GPCR signaling in the carotid-body: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Hayyaf Aldossary.

       This article focuses on the influence of G-Protein-Coupled Receptors (GPCRs) on the Carotid Body (CB) during pathological conditions characterized by chronic hypoxia such as chronic obstructive pulmonary disease, obstructive sleep apnea and heart failure ae carotid body (CB) is a vital sensory organ, located near the carotid bifurcation, that constantly monitors blood supplying the brain. The CB is stimulated by acute hypoxia, upon which it rapidly activates vital cardiovascular and respiratory reflexes, including peripheral vasoconstriction, elevated heart rate and increased breathing. These ensure that sufficient blood-oxygen is delivered to the brain to support survival. It is now apparent that there are numerous G-protein-coupled receptors (GPCRs) expressed in the CB, and that modulation of these receptors is able to alter baseline CB activity and the ability of targeting GPCRs for treating such conditionssensitivity to hypoxia. Indeed, components of GPCR signaling pathways represent some of the most highly expressed genes in the rodent CB. 

  • G-protein
  • GPCR
  • carotid body
  • hypoxia
  • hypertension
  • drug-discovery
Please wait, diff process is still running!

References

  1. Piskuric, N.A.; Nurse, C.A. Expanding role of ATP as a versatile messenger at carotid and aortic body chemoreceptors. J. Physiol. 2013, 591, 415–422.
  2. Conde, S.V.; Monteiro, E.C. Hypoxia induces adenosine release from the rat carotid body. J. Neurochem. 2004, 89, 1148–1156.
  3. Conde, S.V.; Monteiro, E.C.; Rigual, R.; Obeso, A.; Gonzalez, C. Hypoxic intensity: A determinant for the contribution of ATP and adenosine to the genesis of carotid body chemosensory activity. J. Appl. Physiol. 2012, 112, 2002–2010.
  4. Kobayashi, S.; Conforti, L.; Millhorn, D.E. Gene expression and function of adenosine A(2A) receptor in the rat carotid body. Am. J. Physiol. Lung Cell Mol. Physiol. 2000, 279, L273–L282.
  5. Livermore, S.; Nurse, C.A. Enhanced adenosine A2b receptor signaling facilitates stimulus-induced catecholamine secretion in chronically hypoxic carotid body type I cells. Am. J. Physiol. Cell Physiol. 2013, 305, C739–C750.
  6. Conde, S.V.; Obeso, A.; Vicario, I.; Rigual, R.; Rocher, A.; Gonzalez, C. Caffeine inhibition of rat carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors. J. Neurochem. 2006, 98, 616–628.
  7. Gauda, E.B.; Northington, F.J.; Linden, J.; Rosin, D.L. Differential expression of a(2a), A(1)-adenosine and D(2)-dopamine receptor genes in rat peripheral arterial chemoreceptors during postnatal development. Brain Res. 2000, 872, 1–10.
  8. Monteiro, E.C.; Ribeiro, J.A. Ventilatory effects of adenosine mediated by carotid body chemoreceptors in the rat. Naunyn. Schmiedebergs Arch Pharmacol. 1987, 335, 143–148.
  9. Tubek, S.; Niewinski, P.; Reczuch, K.; Janczak, D.; Rucinski, A.; Paleczny, B.; Engelman, Z.J.; Banasiak, W.; Paton, J.F.; Ponikowski, P. Effects of selective carotid body stimulation with adenosine in conscious humans. J. Physiol. 2016, 594, 6225–6240.
  10. McQueen, D.S.; Ribeiro, J.A. Effects of beta-endorphin, vasoactive intestinal polypeptide and cholecystokinin octapeptide on cat carotid chemoreceptor activity. Q J. Exp. Physiol. 1981, 66, 273–284.
  11. Vandier, C.; Conway, A.F.; Landauer, R.C.; Kumar, P. Presynaptic action of adenosine on a 4-aminopyridine-sensitive current in the rat carotid body. J. Physiol. 1999, 515, 419–429.
  12. Xu, F.; Xu, J.; Tse, F.W.; Tse, A. Adenosine stimulates depolarization and rise in cytoplasmic [Ca2+] in type I cells of rat carotid bodies. Am. J. Physiol. Cell Physiol. 2006, 290, C1592–C1598.
  13. Holmes, A.P.; Nunes, A.R.; Cann, M.J.; Kumar, P. Ecto-5'-Nucleotidase, Adenosine and Transmembrane Adenylyl Cyclase Signalling Regulate Basal Carotid Body Chemoafferent Outflow and Establish the Sensitivity to Hypercapnia. In Arterial Chemoreceptors in Physiology and Pathophysiology; Peers, C., Kumar, P., Wyatt, C.N., Gauda, E., Nurse, C.A., Prabhakar, N., Eds.; Springer-Verlag Berlin: Berlin, Germany, 2015; Volume 860, pp. 279–289.
