Immunotherapy for Glioblastoma: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Jung Sun Yoo.

This entry provides up-to-date knowledge on current state, challenges, and future perspectives on immunotherapy for glioblastoma.

       Glioblastoma (GBM) is the deadliest and most aggressive neuroepithelial cancer of the central nervous system (CNS) with an abysmal median survival of 14.6-month despite the multiple forms of intervention. In the United States, the total annual incidence rate of glioma has been ~6 cases per 100,000 individuals, of which GBM accounts for about 50% of the cases, with a higher predominance in males. Clinical studies have indicated that most of the GBM patients present an intact blood–brain barrier (BBB) for certain brain regions, capable of blocking the delivery of agents to cancer sites. The BBB is considered to prevent diffusion of 98% of small-molecule and 100% of large-molecule agents into the brain from blood circulation. Given the aggressive and heterogeneous nature of GBM and the blocking capability of BBB, a very limited number of medications for patients with GBM is available in clinics. In addition, due to the existence of other cellular and extracellular barriers, as well as the development of drug resistance over the treatment course, the efficacy of many current therapeutic approaches has been compromised.

       Currently available standards of care for GBM include maximal tumor resection followed by radiotherapy, chemotherapy, and corticosteroids, all of which have immune suppressive characteristics. Unfortunately, complete surgical removal of the whole tumor is almost impossible due to their diffusive characteristics into normal brain tissue. Some reports indicated that ~65% of the post-surgery cases still showed residual tumor cells, which eventually contributed to a high relapse rate of GBM . Therefore, GBM patients may undergo repeated surgical resection, radiotherapy, chemotherapy, or additional bevacizumab treatment. Eventually, most of the patients suffering from GBM will relapse despite an ample set of interventional approaches. According to the data from Surveillance and Epidemiology, the median overall survival (OS) of GBM patients was normally less than 2 years from the time of first progression or relapse. An international phase III randomized trial, conducted by the European Organization for Research and Treatment of Cancer/National Cancer Institute of Canada (EORTC/NCIC), has shown that the median OS of GBM patients who received radiotherapy and Temozolomide therapy remains poor (14.6 months). Moreover, Grossman and colleagues found that the utilization of systemic chemotherapy and hyperfractionated radiation therapy with corticosteroids is likely to disable immune activity. Immune-suppressive characteristics, high toxicity, and lower OS of traditional care made a considerable number of GBM patients (~50%) not accept any second-line of anti-tumor treatment. In addition, there is no evidence that traditional intervention can significantly impact the OS rate under a recurrence setting. Accordingly, given the poor prognosis and limited therapy regimens for patients affected by GBM, there is an urgent need to develop novel therapeutic approaches.

  • glioblastoa
  • immune-checkpoint inhibitors
  • tumor microenvironment
  • tumor-associated macrophages and microglia
  • immune-related adverse events
Please wait, diff process is still running!

References

  1. Billingham, R.E.; Brent, L.; Medawar, P.B. 'Actively acquired tolerance' of foreign cells. Nature 1953, 172, 603–606, doi:10.1038/172603a0.
  2. Billingham, R.E.; Brent, L.; Medawar, P.B.; Sparrow, E.M. Quantitative studies on tissue transplantation immunity. I. The survival times of skin homografts exchanged between members of different inbred strains of mice. Proc. R. Soc. Lond. B Biol. Sci. 1954, 143, 43–58, doi:10.1098/rspb.1954.0053.
  3. Medawar, P.B. Immunity to homologous grafted skin. III. The fate of skin homographs transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 1948, 29, 58–69.
  4. Lim, M.; Xia, Y.X.; Bettegowda, C.; Weller, M. Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol. 2018, 15, 422–442, doi:10.1038/s41571-018-0003-5.
  5. Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523, 337–341, doi:10.1038/nature14432.
  6. Kipnis, J. Multifaceted Interactions Between Adaptive Immunity and the Central Nervous System. Science 2016, 353, 766–771, doi: 10.1126/science.aag2638.
