Fabrication of Metal/Carbon Nanotube Composites by Electrochemical Deposition: Comparison
Please note this is a comparison between Version 2 by Lindsay Dong and Version 1 by Susumu Arai.

Metal/carbon nanotube (CNT) composites are promising functional materials due to the various superior properties of CNTs in addition to the characteristics of metals. Electrochemical deposition can be classified into three types: (1) composite plating by electrodeposition or electroless deposition, (2) metal coating on CNT by electroless deposition, and (3) electrodeposition using CNT templates, such as CNT sheets and CNT yarns. 

  • metal/carbon nanotube composite
  • electrochemical deposition
  • electrodeposition
  • electroless deposition
  • composite plating
  • carbon nanotube sheet
  • carbon nanotube yarn

1. Introduction

Carbon nanotubes (CNTs) [1,2][1][2] have excellent mechanical characteristics such as high tensile strength and high elastic modulus, and also possess high thermal and electrical conductivity. Therefore, research into the practical applications of carbon nanotubes has been expanding into wide field, and composite materials of such nano-sized filler materials, such as polymer/CNT composites, have been studied expecting their innovative functions. Metal/CNT composites also have been investigated to enhance properties of metals and/or to give new innovative functions to metals. However, in general, the wettability of molten metals against CNTs is poor, resulting in difficulties of controlling the interface between the filler and matrix. In addition, since CNTs are nanosized fibrous materials and easily form aggregates, it is very difficult to form a metal/CNT composite with well-distributed CNTs in the metal matrix.
Electrochemical deposition is roughly classified into electrodeposition and electroless deposition, and the fabrication processes of metal/CNT composites by the electrochemical deposition can be categorized into three types: (1) composite plating by electrodeposition or electroless deposition, (2) CNT coating by electroless deposition, and (3) electrodeposition using CNT templates (Figure 1). “Composite plating” is one of the electrochemical deposition techniques. CNTs are incorporated in deposited metal matrix during plating. In the case of “metal coating on CNTs by electroless deposition”, the prepared metal-coated CNTs are mainly used as filler of composites, such as resin composites. In the case of “electrodeposition on CNT templates”, CNT yarns or CNT sheets are used as CNT templates. The electrochemical deposition is a nano-scale or atomic scale process to fabricate metal materials and hence is effective to form atomic scall boundary between metals and CNTs. Moreover, this method is a wet process and consequently is likely advantageous to form metal/CNT composites with well-distributed CNTs in the metal matrix, especially in the case of the composite plating.
Figure 1.
Classification of fabrication process for metal/CNT composites by electrochemical deposition.

2. Fabrication of Metal/CNT Composites Using Composite Plating by Electrodeposition or Electro Less Deposition

2.1. Composite Plating

Rough schematics of composite plating by electrodeposition and electroless deposition are displayed in Figure 32 and Figure 43, respectively. In the case of electrodeposition, inert particles are dispersed homogeneously in a plating bath. When a voltage is applied, metal is electrodeposited on a cathode and the particles adsorb on the surface of the deposited metal. Then, the particles are embedded in depositing metal, resulting in a metal composite (Figure 32). In the case of CNT composite plating by electrodeposition, inert particles are dispersed homogeneously in a plating bath containing a reducing agent. When a substrate is soaked in the bath, metal is reductively deposited on the substrate accepting electrons from the reducing agent and, at the same time, the particles adsorb on the surface of the deposited metal. The particles are then embedded in depositing metal, resulting in a metal composite (Figure 43). In general, the substrate is pre-treated and catalyst particles, such as Pd particles, are fixed on the surface of the substrate before soaking into the plating bath. As far as was searched, the first article of the composite plating is on Cu/graphite composites by electrodeposition and was reported in 1928 [4][3]. Regarding the mechanism of the composite plating, several models have been proposed [5,6,7,8,9][4][5][6][7][8].

Figure 2. Schematic of composite plating by electrodeposition.
Figure 43.
Schematic of composite plating by electroless deposition.