  14. Sacramento, J.F.; Gonzalez, C.; Gonzalez-Martin, M.C.; Conde, S.V. Adenosine Receptor Blockade by Caffeine Inhibits Carotid Sinus Nerve Chemosensory Activity in Chronic Intermittent Hypoxic Animals. Adv. Exp. Med.Biol. 2015, 860, 133–137.
  15. Conde, S.V.; Monteiro, E.C. Profiles for ATP and adenosine release at the carotid body in response to O2 concentrations. Adv. Exp. Med. Biol. 2006, 580, 179–184; discussion 351–359.
  16. McQueen, D.S.; Ribeiro, J.A. Pharmacological characterization of the receptor involved in chemoexcitation induced by adenosine. Br. J. Pharmacol. 1986, 88, 615–620.
  17. Holmes, A.P.; Ray, C.J.; Pearson, S.A.; Coney, A.M.; Kumar, P. Ecto-5'-nucleotidase (CD73) regulates peripheral chemoreceptor activity and cardiorespiratory responses to hypoxia. J. Physiol. London 2018, 596, 3137–3148.
  18. Sacramento, J.F.; Melo, B.F.; Conde, S.V. Adenosine Mediates Hypercapnic Response in the Rat Carotid Body via A2A and A2B Receptors. Adv. Exp. Med. Biol. 2018, 1071, 89–93.
  19. Chen, J.; Dinger, B.; Fidone, S.J. cAMP production in rabbit carotid body: Role of adenosine. J. Appl. Physiol. 1997, 82, 1771–1775.
  20. Conde, S.V.; Gonzalez, C.; Batuca, J.R.; Monteiro, E.C.; Obeso, A. An antagonistic interaction between A2B adenosine and D2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells. J. Neurochem. 2008, 107, 1369–1381.
  21. Rocher, A.; Caceres, A.I.; Almaraz, L.; Gonzalez, C. EPAC signalling pathways are involved in low PO2 chemoreception in carotid body chemoreceptor cells. J. Physiol. 2009, 587, 4015–4027.
  22. Zhang, M.; Vollmer, C.; Nurse, C.A. Adenosine and dopamine oppositely modulate a hyperpolarization-activated current I(h) in chemosensory neurons of the rat carotid body in co-culture. J. Physiol. 2018, 596, 3101–3117.
  23. Zhang, M.; Nurse, C.A. CO2/pH chemosensory signaling in co-cultures of rat carotid body receptors and petrosal neurons: Role of ATP and ACh. J. Neurophysiol. 2004, 92, 3433–3445.
  24. Murali, S.; Nurse, C.A. Purinergic signalling mediates bidirectional crosstalk between chemoreceptor typeI and glial-like typeII cells of the rat carotid body. J. Physiol. London 2016, 594, 391–406.
  25. Bianchi, V.; Spychala, J. Mammalian 5'-nucleotidases. J. Biol. Chem. 2003, 278, 46195–46198.
  26. Salman, S.; Vollmer, C.; McClelland, G.B.; Nurse, C.A. Characterization of ectonucleotidase expression in the rat carotid body: Regulation by chronic hypoxia. Am. J. Physiol. Cell Physiol. 2017, 313, C274–C284.
  27. Li, J.; Wang, L.; Chen, X.; Li, L.; Li, Y.; Ping, Y.; Huang, L.; Yue, D.; Zhang, Z.; Wang, F.; et al. CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncoimmunology 2017, 6, e1320011.
  28. Salman, S.; Nurse, C.A. Molecular Characterization of Equilibrative Nucleoside Transporters in the Rat Carotid Body and Their Regulation by Chronic Hypoxia. Adv. Exp. Med. Biol. 2018, 1071, 43–50.
  29. Sacramento, J.F.; Olea, E.; Ribeiro, M.J.; Prieto-Lloret, J.; Melo, B.F.; Gonzalez, C.; Martins, F.O.; Monteiro, E.C.; Conde, S.V. Contribution of adenosine and ATP to the carotid body chemosensory activity in ageing. J. Physiol. 2019, 597, 4991–5008.
  30. de Lucia, C.; Eguchi, A.; Koch, W.J. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front Pharm. 2018, 9, 904–904.
  31. Joels, N.; White, H. The contribution of the arterial chemoreceptors to the stimulation of respiration by adrenaline and noradrenaline in the cat. J. Physiol. 1968, 197, 1–23.
  32. Thompson, E.L.; Ray, C.J.; Holmes, A.P.; Pye, R.L.; Wyatt, C.N.; Coney, A.M.; Kumar, P. Adrenaline release evokes hyperpnoea and an increase in ventilatory CO2 sensitivity during hypoglycaemia: A role for the carotid body. J. Physiol. 2016, 594, 4439–4452.