  7. Bloch, O.; Crane, C.A.; Kaur, R.; Safaee, M.; Rutkowski, M.J.; Parsa, A.T. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin. Cancer Res. 2013, 19, 3165–3175, doi:10.1158/1078-0432.CCR-12-3314.
  8. Wainwright, D.A.; Chang, A.L.; Dey, M.; Balyasnikova, I.V.; Kim, C.K.; Tobias, A.; Cheng, Y.; Kim, J.W.; Qiao, J.; Zhang, L.; et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4 and PD-L1 in mice with brain tumors. Clin. Cancer Res. 2014, 20, 5290–5301, doi:10.1158/1078-0432.CCR-14-0514.
  9. McGranahan, T.; Li, G.; Nagpal, S. History and current state of immunotherapy in glioma and brain metastasis. Ther. Adv. Med. Oncol. 2017, 9, 347–368, doi:10.1177/1758834017693750.
  10. Sampson, J.H.; Maus, M.V.; June, C.H. Immunotherapy for brain tumors. J. Clin. Oncol. 2017, 35, 2450–2456, doi:10.1200/JCO.2017.72.8089.
  11. Hodges, T.R.; Ott, M.; Xiu, J.; Gatalica, Z.; Swensen, J.; Zhou, S.; Huse, J.T.; de Groot, J.; Li, S.L.; Overwijk, W.W.; et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: Implications for immune checkpoint immunotherapy. Neuro-Oncology 2017, 19, 1047–1057, doi:10.1093/neuonc/nox026.
  12. Bouffet, E.; Larouche, V.; Campbell, B.B.; Merico, D.; de Borja, R.; Aronson, M.; Durno, C.; Krueger, J.; Cabric, V.; Ramaswamy, V.; et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol. 2016, 34, 2206–2211, doi:10.1200/JCO.2016.66.6552.
  13. Johanns, T.M.; Miller, C.A.; Dorward, I.G.; Tsien, C.; Chang, E.; Perry, A.; Uppaluri, R.; Ferguson, C.; Schmidt, R.E.; Dahiya, S.; et al. Immunogenomics of hypermutated glioblastoma: A patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov. 2016, 6, 1230–1236, doi:10.1158/2159-8290.CD-16-0575.
  14. Feng, M.; Jiang, W.; Kim, B.Y.S.; Zhang, C.C.; Fu, Y.X.; Weissman, I.L. Phagocytosis Checkpoints as New Targets for Cancer Immunotherapy. Nat Rev Cancer. 2019, 19, 568-586, doi: 10.1038/s41568-019-0183-z.
  15. Zhao, P.F.; Wang, Y.H.; Kang, X.J.; Wu, A.H.; Yin, W.M.; Tang, Y.S.; Wang, J.Y.; Zhang, M.; Duan, Y.F.; Huang, Y.Z. Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophage-mediated immunotherapy. Chem. Sci. 2018, 9, 2674–2689, doi:10.1039/c7sc04853j.
  16. Li, Q.Y.; Barres, B.A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 2018, 18, 225–242, doi:10.1038/nri.2017.125.
  17. Ginhoux, F.; Greter, M.; Leboeuf, M.; Nandi, S.; See, P.; Gokhan, S.; Mehler, M.F.; Conway, S.J.; Ng, L.G.; Stanley, E.R.; et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330, 841–845, doi:10.1126/science.1194637.
  18. Ajami, B.; Bennett, J.L.; Krieger, C.; McNagny, K.M.; Rossi, F.M.V. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 2011, 14, 1142–1149, doi:10.1038/nn.2887.
  19. Bennett, F.C.; Bennett, M.L.; Yaqoob, F.; Mulinyawe, S.B.; Grant, G.A.; Hayden Gephart, M.; Plowey, E.D.; Barres, B.A. A combination of ontogeny and CNS environment establishes microglial identity. Neuron 2018, 98, 1170–1183, doi:10.1016/j.neuron.2018.05.014.
