Synthetic Aperture Radar: Comparison
Please note this is a comparison between Version 2 by Rita Xu and Version 1 by Sungwook Paek.

SAR constellations 

  • synthetic aperture radar
  • satellite constellation
  • small satellite
Please wait, diff process is still running!

References

  1. Crutzen, P.J. The “anthropocene”. J. Phys. IV (Proc.) 2002, 12, 1–5.
  2. Bae, S.; Levick, S.R.; Heidrich, L.; Magdon, P.; Leutner, B.F.; Wöllauer, S.; Serebryanyk, A.; Nauss, T.; Krzystek, P.; Gossner, M.M.; et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun. 2019, 10, 4757.
  3. Kato, A.; Wakabayashi, H.; Hayakawa, Y.; Bradford, M.; Watanabe, M.; Yamaguchi, Y. Tropical forest disaster monitoring with multi-scale sensors from terrestrial laser, UAV, to satellite radar. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2883–2886.
  4. Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990.
  5. Peral, E.; Im, E.; Wye, L.; Lee, S.; Tanelli, S.; Rahmat-Samii, Y.; Horst, S.; Hoffman, J.; Yun, S.-H.; Imken, T.; et al. Radar technologies for earth remote sensing from cubesat platforms. Proc. IEEE 2018, 106, 404–418.
  6. Marinan, A.D.; Hein, A.G.A.G.I.; Lee, Z.T.; Carlton, A.K.; Cahoy, K.; Milstein, A.B.; Shields, M.W.; DiLiberto, M.T.; Blackwell, W.J. Analysis of the Microsized Microwave Atmospheric Satellite (MicroMAS) Communications Anomaly. J. Small Satell. 2018, 7, 683–699.
  7. Space Advisory Company. Potential Synthetic Aperture Radar Applications of Small Satellites. 2017. Available online: http://www.unoosa.org/documents/pdf/psa/activities/2017/SouthAfrica/slides/ Presentation23.pdf (accessed on 18 April 2020).
  8. Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43.
  9. Lubin, D.; Massom, R. Polar Remote Sensing: Volume I: Atmosphere and Oceans; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; p. 389.
  10. PCI Geomatics. KOMPSAT-5. 2015. Available online: https://www.pcigeomatics.com/geomatica-help/references/gdb_r/KOMPSAT5.html (accessed on 26 July 2020).
  11. ESA eoPortal, SIR-A (Shuttle Imaging Radar)/OSTA-1 Payload on STS-2 Mission. 2020. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/s/sir-a (accessed on 26 May 2020).
  12. ESA. ERS Overview. 2020. Available online: https://www.esa.int/Applications/Observing_the_ Earth/ERS_overview (accessed on 26 May 2020).
  13. Alaska Satellite Facility. ALOS Phased Array type L-band Synthetic Aperture Radar. 2020. Available online: https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar/alos-palsar-about/ (accessed on 23 June 2020)
  14. Moore, J.W. OSTA-1: The Space Shuttle’s first scientific payload. In Proceedings of the 33rd IAF/IAC Congress, Paris, France, 27 September–October 2 1982.
  15. Elachi, C.; Brown, W.E.; Cimino, J.B.; Dixon, T.; Evans, D.L.; Ford, J.P.; Saunders, R.S.; Breed, C.; Masursky, H.; McCauley, J.F.; et al. Shuttle Imaging Radar Experiment. Science 1982, 218, 996–1003.
  16. Attema, E.P.W. The Active Microwave Instrument On-Board the ERS-1 Satellite. Proc. IEEE 1991, 79, 791–799.
  17. Klees, R.; Massonnet, D. Deformation measurements using SAR interferometry: Potential and limitations. Geologie en Mijnbouw 1998, 77, 161–176.
  18. Baghdadi, N.; Zribi, M. Microwave Remote Sensing of Land Surfaces: Techniques and Methods; Elsevier: Amsterdam, The Netherlands, 2016; p. 68.
  19. Pepe, A.; Calò, F. A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements. Appl. Sci. 2017, 7, 1264.
  20. Knight, P.G. (Ed.) Glacier Science and Environmental Change; John Wiley & Sons: Hoboken, NJ, USA, 2008.
  21. Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Tridon, D.B.; Bräutigam, B.; Markus, B.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. 2017, 132, 119–139.