  33. Folgering, H.; Ponte, J.; Sadig, T. Adrenergic mechanisms and chemoreception in the carotid body of the cat and rabbit. J. Physiol. 1982, 325, 1–21.
  34. Jones, J.F.X. Retrospective view of the carotid body research of Ronan G. O′Regan. Exp. Physiol. 2004, 89, 39–43.
  35. Hauton, D.; Holmes, A.; Ziff, O.; Kumar, P. The impact of acute and chronic catecholamines on respiratory responses to hypoxic stress in the rat. Pflugers Arch. 2013, 465, 209–219.
  36. Ward, D.S.; Voter, W.A.; Karan, S. The effects of hypo- and hyperglycaemia on the hypoxic ventilatory response in humans. J. Physiol. 2007, 582, 859–869.
  37. Koyama, Y.; Coker, R.H.; Stone, E.E.; Lacy, D.B.; Jabbour, K.; Williams, P.E.; Wasserman, D.H. Evidence that carotid bodies play an important role in glucoregulation in vivo. Diabetes 2000, 49, 1434–1442.
  38. Bin-Jaliah, I.; Maskell, P.D.; Kumar, P. Indirect sensing of insulin-induced hypoglycaemia by the carotid body in the rat. J. Physiol. 2004, 556, 255–266.
  39. Wehrwein, E.A.; Basu, R.; Basu, A.; Curry, T.B.; Rizza, R.A.; Joyner, M.J. Hyperoxia blunts counterregulation during hypoglycaemia in humans: Possible role for the carotid bodies? J. Physiol. 2010, 588, 4593–4601.
  40. Wehrwein, E.A.; Limberg, J.K.; Taylor, J.L.; Dube, S.; Basu, A.; Basu, R.; Rizza, R.A.; Curry, T.B.; Joyner, M.J. Effect of bilateral carotid body resection on the counterregulatory response to hypoglycaemia in humans. Exp. Physiol. 2015, 100, 69–78.
  41. Bin-Jaliah, I.; Maskell, P.D.; Kumar, P. Carbon dioxide sensitivity during hypoglycaemia-induced, elevated metabolism in the anaesthetized rat. J. Physiol. 2005, 563, 883–893.
  42. Holmes, A.P.; Ray, C.J.; Thompson, E.L.; Alshehri, Z.; Coney, A.M.; Kumar, P. Adrenaline activation of the carotid body: Key to CO2 and pH homeostasis in hypoglycaemia and potential pathological implications in cardiovascular disease. Respir. Physiol. Neurobiol. 2019, 265, 92–99.
  43. Chang, A.J.; Ortega, F.E.; Riegler, J.; Adison, D.V.M.; Krasnow, M.A. Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature 2015, 527, 240.
  44. Peng, Y.-J.; Gridina, A.; Wang, B.; Nanduri, J.; Fox, A.P.; Prabhakar, N.R. Olfactory receptor 78 participates in carotid body response to a wide range of low O2 levels but not severe hypoxia. J. Neurophysiol. 2020, 123, 1886–1895.
  45. Torres-Torrelo, H.; Ortega-Sáenz, P.; Macías, D.; Omura, M.; Zhou, T.; Matsunami, H.; Johnson, R.S.; Mombaerts, P.; López-Barneo, J. The role of Olfr78 in the breathing circuit of mice. Nature 2018, 561, E33–E40.
  46. Holmes, A.P.; Turner, P.J.; Carter, P.; Leadbeater, W.; Ray, C.J.; Hauton, D.; Buckler, K.J.; Kumar, P. Glycogen metabolism protects against metabolic insult to preserve carotid body function during glucose deprivation. J. Physiol. 2014, 592, 4493–4506.
  47. Brown, A.M.; Evans, R.D.; Black, J.; Ransom, B.R. Schwann cell glycogen selectively supports myelinated axon function. Ann. Neurol. 2012, 72, 406–418.
  48. Tekkok, S.B.; Brown, A.M.; Westenbroek, R.; Pellerin, L.; Ransom, B.R. Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J. Neurosci. Res. 2005, 81, 644–652.
  49. Zapata, P.; Hess, A.; Bliss, E.L.; Eyzaguirre, C. Chemical, electron microscopic and physiological observations on the role of catecholamines in the carotid body. Brain Res. 1969, 14, 473–496.
  50. Nurse, C.A.; Fearon, I.M. Carotid body chemoreceptors in dissociated cell culture. Microsc. Res. Tech. 2002, 59, 249–255.
  51. Chiocchio, S.R.; Biscardi, A.M.; Tramezzani, J.H. Catecholamines in the carotid body of the cat. Nature 1966, 212, 834–835.
  52. Yokoyama, T.; Yamamoto, Y.; Hirakawa, M.; Kato, K.; Saino, T. Vesicular nucleotide transporter-immunoreactive type I cells associated with P2X3-immunoreactive nerve endings in the rat carotid body. J. Comp. Neurol. 2020, 528, 1486–1501.