  20. Graeber, M.B.; Scheithauer, B.W.; Kreutzberg, G.W. Microglia in brain tumors. Glia 2002, 40, 252–259, doi:10.1002/glia.10147.
  21. Matias, D.; Balça-Silva, J.; Da Graça, G.C.; Wanjiru, C.M.; Macharia, L.W.; Nascimento, C.P.; Roque, N.R.; Coelho-Aguiar, J.M.; Pereira, C.M.; Dos Santos, M.F.; et al. Microglia/Astrocytes–glioblastoma crosstalk: Crucial molecular mechanisms and microenvironmental factors. Front. Cell. Neurosci. 2018, 12, 235, doi:10.3389/fncel.2018.00235.
  22. Hussein, M.R. Tumour-associated macrophages and melanoma tumourigenesis: Integrating the complexity. Int. J. Exp. Pathol. 2006, 87, 163–176, doi:10.1111/j.1365-2613.2006.00478.x.
  23. Pyonteck, S.M.; Akkari, L.; Schuhmacher, A.J.; Bowman, R.L.; Sevenich, L.; Quail, D.F.; Olson, O.C.; Quick, M.L.; Huse, J.T.; Teijeiro, V.; et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 2013, 19, 1264–1272, doi:10.1038/nm.3337.
  24. Zeiner, P.S.; Preusse, C.; Blank, A.E.; Zachskorn, C.; Baumgarten, P.; Caspary, L.; Braczynski, A.K.; Weissenberger, J.; Bratzke, H.; Reiß, S.; et al. MIF receptor CD74 is restricted to Microglia/Macrophages, associated with a m1‐polarized immune milieu and prolonged patient survival in gliomas. Brain Pathol. 2015, 25, 491–504, doi:10.1111/bpa.12194.
  25. Pong, W.W.; Walker, J.; Wylie, T.; Magrini, V.; Luo, J.; Emnett, R.J.; Choi, J.; Cooper, M.L.; Griffith, M.; Griffith, O.L.; et al. F11R is a novel monocyte prognostic biomarker for malignant glioma. PLoS ONE 2013, 8, e77571, doi:10.1371/journal.pone.0077571.
  26. Hambardzumyan, D.; Gutmann, D.H.; Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 2016, 19, 20–27, doi:10.1038/nn.4185.
  27. Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Onco.l 2017, 14, 399–416, doi:10.1038/nrclinonc.2016.217.
  28. Arlauckas, S.P.; Garris, C.S.; Kohler, R.H.; Kitaoka, M.; Cuccarese, M.F.; Yang, K.S.; Miller, M.A.; Carlson, J.C.; Freeman, G.J.; Anthony, R.M.; et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl. Med. 2017, 9, doi:10.1126/scitranslmed.aal3604
  29. Tarhini, A.A.; Iqbal, F. CTLA-4 blockade: Therapeutic potential in cancer treatments. Oncotargets Ther. 2010, 3, 15–25, doi:10.2147/ott.s4833
  30. Wang, H.X.; Xu, T.; Huang, Q.L.; Jin, W.L.; Chen, J.X. Immunotherapy for malignant glioma: Current status and future directions. Trends Pharmacol. Sci. 2020, 41, 123–138, doi:10.1016/j.tips.2019.12.003.
  31. ClinicalTrials.gov. A Study of the Effectiveness and Safety of Nivolumab Compared to Bevacizumab and of Nivolumab with or without Ipilimumab in Glioblastoma Patients (CheckMate 143). 2013. Available online: https://clinicaltrials.gov/show/NCT02017717 (accessed on 6 June 2020).
  32. ClinicalTrials.gov. Neoadjuvant Nivolumab in Glioblastoma (Neo-nivo). 2015. Available online: https://clinicaltrials.gov/show/NCT02550249 (accessed on 6 June 2020).
