-ul-Hasan, S.; Amna, T.; Ahmed, B.; Verma, V.; Singh, S.; Sagar, R.; et al. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J. Biotechnol. 2006, 122, 494–510.
  59. Yang, X.; Guo, S.; Zhang, L.; Shao, H. Select of producing podophyllotoxin endophytic fungi from podophyllin plant. Nat. Prod. Res. Devel. 2003, 15, 419–422.
  60. Nadeem, M.; Ram, M.; Alam, P.; Ahmad, M.M.; Mohammad, A.; Al-Qurainy, F.; Khan, S.; Abdin, M.Z. Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr. J. Microbiol. Res. 2012, 6, 2493–2499.
More
Video Production Service