  53. Kato, K.; Fushuku, S.; Yamamoto, Y. Age-related changes in immunoreactivity for dopamine beta-hydroxylase in carotid body glomus cells in spontaneously hypertensive rats. Auton. Neurosci-Basic Clin. 2017, 205, 50–56.
  54. Ortega-Saenz, P.; Macias, D.; Levitsky, K.L.; Rodriguez-Gomez, J.A.; Gonzalez-Rodriguez, P.; Bonilla-Henao, V.; Arias-Mayenco, I.; Lopez-Barneo, J. Selective accumulation of biotin in arterial chemoreceptors: Requirement for carotid body exocytotic dopamine secretion. J. Physiol. London 2016, 594, 7229–7248.
  55. Kato, K.; Yokoyama, T.; Kusakabe, T.; Hata, K.; Fushuku, S.; Nakamuta, N.; Yamamoto, Y. Differences in the expression of catecholamine-synthesizing enzymes between vesicular monoamine transporter 1-and 2-immunoreactive glomus cells in the rat carotid body. Acta Histochem. 2020, 122, 9.
  56. Fidone, S.; Gonzalez, C.; Yoshizaki, K. Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro. J. Physiol. 1982, 333, 93–110.
  57. Urena, J.; Fernandez-Chacon, R.; Benot, A.R.; Alvarez de Toledo, G.A.; Lopez-Barneo, J. Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc. Natl. Acad. Sci. USA 1994, 91, 10208–10211.
  58. Wakai, J.; Takayama, A.; Yokoyama, T.; Nakamuta, N.; Kusakabe, T.; Yamamoto, Y. Immunohistochemical localization of dopamine D2 receptor in the rat carotid body. Acta Histochem. 2015, 117, 784–789.
  59. Welsh, M.J.; Heistad, D.D.; Abboud, F.M. Depression of ventilation by dopamine in man. Evidence for an effect on the chemoreceptor reflex. J. Clin. Investig. 1978, 61, 708–713.
  60. Zapata, P. Effects of dopamine on carotid chemo- and baroreceptors in vitro. J. Physiol. 1975, 244, 235–251.
  61. Docherty, R.J.; McQueen, D.S. Inhibitory action of dopamine on cat carotid chemoreceptors. J. Physiol. 1978, 279, 425–436.
  62. Carroll, J.L.; Boyle, K.M.; Wasicko, M.J.; Sterni, L.M. Dopamine D2 receptor modulation of carotid body type 1 cell intracellular calcium in developing rats. Am. J. Physiol. Lung Cell Mol. Physiol. 2005, 288, L910–L916.
  63. Fagerlund, M.J.; Kahlin, J.; Ebberyd, A.; Schulte, G.; Mkrtchian, S.; Eriksson, L.I. The Human Carotid Body Expression of Oxygen Sensing and Signaling Genes of Relevance for Anesthesia. Anesthesiology 2010, 113, 1270–1279.
  64. Johnson, B.D.; Peinado, A.B.; Ranadive, S.M.; Curry, T.B.; Joyner, M.J. Effects of intravenous low-dose dopamine infusion on glucose regulation during prolonged aerobic exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R49–R57.
  65. Limberg, J.K.; Johnson, B.D.; Mozer, M.T.; Holbein, W.W.; Curry, T.B.; Prabhakar, N.R.; Joyner, M.J. Role of the carotid chemoreceptors in insulin-mediated sympathoexcitation in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 318, R173–R181.
  66. Phillips, D.B.; Steinback, C.D.; Collins, S.E.; Fuhr, D.P.; Bryan, T.L.; Wong, E.Y.L.; Tedjasaputra, V.; Bhutani, M.; Stickland, M.K. The carotid chemoreceptor contributes to the elevated arterial stiffness and vasoconstrictor outflow in chronic obstructive pulmonary disease. J. Physiol. London 2018, 596, 3233–3244.
  67. Bain, A.R.; Dujic, Z.; Hoiland, R.L.; Barak, O.F.; Madden, D.; Drvis, I.; Stembridge, M.; MacLeod, D.B.; MacLeod, D.M.; Ainslie, P.N. Peripheral chemoreflex inhibition with low-dose dopamine: New insight into mechanisms of extreme apnea. Am. J. Physiol.-Regul. Integr. Comp. Physiol.2015, 309, R1162–R1171.
  68. Limberg, J.K.; Johnson, B.D.; Holbein, W.W.; Ranadive, S.M.; Mozer, M.T.; Joyner, M.J. Interindividual variability in the dose-specific effect of dopamine on carotid chemoreceptor sensitivity to hypoxia. J. Appl. Physiol. 2016, 120, 138–147.