  33. ClinicalTrials.gov. Nivolumab with Radiation Therapy and Bevacizumab for Recurrent MGMT Methylated Glioblastoma. 2018. Available online: https://clinicaltrials.gov/show/NCT03743662 (accessed on 6 June 2020).
  34. Reiss, S.N.; Yerram, P.; Modelevsky, L.; Grommes, C. Retrospective review of safety and efficacy of programmed cell death-1 inhibitors in refractory high grade gliomas. J. Immunother. Cancer 2017, 5, 99, doi:10.1186/s40425-017-0302-x.
  35. ClinicalTrials.gov. Nivolumab and Temozolomide Versus Temozolomide alone in Newly Diagnosed Elderly Patients with GBM (NUTMEG). 2018. Available online: https://clinicaltrials.gov/show/NCT04195139 (accessed on 6 June 2020).
  36. ClinicalTrials.gov. IL13Ralpha2-Targeted Chimeric Antigen Receptor (CAR) t Cells with or without Nivolumab and Ipilimumab in Treating Patients with Recurrent or Refractory Glioblastoma. 2019. Available online: https://clinicaltrials.gov/show/NCT04003649 (accessed on 6 June 2020).
  37. ClinicalTrials.gov. Intra-tumoral Ipilimumab Plus Intravenous Nivolumab Following the Resection of Recurrent Glioblastoma (GlitIpNi). 2016. Available online: https://clinicaltrials.gov/show/NCT03233152 (accessed on 6 June 2020).
  38. ClinicalTrials.gov. A Study Testing the Effect of Immunotherapy (Ipilimumab and Nivolumab) in Patients with Recurrent Glioblastoma with Elevated Mutational Burden. 2020. Available online: https://clinicaltrials.gov/show/NCT04145115 (accessed on 6 June 2020).
  39. ClinicalTrials.gov. Nivolumab with DC Vaccines for Recurrent Brain Tumors (AVERT). 2016. Available online: https://clinicaltrials.gov/show/NCT02529072 (accessed on 6 June 2020).
  40. ClinicalTrials.gov. Combination Adenovirus + Pembrolizumab to Trigger Immune Virus Effects (CAPTIVE). 2016. Available online: https://clinicaltrials.gov/show/NCT02798406 (accessed on 6 June 2020).
  41. ClinicalTrials.gov. Trial of Anti-Tim-3 in Combination with Anti-PD-1 and SRS in Recurrent GBM. 2020. Available online: https://clinicaltrials.gov/show/NCT03961971 (accessed on 6 June 2020).
  42. ClinicalTrials.gov. Nivolumab, BMS-986205, and Radiation Therapy with or without Temozolomide in Treating Patients with Newly Diagnosed Glioblastoma. 2019. Available online: https://clinicaltrials.gov/show/NCT04047706 (accessed on 6 June 2020).
  43. ClinicalTrials.gov. Study of the IDO Pathway Inhibitor, Indoximod, and Temozolomide for Pediatric Patients with Progressive Primary Malignant Brain Tumors. 2015. Available online: https://clinicaltrials.gov/show/NCT02502708 (accessed on 6 June 2020).
  44. ClinicalTrials.gov. Safety and Efficacy of the ONCOlytic VIRus Armed for Local Chemotherapy, TG6002/5-FC, in Recurrent Glioblastoma Patients (ONCOVIRAC). 2017. Available online: https://clinicaltrials.gov/show/NCT03294486 (accessed on 6 June 2020).
  45. ClinicalTrials.gov. Safety and Effectiveness Study of g207, a Tumor-Killing Virus, in Patients with Recurrent Brain Cancer. 2017. Available online: https://clinicaltrials.gov/show/NCT00028158 (accessed on 6 June 2020).
  46. ClinicalTrials.gov. DNX-2401 with Interferon Gamma (IFN-γ) for Recurrent Glioblastoma or Gliosarcoma Brain Tumors (TARGET-I). 2014. Available online: https://clinicaltrials.gov/show/NCT02197169 (accessed on 6 June 2020).
