This paper summarizes the scientific study of rock art in China, focusing on the direct dating of rock art. It pays particular attention to the recent work of the International Centre for Rock Art Dating (ICRAD) at Hebei Normal University and explains the problems of the uranium-thorium analysis of reprecipitated calcium-carbonate skins related to rock art.
Figure 1. Tang Huisheng conducting the first replicable direct dating of rock art in China in 1997 at the Lushan petroglyph site in Qinghai Province (photograph by Gao Zhiwei, with permission).
Figure 2. U–Th age determinations of speleothems compared with archaeologically realistic or radiocarbon ages of these same deposits.
This follows similarly spectacular claims from several cave sites in Spain, also based on U–Th data, that paintings thought to be of the late Upper Paleolithic were much older and were made by Neanderthals [28][29][30][44,45,46]. Due to these many concerns about the credibility of U–Th dates from non-crystalline reprecipitated carbonates, an intensive debate of the method when applied to thin or porous carbonates has developed over the last decade [31][32][33][34][35][36][37][38][39][40][47,48,49,50,51,52,53,54,55,56]. The primary cause of the excessive ages attributed to reprecipitated carbonate deposits is the depletion of U by moisture. Solution may also remove detrital Th, there may be a transformation of aragonite to calcite, or samples may be contaminated by components of the support rock [41][42][43][57,58,59]. Two other factors are of great concern. One issue needing more attention is the significant variation of U concentrations in coeval calcite skins demonstrated to occur on a millimetre-scale that may be greater than 100% [2][3][2,3]. The second concern stems from the ‘blind tests’ we conducted due to the grossly incongruous U–Th results from Heilongjiang sites Mohe and Yilin 2 [2]. We split four samples from Yunnan Jinshajiang sites and submitted the two sets to two different U–Th laboratories [44][60]. Not only did this yield two entirely different sets of results, but the reporting protocols also differed profoundly. Moreover, three results produced negative values, probably attributable to significant leaching of U and other contaminating factors (Table 1). The stochastic distribution of the dates in Figure 2 suggests that the distortion is not systematic but seems to be a random function of taphonomic processes distorting the U–Th ratios. Most notably, the water-soluble U can be readily mobilized when the deposit is subjected to moisture. This frequently occurs with speleothems and even more so with travertine that is fully exposed to precipitation. Travertines are not dense crystalline formations like stalagmites; they have varying degrees of porosity which assists the reaction with carbonic acid to revert to their soluble (bicarbonate) phase.Sample | MR-1 | HY-1 | YDG-1 | YDG-2 |
---|---|---|---|---|
Laboratory 1 | 1.359 ± 0.179 | 2.362 ± 2.573 | 4.674 ± 5.118 | 20.077 ± 2.742 |
Laboratory 2 | −7 +21/−26 | −20 +26/−35 | −14 +33/−45 | 0.4 ± 7.7 |
References
[1] Bednarik, R.G. The dating of rock art: a critique. Jl Archaeol Sci 2002, 29(11), 1213–1233.
[2] Tang H; Kumar, G.; Jin A. Rock art of Heilongjiang Province, China. Jl Archaeol Sci: Rep 2020, 31, doi:10.1016/j.jasrep.2020.102348.
[3] Hoffmann, D.L., Spötl, C., Mangini, A. Micromill and in situ laser ablation sampling techniques for high spatial resolution MC-ICPMS U–Th dating of carbonates. Chem Geology, 2009, 259, 253–261.
[4] Watchman, A. Investigating the cation-ratio calibration curve: evidence from South Australia. Rock Art Res, 1992, 9(2), 106–110.
[5] Bednarik, R.G., Li F. Rock art dating in China: past and future. The Artefact, 1991, 14, 25–33.
[6] Wang N. An introduction to rock paintings in Yunnan Province (People’s Republic of China). Rock Art Res, 1984, 1(2), 75–84.
[7] Tang H. Theory and methods in Chinese rock art studies. Rock Art Res, 1993, 10(2), 83–90.
[8] Qin S., Qin T., Lu M., Yü J. The investigation and research of the cliff and mural paintings of the Zuojiang River valley in Guangxi. Nanning, Guangxi National Printing House, China, 1987.
[9] Shao Q., Wu Y., Pons-Branchu. E., Zhu Q., Dapoigny, A., Jiang T. U-series dating of carbonate accretions reveals late Neolithic age for the rock paintings in Cangyuan, southwestern China. Quaternary Geochronology, 2021, 61, 101127; doi: 10.1016/j.quageo.2020.101127.
[10] Tang H., Gao Z. Dating analysis of rock art in the Qinghai-Tibetan Plateau. Rock Art Res, 2004, 21(2), 161–172.