  69. Prieto-Lloret, J.; Donnelly, D.F.; Rico, A.J.; Moratalla, R.; Gonzalez, C.; Rigual, R.J. Hypoxia transduction by carotid body chemoreceptors in mice lacking dopamine D(2) receptors. J. Appl. Physiol. 2007, 103, 1269–1275.
  70. Bialkowska, M.; Zajac, D.; Mazzatenta, A.; Di Giulio, C.; Pokorski, M. Inhibition of Peripheral Dopamine Metabolism and the Ventilatory Response to Hypoxia in the Rat. In Neurotransmitter Interactions and Cognitive Function; Pokorski, M., Ed.; Springer-Verlag Berlin: Berlin, Germany, 2015; Volume 837, pp. 9–17.
  71. Huey, K.A.; Powell, F.L. Time-dependent changes in dopamine D(2)-receptor mRNA in the arterial chemoreflex pathway with chronic hypoxia. Brain Res. Mol. Brain Res. 2000, 75, 264–270.
  72. Wakai, J.; Kizaki, K.; Yamaguchi-Yamada, M.; Yamamoto, Y. Differences in tyrosine hydroxylase expression after short-term hypoxia, hypercapnia or hypercapnic hypoxia in rat carotid body. Respir. Physiol. Neurobiol. 2010, 173, 95–100.
  73. Porzionato, A.; Stocco, E.; Guidolin, D.; Agnati, L.; Macchi, V.; De Caro, R. Receptor-Receptor Interactions of G Protein-Coupled Receptors in the Carotid Body: A Working Hypothesis. Front. Physiol. 2018, 9, 697–697.
  74. Olea, E.; Docio, I.; Quintero, M.; Rocher, A.; Obeso, A.; Rigual, R.; Gomez-Niño, A. Peripheral Dopamine 2-Receptor Antagonist Reverses Hypertension in a Chronic Intermittent Hypoxia Rat Model. Int. J. Mol. Sci. 2020, 21, 4893.
  75. Gomeznino, A.; Dinger, B.; Gonzalez, C.; Fidone, S.J. Differential Stimulus Coupling To Dopamine And Norepinephrine Stores In Rabbit Carotid-Body Type-I Cells. Brain Res. 1990, 525, 160–164.
  76. Schamel, A.; Verna, A. Norepinephrine-containing glomus cells in the rabbit carotid-body.2. immunocytochemical evidence of dopamine-beta-hydroxylase and norepinephrine. J. Neurocytol. 1992, 21, 353–362.
  77. Bisgard, G.E.; Mitchell, R.A.; Herbert, D.A. Effects of dopamine, norepinephrine and 5-hydroxytryptamine on the carotid body of the dog. Respir. Physiol. 1979, 37, 61–80.
  78. Kou, Y.R.; Ernsberger, P.; Cragg, P.A.; Cherniack, N.S.; Prabhakar, N.R. Role of alpha 2-adrenergic receptors in the carotid body response to isocapnic hypoxia. Respir. Physiol. 1991, 83, 353–364.
  79. Pizarro, J.; Warner, M.M.; Ryan, M.; Mitchell, G.S.; Bisgard, G.E. Intracarotid norepinephrine infusions inhibit ventilation in goats. Respir. Physiol. 1992, 90, 299–310.
  80. Prabhakar, N.R.; Kou, Y.R. Inhibitory sympathetic action on the carotid body responses to sustained hypoxia. Respir. Physiol. 1994, 95, 67–79.
  81. Overholt, J.L.; Prabhakar, N.R. Norepinephrine inhibits a toxin resistant Ca2+ current in carotid body glomus cells: Evidence for a direct G protein mechanism. J. Neurophysiol. 1999, 81, 225–233.
  82. Almaraz, L.; Perez-Garcia, M.T.; Gomez-Nino, A.; Gonzalez, C. Mechanisms of alpha2-adrenoceptor-mediated inhibition in rabbit carotid body. Am. J. Physiol. 1997, 272, C628–C637
  83. Allen, A.M. Angiotensin AT(1) receptor-mediated excitation of rat carotid body chemoreceptor afferent activity. J. Physiol. London 1998, 510, 773–781.
  84. Peng, Y.J.; Raghuraman, G.; Khan, S.A.; Kumar, G.K.; Prabhakar, N.R. Angiotensin II evokes sensory long-term facilitation of the carotid body via NADPH oxidase. J. Appl. Physiol. 2011, 111, 964–970.
  85. Fung, M.L.; Lam, S.Y.; Chen, Y.; Dong, X.; Leung, P.S. Functional expression of angiotensin II receptors in type-I cells of the rat carotid body. Pflugers Arch. 2001, 441, 474–480.
  86. Atanasova, D.Y.; Dandov, A.D.; Dimitrov, N.D.; Lazarov, N.E. Immunohistochemical localization of angiotensin AT(1) receptors in the rat carotid body. Acta Histochem. 2018, 120, 154–158.