  22. Romeiser, R.; Johannessen, J.; Chapron, B.; Collard, F.; Kudryavtsev, V.; Runge, H.; Suchandt, S. Direct Surface Current Field Imaging from Space by along-Track InSAR and Conventional SAR. In Oceanography from Space; Barale, V., Gower, J., Alberotanza, L., Eds.; Springer: Dordrecht, The Netherlands, 2010.
  23. Roth, A.; Marschalk, U.; Winkler, K.; Schättler, B.; Huber, M.; Georg, I.; Künzer, C.; Dech, S. Ten years of experience with scientific TerraSAR-X data utilization. Remote Sens. 2018, 10, 1170.
  24. Young, N. Applications of Interferometric Synthetic Aperture Radar (InSAR): A small research investigation. 2018. Available online: https://www.researchgate.net/publication/328773243_Applications_ of_Interferometric_Synthetic_Aperture_Radar_InSAR_a_small_research_investigation (accessed on 23 June 2020)
  25. DLR Microwaves and Radar Institute. Research results and projects (2011–2017). 2017. Available online: https://www.dlr.de/hr/Portaldata/32/Resources/dokumente/broschueren/HR-Institute-Status-Report-2011-2017.pdf (accessed on 3 June 2020).
  26. Chu, T.; Guo, X. Remote sensing techniques in monitoring post-fire effects and patterns of forest recovery in boreal forest regions: A review. Remote Sens. 2014, 6, 470–520.
  27. White, L.; Brisco, B.; Dabboor, M.; Schmitt, A.; Pratt, A. A collection of SAR methodologies for monitoring wetlands. Remote Sens. 2015, 7, 7615–7645.
  28. Xiong, S.; Muller, J.P.; Li, G. The application of ALOS/PALSAR InSAR to measure subsurface penetration depths in deserts. Remote Sens. 2017, 9, 638.
  29. Carreiras, J.M.; Quegan, S.; Le Toan, T.; Minh, D.H.T.; Saatchi, S.S.; Carvalhais, N.; Reichstein, M.; Scipal, K. Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions. Remote Sens. Environ. 2017, 196, 154–162.
  30. Adimi, F.; Soebiyanto, R.P.; Safi, N.; Kiang, R. Towards malaria risk prediction in Afghanistan using remote sensing. Malar. J. 2010, 9, 125.
  31. Bøgh, C.; Lindsay, S.W.; Clarke, S.E.; Dean, A.; Jawara, M.; Pinder, M.; Thomas, C.J. High spatial resolution mapping of malaria transmission risk in the Gambia, west Africa, using LANDSAT TM satellite imagery. Am. J. Trop. Med. Hyg. 2007, 76, 875–881.
  32. Rogers, D.J.; Randolph, S.E.; Snow, R.W.; Hay, S.I. Satellite imagery in the study and forecast of malaria. Nature 2002, 415, 710–715.
  33. Braun, A. Radar Satellite Imagery for Humanitarian Response. Ph.D. Thesis, Universit of Tübingen, Tübingen, Germany, 2019.
  34. Paek, S.W. Reconfigurable Satellite Constellations for Geo-spatially Adaptive Earth-Observation Missions. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012.
  35. Tristancho, J. Implementation of a Femto-Satellite and a Mini-Launcher. Master’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2012.
  36. Helvajian, H.; Janson, S.W. Eds. Small Satellites: Past, Present, and Future; Aerospace Press: El Segundo, CA, USA, 2008; ISBN 978-1-884989-22-3.
  37. Deepak, R.A.; Twiggs, R.J. Thinking out of the box: Space science beyond the CubeSat. J. Small Satell. 2012, 1, 3–7.
  38. Camps, A.; Golkar, A.; Gutierrez, A.; de Azua, J.R.; Munoz-Martin, J.F.; Fernandez, L.; Diez, C.; Aguilella, A.; Briatore, S.; Akhtyamov, R.; et al. FSSCAT, the 2017 Copernicus Masters’“ESA Sentinel Small Satellite Challenge” Winner: A Federated Polar and Soil Moisture Tandem Mission Based on 6U Cubesats. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE, New York City, NY, USA: 2018; pp. 8285–8287.