[11] Tang H., Mei Y. Dating and some other issues on the prehistoric site at Jiangjunya. Southeast Culture, 2008, 202(2), 11–23.
[12] Bednarik, R.G. A new method to date petroglyphs. Archaeometry, 1992, 34, 279–291.
[13] Bednarik, R.G. Geoarchaeological dating of petroglyphs at Lake Onega, Russia. Geoarchaeology, 1993, 8(6), 443–463.
[14] Bednarik, R.G. The age of the Coa valley petroglyphs in Portugal. Rock Art Res, 1995, 12(2), 86–103.[15] Bednarik, R.G. Microerosion analysis of petroglyphs in Valtellina, Italy. Origini, 1997, 21, 7–22.
[16] Bednarik, R. G. Age estimates for the petroglyph sequence of Inca Huasi, Mizque, Bolivia. Andean Past, 2000, 6, 277–287.
[17] Bednarik, R.G. About the age of Pilbara rock art. Anthropos, 2002, 97(1), 201–215.
[18] Tang H., Kumar, G., Jin A., Wu J., Liu W., Bednarik, R.G. The 2015 rock art missions in China. Rock Art Res, 2018, 35(1), 25–34.
[19] Bednarik, R.G. Yanhua kexue — Yuangu yishu de kexue yanjiu (Rock art science: the scientific study of palaeoart, transl. by Jin A.) Xi'an, Shaanxi People’s Education Press (Shaanxi Xinhua Publishing & Media Group), 2020.
[20] Tang H. New discovery of rock art and megalithic sites in the Central Plain of China. Rock Art Res, 2012, 29(2), 157–170.
[21] Tang H., Kumar, G., Liu W., Xiao B., Yang H., Zhang J., Lu X.H., Yue J., Li Y., Gao W., Bednarik, R.G. The 2014 microerosion dating project in China. Rock Art Res, 2017, 34(1), 40–54.
[22] Beaumont, P.B., Bednarik, R.G. Concerning a cupule sequence on the edge of the Kalahari Desert in South Africa. Rock Art Res, 2015, 32(2), 162–177.
[23] Bednarik, R.G. Advances in microerosion analysis. Rock Art Res, 2019, 36(1), 43–48.
[24] Jin A., Zhang J., Xiao B., Tang H. Microerosion dating of Xianju petroglyphs, Zhejiang Province, China. Rock Art Res, 2016, 33(1), 3–7.
[25] Bednarik, R.G. The International Centre of Rock Art Dating and Conservation (ICRAD). Rock Art Res, 2016, 33(1), 111–112.
[26] Tang H., Jin A., Li M., Fan Z., Liu W., Kumar, G., Bednarik, R.G. The 2017 rock art mission in Hubei Province, China. Rock Art Res, 2020, 37(1), 67–73.
[27] Jin A., Chao G. The 2018 expedition to Fangcheng cupule sites in central China. Rock Art Res, 2019, 36(2), 157–163.
[28] Jin A., Chao G. The 2018 and 2019 rock art expeditions to Lianyungang, east China. Rock Art Res, 2020, 37(1), 74–81.
[29] Jin A., Chao G. The 2018 expedition to Anshan cupule sites, northeast China. Rock Art Res, 2021, 38(1), 3–9.
[30] Bednarik, R.G. The tribology of cupules. Geol Mag 2015, 152(4), 758–765.
[31] Bednarik, R.G. Tribology in geology and archaeology. New York, Nova Science Publishers USA, 2019.
[32] Li M., Lari J., Tang H., Li Y., Bednarik, R.G. The 2019 survey of petroglyphs in the Qinghai-Tibet Plateau, western China. Rock Art Res, 2022, 39(1), in press.
[33] Li M., Shi L., Wu X., Tang H. Discovery of new type of cave rock paintings in Guangxi Zhuang Autonomous Region, China. Rock Art Res, 2020, 37(1), 5–18.
[34] Bednarik, R.G. Die Bedeutung der paläolithischen Fingerlinientradition. Anthropologie, 1984, 23, 73–79.
[35] Taçon, P.S.C., Aubert, M., Gang L., Yang D., Liu H., May, S.K., Fallon, S., Ji X., Curnoe, D., Herries, A.I.R. Uranium-series age estimates for rock art in southwest China. Jl Archaeol Sci 2012, 39: 492–499.
[36] Bard, E., Hamelin, B., Fairbanks, R.G., Zindler, A. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. Nature, 1990, 345, 405–410.
[37] Holmgren, K., Lauritzen, S.-E., Possnert, G. 230Th/234U and 14C dating of a late Pleistocene stalagmite in Lobatse II cave, Botswana. Quat Sci Rev, 1994, 13, 111–119.