  87. Leung, P.S.; Fung, M.L.; Tam, M.S. Renin-angiotensin system in the carotid body. Int. J. Biochem. Cell Biol. 2003, 35, 847–854.
  88. Wang, J.J.; Hogan, J.O.; Kim, D. Voltage- and receptor-mediated activation of a non-selective cation channel in rat carotid body glomus cells. Respir. Physiol. Neuro. 2017, 237, 13–21.
  89. Kim, S.J.; Fong, A.Y.; Pilowsky, P.M.; Abbott, S.B.G. Sympathoexcitation following intermittent hypoxia in rat is mediated by circulating angiotensin II acting at the carotid body and subfornical organ. J. Physiol. London 2018, 596, 3217–3232.
  90. Roy, A.; Farnham, M.M.J.; Derakhshan, F.; Pilowsky, P.M.; Wilson, R.J.A. Acute intermittent hypoxia with concurrent hypercapnia evokes P2X and TRPV1 receptor-dependent sensory long-term facilitation in naive carotid bodies. J. Physiol. 2018, 596, 3149–3169.
  91. Brown, C.V.; Boulet, L.M.; Vermeulen, T.D.; Sands, S.A.; Wilson, R.J.A.; Ayas, N.T.; Floras, J.S.; Foster, G.E. Angiotensin II-Type I Receptor Antagonism Does Not Influence the Chemoreceptor Reflex or Hypoxia-Induced Central Sleep Apnea in Men. Front. Neurosci. 2020, 14, 13.
  92. Solaiman, A.Z.; Feehan, R.P.; Chabitnoy, A.M.; Leuenberger, U.A.; Monahan, K.D. Ventilatory responses to chemoreflex stimulation are not enhanced by angiotensin II in healthy humans. Auton. Neurosci-Basic Clin. 2014, 183, 72–79.
  93. Leung, P.S.; Lam, S.Y.; Fung, M.L. Chronic hypoxia upregulates the expression and function of AT(1) receptor in rat carotid body. J. Endocrinol. 2000, 167, 517–524.
  94. Lam, S.Y.; Fung, M.L.; Leung, P.S. Regulation of the angiotensin-converting enzyme activity by a time-course hypoxia in the carotid body. J. Appl. Physiol. 2004, 96, 809–813.
  95. Lam, S.Y.; Liu, Y.; Ng, K.M.; Liong, E.C.; Tipoe, G.L.; Leung, P.S.; Fung, M.L. Upregulation of a local renin-angiotensin system in the rat carotid body during chronic intermittent hypoxia. Exp. Physiol. 2014, 99, 220–231.
  96. Marcus, N.J.; Li, Y.L.; Bird, C.E.; Schultz, H.D.; Morgan, B.J. Chronic intermittent hypoxia augments chemoreflex control of sympathetic activity: Role of the angiotensin II type 1 receptor. Respir. Physiol. Neurobiol. 2010, 171, 36–45.
  97. Morgan, B.J.; Teodorescu, M.; Pegelow, D.F.; Jackson, E.R.; Schneider, D.L.; Plante, D.T.; Gapinski, J.P.; Hetzel, S.J.; Dopp, J.M. Effects of losartan and allopurinol on cardiorespiratory regulation in obstructive sleep apnoea. Exp. Physiol. 2018, 103, 941–955.
  98. Nanduri, J.; Peng, Y.J.; Wang, N.; Khan, S.A.; Semenza, G.L.; Kumar, G.K.; Prabhakar, N.R. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia. J. Physiol. London 2017, 595, 63–77.
  99. Li, Y.L.; Xia, X.H.; Zheng, H.; Gao, L.; Li, Y.F.; Liu, D.; Patel, K.P.; Wang, W.; Schultz, H.D. Angiotensin II enhances carotid body chemoreflex control of sympathetic outflow in chronic heart failure rabbits. Cardiovasc Res. 2006, 71, 129–138.
  100. Li, Y.L.; Schultz, H.D. Enhanced sensitivity of Kv channels to hypoxia in the rabbit carotid body in heart failure: Role of angiotensin II. J. Physiol. 2006, 575, 215–227
  101. Li, Y.L.; Gao, L.; Zucker, I.H.; Schultz, H.D. NADPH oxidase-derived superoxide anion mediates angiotensin II-enhanced carotid body chemoreceptor sensitivity in heart failure rabbits. Cardiovasc Res. 2007, 75, 546–554.
  102. Oomori, Y.; Nakaya, K.; Tanaka, H.; Iuchi, H.; Ishikawa, K.; Satoh, Y.; Ono, K. Immunohistochemical and histochemical evidence for the presence of noradrenaline, serotonin and gamma-aminobutyric acid in chief cells of the mouse carotid body. Cell Tissue Res. 1994, 278, 249–254.