  39. Wright, R.; Nunes, M.; Lucey, P.; Flynn, L.; George, T.; Gunapala, S.; Ting, D.; Rafol, S.; Soibel, A.; Ferrari-Wong, C.; et al. HYTI: Thermal hyperspectral imaging from a CubeSat platform. Proc. SPIE 2019, 11131, 111310G.
  40. Saito, H.; Hirokawa, J.; Tomura, T.; Akbar, P.R.; Pyne, B.; Tanaka, K.; Mita, M.; Kaneko, T.; Watanabe, H.L.; Ijichi, K. Development of Compact SAR Systems for Small Satellite. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE, New York City, NY, USA: 2019; pp. 8440–8443.
  41. Filippazzo, G.; Dinand, S. The Potential Impact of Small Satellite Radar Constellations On Traditional Space System. In Proceedings of the 5th Federated and Fractionated Satellite Systems Workshop, Ithaca, NY, USA, 2–3 November 2017.
  42. Kim, Y.; Kim, M.; Han, B.; Kim, Y.; Shin, H. Optimum design of an SAR satellite constellation considering the revisit time using a genetic algorithm. Int. J. Aeronaut. Space Sci. 2017, 18, 334–343.
  43. NASA. NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook. 2019. Available online: https://nisar.jpl.nasa.gov/files/nisar/NISAR_Science_Users_Handbook.pdf (accessed on 3 June 2020)
  44. Ocampo-Torres, F.J.; Gutiérrez-Nava, A.; Ponce, O.; Vicente-Vivas, E.; Pacheco, E. On the progress of the nano-satellite SAR based mission TOPMEX-9 and specification of potential applications advancing the Earth Observation Programme of the Mexican Space Agency. In Proceedings of the Conference on Space Optical Systems and Applications, Santa Monica, CA, USA, 11-13 May 2011; pp. 102–109.
  45. Freeman, A. Design principles for smallsat SARs. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4-9 August 2018.
  46. Farquharson, G.; Woods, W.; Stringham, C.; Sankarambadi, N.; Riggi, L. The Capella Synthetic Aperture Radar Constellation. In Proceedings of the EUSAR 2018; 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018; VDE Verlag, Berlin, Germany: 2018; pp. 1–5.
  47. Safy, M. Synthetic Aperture Radar for Small Satellite. Int. J. Innov. Technol. Eng. 2019, 9, 3435–3440.
  48. Braun, H.M.; Knobloch, P.E. SAR on Small Satellites-Shown on the SAR-Lupe Example. In Proceedings of the International Radar Symposium, 2007 (IRS 2007), Cologne, Germany, 5–7 September 2007.
  49. Zemann, J.L.; Nitschko, T.; Supper, L.; Konigsreiter, G. The Deployable Boom Assembly for SAR-Lupe. In Proceedings of the 28th ESA Antenna Workshop, Estec Noordwijk, The Netherlands, 31 May–3 June 2005.
  50. Clark, R.M. The Technical Collection of Intelligence; CQ Press, Washington, DC, USA: 2010.
  51. Soja, M.J. Modelling and Retrieval of Forest Parameters from Synthetic Aperture Radar Data; Chalmers University of Technology: Gothenburg, Sweden, 2014.
  52. Paek, S.W.; de Weck, O.L.; Smith, M.W. Concurrent design optimization of Earth observation satellites and reconfigurable constellations. J. Brit. Interplanet. Soc. 2017, 70, 19–35.
  53. Paek, S.W.; Kim, S.; de Weck, O.L. Optimization of reconfigurable satellite constellations using simulated annealing and genetic algorithm. Sensors 2019, 19, 765.
  54. Covello, F.; Battazza, F.; Coletta, A.; Lopinto, E.; Fiorentino, C.; Pietranera, L.; Valentni, G.; Zoffoli, S. COSMO-SkyMed an existing opportunity for observing the Earth. J. Geodyn. 2010, 49, 171–180.
  55. Paek, S.W.; Kim, S.; Kronig, L.G.; de Weck, O.L. Sun-synchronous repeat ground tracks and other useful orbits for future space missions. Aeronaut. J. 2020, 124, 917–939.