[38] Labonne, M., Hillaire-Marcel, C., Ghaleb, B., Goy, J.L. Multi-isotopic age assessment of dirty speleothem calcite: an example from Altamira Cave, Spain. Quat Sci Rev, 2002, 21, 1099–1110.
[39] Plagnes, V., Causse, C., Fontugne, M., Valladas, H., Chazine, J.-M., Fage, L.-H. Cross dating (Th/U-14C) of calcite covering prehistoric paintings in Borneo. Quat Res, 2003, 60(2), 172–179.
[40] Quiles, A., Fritz, C., Medina, M.A., Pons-Branchu, E., Sanchidrián, J.L., Tosello, G., Valladas, H. Chronologies croisées (C-14 et U/Th) pour l’étude de l’art préhistorique dans la grotte de Nerja: méthodologie. In: M.A. Medina-Alcaide, A. Romero Alonso, R.M. Ruiz-Márquez, J.L. Sanchidrián Torti (Eds.), Sobre rocas y huesos: las sociedades prehistóricas y sus manifestaciones plásticas, 2014, pp. 420–427. Córdoba, Fundación Cueva de Nerja.
[41] Sanchidrián, J.L., Valladas, H., Medina-Alcaide, M.A., Pons-Branchu, E., Quiles, A. New perspectives for 14C dating of parietal markings using CaCO3 thin layers: an example in Nerja Cave (Spain). Jl Archaeol Sci: Rep, 2017, 12, 4–80.
[42] Valladas, H., Pons-Branchu, E., Dumoulin, J.P., Quiles, A., Sanchidrián, J.L., Medina-Alcaide, M.A. U/Th and 14C crossdating of parietal calcite deposits: application to Nerja Cave (Andalusia, Spain) and future perspectives. Radiocarbon, 2017, 59, 1955–1967.
[43] Zhang D.D., Bennett, M.R., Cheng H., Wang L., Zhang H., Reynolds, S.C., Zhang S., Wang X., Li T., Urban, T., Pei Q., Wu Z., Zhang P., Liu C., Wang Y., Wang C., Zhang D., Lawrence Edwards, R. Earliest parietal art: hominin hand and foot traces from the middle Pleistocene of Tibet. Sci Bull, 2021, doi.org/10.1016/j.scib.2021.09.001.
[44] Hoffmann, D.L., Standish, C.D., García-Diez, M., Pettitt, P.B., Milton, J.A., Zilhã,o J. et al. U–Th dating of carbonate crusts reveal Neanderthal origin of Iberian cave art. Science, 2018, 359(6378), 912–915.
[45] Hoffmann, D.L., Standish, C.D., García-Diez, M., Pettitt, P.B., Milton, J.A., Zilhão, J., Alcolea-González, J.J., Cantalejo-Duarte, P., Collado, H., Balbín, R. de, Lorblanchet, M. Response to Comment on ‘U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art’. Science, 2018, 362(6411):eaau1736.
[46] Hoffmann, D.L., Standish, C.D., Pike, A.W., García-Diez, M., Pettitt, P.B., Angelucci, D.E., Villaverde, V., Zapata, J., Milton, J.A., Alcolea-González, J., Cantalejo-Duarte, P., Collado, H., Balbín, R. de, Lorblanchet, M., Ramos-Muñoz, J., Weniger, G.C., Zilhão, J. Dates for Neanderthal art and symbolic behaviour are reliable. Nat Ecol Evol, 2018, 2, 1044–1045.
[47] Bednarik, R.G. U–Th analysis and rock art: a response to Pike et al. Rock Art Res, 2012, 29(2), 244–246.
[48] Clottes, J. U-series dating, evolution and Neandertal. Intern Newsl Rock Art, 2012, 64, 1–6.
[49] Pike, A.W.G., Hoffmann, D.L., García-Diez, M., Pettitt, P.B., Alcolea, J., Balbín, R. de, González Sainz, C., De Las Heras, C., Lasheras, J.-A., Montes, R., Zilhão, J. U-series dating of Paleolithic art in 11 caves in Spain. Science, 2012, 336(6087), 1409–1413.
[50] Pons-Branchu, E., Bourrillon, R., Conkey, M.W., Fontugne, M., Fritz, C., Gárate, D., Quiles, A., Rivero, O., Sauvet, G., Tosello, G., Valladas, H., White, R. Uranium-series dating of carbonate formations overlying Paleolithic art: interest and limitations. Bull Soc préh franç, 2014, 111(2), 211–224.
[51] Sauvet, G., Bourrillon, R., Conkey, M., Fritz, C., Garate-Maidagan, D., Rivero Vila, O., Tosello, G., White, R. Answer to ‘Comment on uranium-thorium dating method and Palaeolithic rock art’ by Pons-Branchu et al. Quat Intern, 2015, 432, 86–92.
