The classification of farmland vegetation based on vegetation index comprises the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). Chang et al. (2007) introduced land surface temperature (LST), combined with MODIS 7 time series single-band and time-series NDVI, as the final input feature quantity, based on a regression tree classifier to extract the spatial distribution area of corn and soybeans in the main producing areas of the United States
[24][1]. Zhang et al. (2008) used fast Fourier transform to process the MODIS NDVI time-series curve, and selected the average value of the curve, the initial phase of the 1–3 harmonics, and the amplitude ratio as the parameters for crop identification, and realized the corn, cotton, and crop rotation in North China
[25][2]. Zhang et al. (2008) determined four key phenological variables based on the phenological law as shown by the MODIS enhanced vegetation index (EVI) time-series curve of maize and wheat; namely, the initial growth time of the crop (T
onset), peak growth time (T
peak), EVI maximum time (EVI
peak), and growth termination time (T
end). This information was combined with expert knowledge to determine the threshold of critical period variables, and the spatial distribution and rotation of winter wheat and corn in the North China Plain were successfully identified
[26][3]. Xiong et al. (2009) selected summer and autumn crop rotation periods and MODIS NDVI average values as standards, used a layered method to distinguish autumn harvest crop areas from other areas, and used the BP (back propagation) neural network method to classify and effectively extract three crop types of middle rice, late rice, and cotton in Jiangling District, Hubei Province
[27][4]. Cai et al. (2009) also fused ETM+ images with time series MODIS NDVI images and used the fused 24-scene time-series NDVI data to better extract rice, rape, wheat, and their crop rotation in Zhanghe Irrigation Area
[28][5]. He (2010) used a wavelet transform to fuseMODIS NDVI and TM NDVI. The fused NDVI not only guarantees the spectral characteristics of the original time series, but also increases the spatial resolution from 250 m to 30 m, which improves the single NDVI. Moreover, the feature quantity extracts the accuracy of the planting structure
[29,30][6][7]. Huang (2010) analyzed the phenological characteristics of crops and the NDVI time series change characteristics and found the key period for the identification of the main crop types in three provinces in Northeast China. Through the phenological calendar and the agricultural field, the monitoring data iteratively revise and adjust the crop recognition threshold and build a remote sensing extraction model of crop planting structure. Hao (2011) obtained the spatial distribution of crop planting structures in three northeastern provinces by analyzing time-series MODIS NDVI images, using the ISODATA unsupervised classification algorithm and spectral coupling technology
[31][8]. Peña-Barragán et al. (2011) performed object-oriented segmentation on Aster images and constructed the time-series vegetation index of the object (VIgreen), NDVI, etc., and another 336 feature quantities, and finally used a decision tree to realize the automatic extraction of the planting structure composed of 13 crops in Yolo County, California
[32][9]. Zhang et al. (2012) compared the maximum, minimum, and average values of each time-series point in the MODIS EVI curve of each crop to find the critical period for each crop identification and the corresponding threshold, combined with the results of TM supervised classification, the crop planting structure in Heilong Port area was extracted
[33][10]. Foerster et al. (2012) collaborated with 35 Landsat TM/ETM+ images of different seasons from 1986 to 2002 to construct crop NDVI time-series curves and set a reasonable range values by analyzing the difference in spectral standard deviation values of different crops at various time-series points. The spatial distribution map of 12 crops in northeastern Germany was drawn
[34][11]. Zhong et al. (2014) used the phenological parameters EVI, phenological index, normalized difference decay index (NDSVI), normalized tillage index (NDTI), and other characteristic quantities, as well as their combinations, for testing. It was found that the participation of phenological parameters in classification can reduce the requirements of crop mapping for ground data, and the participation of four types of feature quantities in classification can obtain the highest overall classification accuracy
[35][12].