  56. Candela, L.; Caltagirone, F. Cosmo-SkyMed: Mission Definition, Main Application and Products. In Proceedings of the ESA POLinSAR Workshop. Frascati, Italy, 14–16 January 2003. ESA Publications Division, Noordwijk, The Netherlands.
  57. Csizmar, A.; Richards, L.; Scorzafava, E.; Daprati, G.; Perrone, G. COSMO-SkyMed, First Lithium-Ion Battery for Space-based Radar. In Proceedings of the 7th European Space Power Conference, Stresa, Italy, 9–13 May 2005.
  58. Troutman, J. SONY 18650 Hard Carbon Cell and SONY 18650 Hard Carbon Mandrel Cell. In Proceedings of the NASA Battery Workshop, 2011 NASA Battery Workshop, Huntsville, AL, USA, 15 November 2011.
  59. Lombardo, P. A multichannel spaceborne radar for the COSMO-SkyMed satellite constellation. In Proceedings of the 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720), Big Sky, MT, USA, 6–13 March 2004; IEEE, New York City , NY, USA: 2004; Volume 1.
  60. Ochs, S.; Pitz, W. The terrasar-x and tandem-x satellites. In Proceedings of the 2007 3rd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 14–16 June 2007; IEEE, New York City, NY, USA: 2007; pp. 294–298.
  61. Krieger, G.; Zink, M.; Bachmann, M.; Bräutigam, B.; Schulze, D.; Martone, M.; Rizzoli, P.; Steinbrecher, U.; Antony, J.W.; De Zan, F.; et al. TanDEM-X: A radar interferometer with two formation-flying satellites. Acta Astronaut. 2013, 89, 83–98.
  62. Moreira, A.; Krieger, G.; Hajnsek, I.; Hounam, D.; Werner, M.; Riegger, S.; Settelmeyer, E. TanDEM-X: A TerraSAR-X Add-On Satellite for Single-Pass SAR Interferometry. In Proceedings of IGARSS 2004, Anchorage, AK, USA, 20–24 September 2004.
  63. Martone, M.; Rizzoli, P.; Wecklich, C.; Gonzalez, C.; Bueso-Bello, J.-L.; Valdo, P.; Schulze, D.; Zink, M.; Krieger, K.; Moreira, A. The Global Forest/Non-Forest Map from TanDEM-X Interferometric SAR Data. Remote Sens. Environ. 2018, 205, 352–373.
  64. Krieger, G.; Fiedler, H.; Moreira, A. Bi-and multistatic SAR: Potentials and challenges. Proc. EUSAR 2004, 34, 365–370.
  65. Krieger, G.; Fiedler, H.; Houman, D.; Moreira, A. Analysis of system concepts for bi-and multi-static SAR missions. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse, France, 21–25 July 2003; IEEE, New York City, NY, USA: 2003; Volume 2, pp. 770–772.
  66. Gill, E.; Runge, H. Tight formation flying for an along-track SAR interferometer. Acta Astronaut. 2004, 55, 473–485.
  67. Krieger, G.; Hajnsek, I.; Papathanassiou, K.P.; Younis, M.; Moreira, A. Interferometric synthetic aperture radar (SAR) missions employing formation flying. ‎Proc. IEEE 2010, 98, 816–843.
  68. Satellite Configuration for Interferometric and/or Tomographic Remote Sensing by Means of Synthetic Aperture Radar (SAR). U.S. Patent No 6,677,884, 13 January 2004.
  69. DLR. Earth Observation Center. 2020. Available online: https://geoservice.dlr.de/web/maps/tdmforest (accessed on 3 June 2020).
  70. ETH Zurich. Chair of Earth Observation and Remote Sensing. 2020. Available online: https://eo.ifu.ethz.ch/forschung/Techniques.html#par_textimage_2091550249 (accessed on 3 June 2020).
  71. Ullmann, T.; Büdel, C.; Baumhauer, R. Characterization of arctic surface morphology by means of intermediated TanDEM-X digital elevation model data. Z. Geomorphol. 2017, 61, 3–25.