[52] Hoffmann, D.L., Utrilla, P., Bea, M., Pike, A.W.G., García-Diez, M., Zilhão, J., Domingo, R. U-series dating of Palaeolithic rock art at Fuente del Trucho (Aragón, Spain). Quat Intern, 2016, 432, 50–58.
[53] Hoffmann, D.L., Pike, A.W.G., García-Diez, M., Pettitt, P.B. Methods for U-series dating of CaCO3 crusts associated with Palaeolithic cave art and application to Iberian sites. Quat Geochron, 2016, 36, 104–116.
[54] Pike, A.W.G., Hoffmann, D.L., Pettitt, P.B., García-Diez, M., Zilhão, J. Dating Palaeolithic cave art: why U–Th is the way to go. Quat Internat, 2017, 432, 41–49.
[55] Aubert, M., Brumm, A., Huntley, J. Early dates for ‘Neanderthal cave art’ may be wrong. Jl Human Evol, 2018, 125, 215–217.
[56] White, R., Bosinski, G., Bourrillon, R., Clottes, J., Conkey, M.W., Corchón Rodriguez, S. et al. Still no archaeological evidence that Neanderthals created Iberian cave art. Jl Human Evol, in press, 144.
[57] Lachniet, M.S., Bernal, J.P., Asmerom, Y., Polyal, V. Uranium loss and aragonite-calcite age discordance in a calcitized aragonite stalagmite. Quat Geochron, 2012, 14, 26–37.
[58] Bajo, P., Hellstrom, J., Frisia, S., Drysdale, R., Black, J., Woodhead, J., Borsato, A., Zanchetta, G., Wallace, M.W., Regattieri, E., Haese, R. ‘Cryptic’ diagenesis and its implications for speleothem geochronologies. Quat Sci Rev, 2016, 148, 17–28.
[59] Fontugne, M., Shao, Q., Frank, N., Thil, F., Guidon, N., Boeda, E. Cross dating (Th/U-14C) of calcite covering prehistoric paintings at Serra da Capivara National Park, Piauí, Brazil. Radiocarbon, 2013, 55(2–3), 1191–1198.
[60] Tang H., Bednarik, R.G. Rock art dating by 230Th/234U analysis: an appraisal of Chinese case studies. Archaeol Anthrop Sci, 2021, 13(1), doi:10.1007/s12520-020-01266-0.
[61] Facorellis, Y., Kiparissi-Apostolika, N., Maniatis, Y. The cave of Theopetra, Kalambaka: radiocarbon evidence for 50,000 years of human presence. Radiocarbon, 2001, 43(2B), 1029–1048.
[62] Bednarik, R.G. Antiquity and authorship of the Chauvet Cave rock art. Rock Art Res, 2007, 24(1), 21–34.
[63] Bednarik, R.G. Palaeoart of the Ice Age. Newcastle upon Tyne, Cambridge Scholars Publishing, UK, 2017.
[64] Liritzis, I,, Vafiadou, A., Zacharias, N., Polymeris, G., Bednarik, R.G. Advances in surface luminescence dating: some new data from three selected Mediterranean sites. Medit Archaeol Archaeometry, 2013, 13(3), 105–115.
[65] Liritzis, I., Bednarik, R.G., Kumar, G., Polymeris, G., Iliopoulos, I., Xanthopoulou, V., Zacharias, N., Vafiadou, A., Bratitsi, M. Daraki-Chattan rock art constrained OSL chronology and multianalytical techniques: a first pilot investigation. Jl Cult Herit, 2018, 37, 29–43.
[66] Liritzis, I., Panou, E., Exarhos, M. (2017) Novel approaches in surface luminescence dating of rock art: a brief review. Medit Archaeol Archaeometry, 2017, 17(4), 89–102.
[67] Liritzis, I. A new dating method by thermoluminescence of carved megalithic stone building. Comp Rend (Acad Sci), Paris, 1994, 319, serie II, 603–610.
[68] Liritzis, Y. U234/Th230 dating contribution to the resolution of Petralona controversy; Nature, 1983, 299(5880), 280–281.
[69] Liritzis, Y. A critical dating revaluation of Petralona hominid: a caution for patience. Athens Ann Archaeol, 1984, 15(2), 285–296
[70] Liritzis, Y., Galloway, R.B. The Th230/U234 disequilibrium dating of cave travertines. Nuclear Instr Methods, 1982, 201, 507–510.
[71] Bednarik, R.G. The dating of rock art and bone by the uranium–thorium method. Rock Art Res, 2022, 39(2) (in press).