  47. ClinicalTrials.gov. PVSRIPO for Recurrent Glioblastoma (GBM) (PVSRIPO). 2012. Available online: https://clinicaltrials.gov/show/NCT01491893 (accessed on 6 June 2020).
  48. Desjardins, A.; Gromeier, M.; Herndon, J.E. 2nd.; Beaubier, N.; Bolognesi, D.P.; Friedman, A.H.; Friedman, H.S.; McSherry, F.; Muscat, A.M.; Nair, S.; et al. Recurrent Glioblastoma Treated with Recombinant Poliovirus. N. Engl. J. Med. 2018, 379, 150–161. doi: 10.1056/NEJMoa1716435.
  49. ClinicalTrials.gov. Pembrolizumab and a Vaccine (ATL-DC) for the Treatment of Surgically Accessible Recurrent Glioblastoma. 2020. Available online: https://clinicaltrials.gov/show/NCT04201873 (accessed on 6 June 2020).
  50. ClinicalTrials.gov. DC Migration Study for Newly-Diagnosed GBM (ELEVATE). 2015. Available online: https://clinicaltrials.gov/show/NCT02366728 (accessed on 6 June 2020).
  51. ClinicalTrials.gov. Pilot Study of Autologous Anti-EGFRvIII CAR t cells in Recurrent Glioblastoma Multiforme. 2016. Available online: https://clinicaltrials.gov/show/NCT02844062 (accessed on 6 June 2020).
  52. ClinicalTrials.gov. Cellular Adoptive Immunotherapy Using Genetically Modified T-Lymphocytes in Treating Patients with Recurrent or Refractory High-Grade Malignant Glioma. 2002. Available online: https://clinicaltrials.gov/show/NCT00730613 (accessed on 6 June 2020).
  53. ClinicalTrials.gov. CMV-Specific Cytotoxic t Lymphocytes Expressing CAR Targeting HER2 in Patients with GBM (HERT-GBM). 2010. Available online: https://clinicaltrials.gov/show/NCT01109095 (accessed on 6 June 2020).
  54. Koyama, S.; Akbay, E.A.; Li, Y.Y.; Herter-Sprie, G.S.; Buczkowski, K.A.; Richards, W.G.; Gandhi, L.; Redig, A.J.; Rodig, S.J.; Asahina, H.; et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 2016, 7, e10501, doi:10.1038/ncomms10501.
  55. Kim, J.E.; Patel, M.A.; Mangraviti, A.; Kim, E.S.; Theodros, D.; Velarde, E.; Liu, A.; Sankey, E.W.; Tam, A.; Xu, H.Y.; et al. Combination therapy with Anti-PD-1, Anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin. Cancer Res. 2017, 23, 124–136, doi:10.1158/1078-0432.CCR-15-1535.
  56. Sun, F.; Guo, Z.S.; Gregory, A.D.; Shapiro, S.D.; Xiao, G.; Qu, Z. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer. J Immunother. Cancer. 2019, 8, e000294, doi:10.1136/jitc-2019-000294.
  57. Patel, M.A.; Kim, J.E.; Theodros, D.; Tam, A.; Velarde, E.; Kochel, C.M.; Francica, B.; Nirschl, T.R.; Ghasemzadeh, A.; Mathios, D.; et al. Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma. J. Immunother. Cancer 2016, 4, e28, doi:10.1186/s40425-016-0132-2.
  58. Washington University School of Medicine; Sharp, M.; Corp, D. MK-3475 in Combination with MRI-Guided Laser Ablation in Recurrent Malignant Gliomas. Available online: https://clinicaltrials.gov/ct2/show/NCT02311582 (accessed on 15 July 2020).
  59. Pardridge, W.M. Blood–brain barrier delivery. Drug Discov. Today 2007, 12, 54–61, doi:10.1016/j.drudis.2006.10.013.
  60. Weiss, N.; Miller, F.; Cazaubon, S.; Couraud, P. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim. et Biophys. Acta (BBA)-Biomembr. 2009, 1788, 842–857, doi:10.1016/j.bbamem.2008.10.022.