  103. Yokoyama, T.; Misuzu, Y.Y.; Yamamoto, Y. Immunohistochemical localization of tryptophan hydroxylase and serotonin transporter in the carotid body of the rat. Histochem. Cell Biol. 2013, 140, 147–155.
  104. Zhang, M.; Nurse, C.A. Does endogenous 5-HT mediate spontaneous rhythmic activity in chemoreceptor clusters of rat carotid body? Brain Res. 2000, 872, 199–203.
  105. Zhang, M.; Fearon, I.M.; Zhong, H.; Nurse, C.A. Presynaptic modulation of rat arterial chemoreceptor function by 5-HT: Role of K+ channel inhibition via protein kinase C. J. Physiol. 2003, 551, 825–842.
  106. Murali, S.; Zhang, M.; Nurse, C.A. Evidence that 5-HT stimulates intracellular Ca2+ signalling and activates pannexin-1 currents in type II cells of the rat carotid body. J. Physiol. 2017, 595, 4261–4277.
  107. Yokoyama, T.; Nakamuta, N.; Kusakabe, T.; Yamamoto, Y. Serotonin-mediated modulation of hypoxia-induced intracellular calcium responses in glomus cells isolated from rat carotid body. Neurosci. Lett. 2015, 597, 149–153.
  108. Jacono, F.J.; Peng, Y.J.; Kumar, G.K.; Prabhakar, N.R. Modulation of the hypoxic sensory response of the carotid body by 5-hydroxytryptamine: Role of the 5-HT2 receptor. Respir. Physiol. Neurobiol. 2005, 145, 135–142.
  109. Peng, Y.J.; Yuan, G.; Jacono, F.J.; Kumar, G.K.; Prabhakar, N.R. 5-HT evokes sensory long-term facilitation of rodent carotid body via activation of NADPH oxidase. J. Physiol. 2006, 576, 289–295.
  110. Peng, Y.J.; Nanduri, J.; Yuan, G.; Wang, N.; Deneris, E.; Pendyala, S.; Natarajan, V.; Kumar, G.K.; Prabhakar, N.R. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J. Neurosci. 2009, 29, 4903–4910.
  111. Koves, K.; Szabo, E.; Kantor, O.; Heinzlmann, A.; Szabo, F.; Csaki, A. Current State of Understanding of the Role of PACAP in the Hypothalamo-Hypophyseal Gonadotropin Functions of Mammals. Front. Endocrinol. 2020, 11, 21.
  112. Rita, B.; Laszlo, M.; Andrea, T.; Terez, B.; Csaba, B.; Katalin, C.; Eszter, B.; Peter, K.; Alexandra, V.; Gabriella, H.; et al. Presence of pituitary adenylate cyclase activating polypeptide-38 in human plasma and milk. Eur. J. Endocrinol. 2009, 160, 561–565.
  113. Xu, F.; Tse, F.W.; Tse, A. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates the oxygen sensing type I (glomus) cells of rat carotid bodies via reduction of a background TASK-like K+ current. J. Neurochem. 2007, 101, 1284–1293.
  114. Roy, A.; Derakhshan, F.; Wilson, R.J.A. Stress peptide PACAP engages multiple signaling pathways within the carotid body to initiate excitatory responses in respiratory and sympathetic chemosensory afferents. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2013, 304, R1070–R1084.
  115. Cummings, K.J.; Klotz, C.; Liu, W.Q.; Weese-Mayer, D.E.; Marazita, M.L.; Cooper, M.E.; Berry-Kravis, E.M.; Tobias, R.; Goldie, C.; Bech-Hansen, N.T.; et al. Sudden infant death syndrome (SIDS) in African Americans: Polymorphisms in the gene encoding the stress peptide pituitary adenylate cyclase-activating polypeptide (PACAP). Acta Paediatr. 2009, 98, 482–489.
  116. Cummings, K.J.; Pendlebury, J.D.; Jirik, F.R.; Sherwood, N.M.; Wilson, R.J.A. A SIDS-like phenotype is associated with reduced respiratory chemoresponses in PACAP deficient neonatal mice. In Post-Genomic Perspectives in Modeling and Control of Breathing; Champagnat, J., DenavitSaubie, M., Fortin, G., ThobyBrisson, M., Eds.; Kluwer Academic/Plenum Publ: New York, NY, USA, 2004; Volume 551, pp. 77–83.
  117. Barrett, K.T.; Hasan, S.U.; Scantlebury, M.H.; Wilson, R.J.A. Impaired neonatal cardiorespiratory responses to hypoxia in mice lacking PAC1 or VPAC2 receptors. Am. J. Physiol.-Regul. Integr. Comp. Physiol.2019, 316, R594–R606.