  72. Betbeder, J.; Rapinel, S.; Corpetti, T.; Pottier, E.; Corgne, S.; Hubert-Moy, L. Multitemporal classification of TerraSAR-X data for wetland vegetation mapping. J. Appl. Remote Sens. 2014, 8, 083648.
  73. Lopez-Sanchez, J.M.; Ballester-Berman, J.D.; Hajnsek, I. First results of rice monitoring practices in Spain by means of time series of TerraSAR-X dual-pol images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 412–422.
  74. Koppe, W.; Gnyp, M.L.; Hütt, C.; Yao, Y.; Miao, Y.; Chen, X.; Bareth, G. Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data. Int. J. Appl. Earth Obs. 2013, 21, 568–576.
  75. Tebaldini, S.; Nagler, T.; Rott, H.; Heilig, A. Imaging the internal structure of an alpine glacier via L-band airborne SAR tomography. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7197–7209.
  76. Buckreuss, S.; Zink, M. TerraSAR-X and TanDEM-X mission status. In Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016; VDE Verlag, Berlin, Germany: 2016; pp. 1–6.
  77. Howell, E. Two private satellites just docked in space in historic first for orbital servicing. 2020. Available online: https://www.space.com/private-satellites-docking-success-northrop-grumman-mev-1.html (accessed on 24 July 2020).
  78. de Weck, O. A Review of Satellite Constellation Reconfiguration and Its Applications. In Proceedings of the 10th International Workshop on Satellite Constellations & Formation Flying, Glasgow, UK, 16-19 July 2019.
  79. Tian, W.; Bian, X.; Shao, Y.; Zhang, Z. On the detection of oil spill with China’s HJ-1C SAR image. Aquat. Procedia 2015, 3, 144–150.
  80. Guo, H.; Fu, W.; Liu, G. Scientific Satellite and Moon-Based Earth Observation for Global Change; Springer Singapore, 2019; p. 423.
  81. Observing Systems Capability Analysis and Review Tool. Satellite: HJ-1C. 2020. Available online: https://www.wmo-sat.info/oscar-staging/satellites/view/171 (accessed on 15 June 2020).
  82. Bird, R.; Whittaker, P.; Stern, B.; Angli, N.; Cohen, M.; Guida, R. NovaSAR-S: A low cost approach to SAR applications. In Proceedings of the Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 23–27 September 2013; IEEE, New York City, NY, USA: 2013; pp. 84–87.
  83. Iervolino, P.; Guida, R.; Whittaker, P. NovaSAR-S and maritime surveillance. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; IEEE, New York City, NY, USA: 2013; pp. 1282–1285.
  84. Davies, P.; Whittaker, P.; Bird, R.; Gomes, L.; Stern, B.; Sweeting, M.; Cohen, M.; Hall, D. NovaSAR–Bringing Radar Capability to the Disaster Monitoring Constellation, In Proceedings of the 26th Annual USU Conference on Small Satellites, Logan, UT, USA, 13-16 August 2012.
  85. Natale, A.; Guida, R.; Bird, R.; Whittaker, P.; Cohen, M.; Hall, D. Demonstration and analysis of the applications of S-band SAR. In Proceedings of the 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Korea, 26–30 September 2011; IEEE, New York City, NY, USA: 2011; pp. 1–4.
  86. Pauwels, V.; Walker, J.; Grimaldi, S.; Wright, A.; Li, Y. 2019. Improving Flood Forecast Skill Using Remote Sensing Data. Available online: https://www.bnhcrc.com.au/sites/default/files/managed/downloads/ improving_flood_forecast_skill_using_remote_sensing_data_annual_report_2018-2019_final.pdf (accessed on 20 July 2020).
  87. Surrey Satellite Technology Ltd., SSTL announces NovaSAR-1 data deal with the Philippines. 2019. Available online: https://www.sstl.co.uk/media-hub/latest-news/2019/sstl-announces-novasar-1-data-deal-with-the-philip (accessed on on 20 July 2020).
  88. Gunter’s Space Page. Ofeq 8, 10 (TECSAR 1, 2/TechSAR 1, 2). 2020. Available online: https://space.skyrocket.de/doc_sdat/techsar-1.htm (accessed on 15 June 2020).
  89. Baddeley, A., Israel Exploits Space Technologies, Capabilities, Available online: https://www.afcea.org/content/israel-exploits-space-technologies-capabilities (accessed on 20 July 2020).