  61. Da Ros, M.; De Gregorio, V.; Iorio, A.L.; Giunti, L.; Guidi, M.; De Martino, M.; Genitori, L.; Sardi, I. Glioblastoma chemoresistance: The double play by microenvironment and blood-brain barrier. Int. J. Mol. Sci. 2018, 19, e2879, doi:10.3390/ijms19102879.
  62. Liu, Y.Y.; Ran, R.; Chen, J.T.; Kuang, Q.F.; Tang, J.; Mei, L.; Zhang, Q.Y.; Gao, H.L.; Zhang, Z.R.; He, Q. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials 2014, 35, 4835–4847, doi:10.1016/j.biomaterials.2014.02.031.
  63. Shi, J.L.; Hou, S.Q.; Huang, J.F.; Wang, S.S.; Huan, W.; Huang, C.J.; Liu, X.J.; Jiang, R.; Qian, W.B.; Lu, J.J.; et al. An MSN-PEG-IP drug delivery system and IL13Rα\alphaα2 as targeted therapy for glioma. Nanoscale 2017, 9, 8970–8981, doi:10.1039/c6nr08786h.
  64. Strauss, L.; Mahmoud, M.A.A.; Weaver, J.D.; Tijaro-Ovalle, N.M.; Christofides, A.; Wang, Q.; Pal, R.; Yuan, M.; Asara, J.; Patsoukis, N.; et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci. Immunol. 2020, 5, doi:10.1126/sciimmunol.aay1863.
  65. Goswami, S.; Walle, T.; Cornish, A.E.; Basu, S.; Anandhan, S.; Fernandez, I.; Vence, L.; Blando, J.; Zhao, H.; Yadav, S.S.; et al. Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nat. Med. 2020, 26, 39–46, doi:10.1038/s41591-019-0694-x
  66. Goswami, S.; Walle, T.; Cornish, A.E.; Basu, S.; Anandhan, S.; Fernandez, I.; Vence, L.; Blando, J.; Zhao, H.; Yadav, S.S.; et al. Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nat. Med. 2020, 26, 39–46, doi:10.1038/s41591-019-0694-x
  67. Filley, A.C.; Henriquez, M.; Dey, M. Recurrent glioma clinical trial, CheckMate-143: The game is not over yet. Oncotarget 2017, 8, e91779, doi:10.18632/oncotarget.21586.
  68. Cloughesy, T.F.; Mochizuki, A.Y.; Orpilla, J.R.; Hugo, W.; Lee, A.H.; Davidson, T.B.; Wang, A.C.; Ellingson, B.M.; Rytlewski, J.A.; Sanders, C.M.; et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 2019, 25, 477–486, doi:10.1038/s41591-018-0337-7.
  69. Forde, P.M.; Chaft, J.E.; Smith, K.N.; Anagnostou, V.; Cottrell, T.R.; Hellmann, M.D.; Zahurak, M.; Yang, S.C.; Jones, D.R.; Broderick, S.; et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 2018, 378, 1976–1986, doi:10.1056/NEJMoa1716078.
  70. Schalper, K.A.; Rodriguez-Ruiz, M.E.; Diez-Valle, R.; López-Janeiro, A.; Porciuncula, A.; Idoate, M.A.; Inogés, S.; de Andrea, C.; López-Diaz De Cerio, A.; Tejada, S.; et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat. Med. 2019, 25, 470–476, doi:10.1038/s41591-018-0339-5.
  71. Schalper, K.A.; Rodriguez-Ruiz, M.E.; Diez-Valle, R.; López-Janeiro, A.; Porciuncula, A.; Idoate, M.A.; Inogés, S.; de Andrea, C.; López-Diaz De Cerio, A.; Tejada, S.; et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat. Med. 2019, 25, 470–476, doi:10.1038/s41591-018-0339-5.
More
ScholarVision Creations