EVs has spread from various medical fields to otorhinolaryngology, as well as head and neck surgery (ORL-HNS).
1. Introduction
As defined by the International Society for Extracellular Vesicles (ISEV), EVs are particles naturally released from cells, delimited by a lipid bilayer, which cannot replicate since they do not contain a functional nucleus
[1][2].
2. Applicability of EVs in ORL-HNS
2.1. EV-Based Diagnostics
2.1.1. Head and Neck Cancer
HNSCC typically originates in deeper tissues and is usually harder to see or palpate. For that reason, it is often discovered too late, i.e., when it has already progressed locally or metastasised to the cervical lymph nodes. Approximately two-thirds of patients with HNSCC are diagnosed at an advanced stage, and more than half of them experience a recurrence at least once, 90% of them within the first two years
[2][35]. This contributes to the high burden of HNSCC; prompt diagnosis is therefore crucial
[3][4][5][6][7][8][29,30,31,32,33,34].
When it comes to diagnostics, some exosomal molecules’ unique and consistent expression patterns make them a promising biomarker in some diseases of ORL-HNS. Since EVs are ubiquitous, they can be isolated from tumour liquid biopsy samples or non-invasively collected body fluids, e.g., saliva, plasma, urine. Although using EVs in these settings is becoming increasingly popular in diagnosis, their use is still limited due to the overlapping cellular structure and composition of the tumour and normal cells
[9][36].
Recently, the most often studied potential EV-related biomarkers from different samples, including the above-mentioned diagnostic methods, have been EV levels.
A study by Hoshino et al. (2020) provided a proteomic analysis of EV and particles (EVPs) from 426 human samples, identifying pan-EVP markers, and biomarkers for EVP isolation, cancer detection and cancer type. In addition, a study of EVP proteomes was run to identify universal EVP markers, improve the isolation of human EVPs and offer a resource for early cancer detection with liquid biopsies. Among the exosome markers investigated, HSPA8 (Heat Shock Protein Family A (Hsp70) Member 8), HSP90AB1 (Heat Shock Protein 90 Alpha Family Class B Member 1), CD9, and ALIX (apoptosis-linked gene 2-interacting protein X), isolated from cells, tissues, and most biofluids, were found to be the most prominent and represent the so-called pan-EVP markers
[10][37].
Tumour tissue biopsies and fine-needle aspiration biopsies are the most commonly used diagnostic methods in ORL-HNS. However, due to their invasive nature and inadequate representation of tumoral heterogeneity, liquid biopsies are being explored as an alternative to track the dynamics of the disease. Liquid biopsy uses a non-solid tissue sample, such as blood, saliva, urine or cerebrospinal fluid, for the same purposes as traditional biopsy. In addition, samples are investigated for specific biomarkers related to the disease in question, most often circulating tumour cells (CTC), circulation tumour DNA (ctDNA) or exosomes, which can confirm the diagnosis and enable a further follow-up
[11][38].