  118. Ferguson, E.V.; Roy, A.; Ciechanski, P.; Wilson, R.J.A. Stress peptide PACAP stimulates and stabilizes neonatal breathing through distinct mechanisms. Respir. Physiol. Neuro. 2013, 187, 217–223.
  119. Rey, S.; Del Rio, R.; Iturriaga, R. Role of endothelin-1 on the enhanced carotid body activity induced by chronic intermittent hypoxia. Adv. Exp. Med. Biol. 2006, 580, 345–350; discussion 351–359.
  120. Chen, J.; He, L.; Dinger, B.; Fidone, S. Cellular mechanisms involved in rabbit carotid body excitation elicited by endothelin peptides. Respir. Physiol. 2000, 121, 13–23.
  121. Chen, Y.; Tipoe, G.L.; Liong, E.; Leung, S.; Lam, S.Y.; Iwase, R.; Tjong, Y.W.; Fung, M.L. Chronic hypoxia enhances endothelin-1-induced intracellular calcium elevation in rat carotid body chemoreceptors and up-regulates ETA receptor expression. Pflugers Arch. 2002, 443, 565–573.
  122. Rey, S.; Del Rio, R.; Iturriaga, R. Role of endothelin-1 on the enhanced carotid body activity induced by chronic intermittent hypoxia. Adv. Exp. Med. Biol. 2006, 580, 345–350; discussion 351–359
  123. Pawar, A.; Nanduri, J.; Yuan, G.; Khan, S.A.; Wang, N.; Kumar, G.K.; Prabhakar, N.R. Reactive oxygen species-dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R735–R742.
  124. Mosqueira, M.; Iturriaga, R. Chronic hypoxia changes gene expression profile of primary rat carotid body cells: Consequences on the expression of NOS isoforms and ET-1 receptors. Physiol. Genomics 2019, 51, 109–124.
  125. Chen, J.; He, L.; Dinger, B.; Stensaas, L.; Fidone, S. Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am. J. Physiol. Lung Cell Mol. Physiol. 2002, 282, L1314–L1323
  126. Holmes, A.P.; Turner, P.J.; Buckler, K.J.; Kumar, P. Moderate inhibition of mitochondrial function augments carotid body hypoxic sensitivity. Pflugers Arch. 2016, 468, 143–155.
  127. Peng, Y.J.; Nanduri, J.; Raghuraman, G.; Wang, N.; Kumar, G.K.; Prabhakar, N.R. Role of oxidative stress-induced endothelin-converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Exp. Physiol. 2013, 98, 1620–1630.
  128. Rey, S.; Del Rio, R.; Iturriaga, R. Contribution of endothelin-1 to the enhanced carotid body chemosensory responses induced by chronic intermittent hypoxia. Brain Res. 2006, 1086, 152–159.
  129. Li, J.; Yang, S.; Yu, F.; Ji, E.; Woodrow Weiss, J. Endothelin-1 enhanced carotid body chemosensory activity in chronic intermittent hypoxia through PLC, PKC and p38MAPK signaling pathways. Neuropeptides 2019, 74, 44–51.
  130. Xu, J.; Tse, F.W.; Tse, A. ATP triggers intracellular Ca2+ release in type II cells of the rat carotid body. J. Physiol. 2003, 549, 739–747.
  131. Xu, J.; Xu, F.; Tse, F.W.; Tse, A. ATP inhibits the hypoxia response in type I cells of rat carotid bodies. J. Neurochem. 2005, 92, 1419–1430.
  132. Zhang, M.; Piskuric, N.A.; Vollmer, C.; Nurse, C.A. P2Y2 receptor activation opens pannexin-1 channels in rat carotid body type II cells: Potential role in amplifying the neurotransmitter ATP. J. Physiol. London 2012, 590, 4335–4350
  133. Bairam, A.; Joseph, V.; Lajeunesse, Y.; Kinkead, R. Developmental pattern of M1 and M2 muscarinic gene expression and receptor levels in cat carotid body, petrosal and superior cervical ganglion. Neuroscience 2006, 139, 711–721.
  134. Shirahata, M.; Hirasawa, S.; Okumura, M.; Mendoza, J.A.; Okumura, A.; Balbir, A.; Fitzgerald, R.S. Identification of M1 and M2 muscarinic acetylcholine receptors in the cat carotid body chemosensory system. Neuroscience 2004, 128, 635–644.
  135. Thompson, C.M.; Wyatt, C.N. Inhibition of adenylate cyclase attenuates muscarinic Ca(2)(+) signaling by a PKA-independent mechanism in rat carotid body Type I cells. Respir. Physiol. Neurobiol. 2011, 175, 90–96.
  136. Thompson, C.M.; Troche, K.; Jordan, H.L.; Barr, B.L.; Wyatt, C.N. Evidence for functional, inhibitory, histamine H3 receptors in rat carotid body Type I cells. Neurosci. Lett. 2010, 471, 15–19.
More