  90. Curiel, A.D.S.; Whittaker, P.; Bird, R.; Haslehurst, A.; Nejadi, P.; Victoria, I.; Cawthorne, A.; Underwood, C.; Sweeting, M. Synthetic Aperture Radar on a Nanosatellite-is it Possible? In Proceedings of the 12th IAA Symposium on Small Satellites for Earth Observation. International Academy of Astronautics (IAA), Berlin, Germany, 6–10 May 2019.
  91. Imbriale, W.A.; Gao, S.S.; Boccia, L. Space Antenna Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2012.
  92. Sharay, Y.; Naftaly, U. TECSAR: Design considerations and programme status. IEE Proc.-Radar Sonar Navig. 2006, 153, 117–121.
  93. Jeong, S.Y.; Lee, S.Y.; Bae, M.J.; Cho, K.D. Configuration design of a deployable SAR antenna for space application and tool-kit development. Int. J. Aeronaut. Space 2014, 42, 683–691.
  94. Wegner, P.M.; Ganley, J.; Maly, J.R. EELV secondary payload adapter (ESPA): Providing increased access to space. In Proceedings of the 2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542), Big Sky, MT, USA, 10–17 March 2001; IEEE: 2011; Volume 5, pp. 2563–2568.
  95. Caffrey, R. Using Rideshare to Launch CubeSats & ESPA S/C. In Proceedings of the 2nd Planetary CubeSat Science Symposium, Greenbelt, MD, USA, 26 September 2017.
  96. Rosen, P.A.; Kumar, R. The NISAR Mission–An NASA/ISRO Space Partnership Supporting Global Research and Applications. In Proceedings of the 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India, 9–15 March 2019; IEEE: 2019; pp. 1-1.
  97. Freeman, A.; Johnson, W.T.K.; Huneycutt, B.; Jordan, R.; Hensley, S.; Siqueira, P.; Curlander, J. The” Myth” of the minimum SAR antenna area constraint. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No. 99CH36293), Hamburg, Germany, 28 June–2 July 1999; IEEE, New York City, NY, USA: 1999; Volume 3, pp. 1770–1772.
  98. Girard, R.; Plourde, P.; Séguin, G. The RADARSAT constellation payload design. In 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; IEEE, New York City, NY, USA: 2007; pp. 1387–1392.
  99. de Almeida, F.Q.; Younis, M.; Krieger, G.; Moreira, A. An Analytical Error Model for Spaceborne SAR Multichannel Azimuth Reconstruction. IEEE Geosci. Remote S. 2017, 15, 853-857.
  100. Akbar, P.R.; Sumantyo, J.T.S.; Saito, H. Design of synthetic aperture radar onboard small satellite. SANE. 2012, 112, 135–140.
  101. Saito, H.; Pyne, B.; Tanaka, K.; Mita, M.; Kaneko, T.; Hirokawa, J., Tomura, T.; Watanabe, H.; Akbar, P.R.; Ijichi, K. Proto-Flight Model of SAR for 100kg class Small Satellite. In Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA. 3-8 August 2019.
  102. Pyne, B.; Ravindra, V.; Saito, H. An improved pulse repetition frequency selection scheme for synthetic aperture radar. In Proceedings of the 2015 European Radar Conference (EuRAD), Paris, France, 9–11 September 2015; IEEE, New York City, NY, USA: 2015; pp. 257–260.
  103. Pyne, B.; Akbar, P.; Saito, H.; Zhang, M.; Hirokawa, J.; Ando, M. Design of a center-feed waveguide feeder for wideband rectangular parallel-plate slot-array antenna on-board space-borne X-band SAR system. In Proceedings of the 2016 46th European Microwave Conference (EuMC), London, UK, 4–6 October 2016; IEEE, New York City, NY, USA: 2016; pp. 1533–1536.
  104. Pyne, B.; Akbar, P.R.; Ravindra, V.; Saito, H.; Hirokawa, J.; Fukami, T. Slot-Array Antenna Feeder Network for Space-Borne X-Band Synthetic Aperture Radar. ‎IEEE Trans. Antennas Propag. 2018, 66, 3463–3474.
More