2.2. Preparation of Plating Bath for Metal/CNT Composite Plating

To fabricate metal/CNT composites with uniform distribution of CNTs, the preparation of plating baths with homogeneous dispersion of CNTs is important. In general, plating baths are aqueous solutions, while CNTs are hydrophobic. Therefore, hydrophilization of CNTs have been examined by the addition of surfactants or the direct introduction of hydrophilic groups on the surfaces of CNTs (Figure 54). The addition of surfactants in plating baths is a common method. Various kinds of surfactants [11[9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26],12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28], such as sodium dodecylbenzene sulfonate and sodium deoxycholate, have been examined for the homogeneous dispersion of CNTs in a pure water. However, effective surfactants for the dispersion in a pure water are not always effective in plating baths which contain great amounts of ions. Moreover, even if the surfactant is effective for the dispersion of CNTs in a plating bath, CNTs are not always co-deposited by electrochemical deposition. Therefore, the selection of appropriate surfactants is essential. Since the surfactants are likely incorporated in deposited metal matrix during electrochemical deposition, the concentration of surfactants should be examined. On the contrary, the direct introduction of hydrophilic groups, such as -COOH, onto the surfaces of CNTs has been examined using a chemical treatment [29][27], a plasma treatment [30][28], a heat treatment [31][29], and so on. These methods destroy the sp2 carbon bonding of the surfaces of CNTs. Therefore, the conditions of the treatments should be examined.

Figure 54.
Schematic of hydrophilization of CNTs.
On the contrary, CNTs are nanosized fibrous material and consequently tend to aggregate. In particular, SWCNTs have the thinnest (ca. 1–4 nm in diameter) among the various types of CNTs and can thus easily form aggregates referred to as bundles (Figure 65).

2.3. Unique Feature of Composite Plating Using CNTs as Inert Particles

Figure 5. TEM image of SWCNT bundle.

2.3. Unique Feature of Composite Plating Using CNTs as Inert Particles

Since a single CNT, especially multi-walled CNT (MWCNT) has a fibrous shape with large aspect ratio in addition to a high electrical conductivity in the axis direction. Therefore, composite plating using CNTs as inert particles often shows a unique feature unlike other composite plating using insulation particles such as Al2O3 particles. The schematic of the unique feature is showed in Figure 76 [34][30]. When a part of a MWCNT is incorporated in the deposited metal matrix during electrodeposition, the metal can be electrodeposited not only on the deposited metal but also on the protruding edge (a defect site) of the MWCNT. If the defect sites exist on the sidewall of the MWCNT, the metal can also be electrodeposited on the defect sites.

Figure 76. Schematic of unique phenomenon of composite plating using MWCNTs as inert particles. (Figure 76 is adapted from reference [34][30]).
Using this unique phenomena, powder Cu/MWCNT composites could be obtained [35][31]. Figure 87a displays the surface morphology of Cu/MWCNT composites just after the electrodeposition. Many Cu/MWCNT composites particles are seen. These particles are fixed loosely on the cathode substrate and can be separated easily by ultrasonification. Figure 87b displays the morphology of the Cu/MWCNT composite powder after the separation from the substrate by ultrasonification. A large number of MWCNTs stick out from the Cu particles, resulting in a sea urchin shape. The size of the Cu spheres is 2–15 μm.
Figure 87. SEM images of (a) Cu/MWCNT composite immediately after electrodeposition and (b) Cu/MWCNT composite powder separated by ultrasonification. (Figure 8 is adapted from reference [35][31]).

2.4. Fabrication of Metal/CNT Composites Using Composite Plating by Electrodeposition

Fabrication conditions in these articles are listed in Table 1.

2.5. Fabrication of Metal/CNT Composites Using Composite Plating by Electroless Deposition

Table 1. Fabrication conditions of metal/CNT composites using composite plating by electrodeposition.
MetalCNTTreatment of CNTBase Plating BathSurfactantRemarksYearRef.
NiMWCNTChemical treatmentDull Watts bathSodium lauryl sulfateCorrosion behavior2020[32]
NiMWCNTChemical treatmentDull Watts bathSodium lauryl sulfateCorrosion protection2020[33]
NiMWCNTWrapped by polydopamineDull Watts bathNonWear and corrosion resistance2019[34]
NiMWCNTNonIonic liquid (choline chloride/carbamide)NonNon-aqueous solvent2017[35]
NiMWCNTNonSulfamate bathCationic surfactant, compound name is unknownImprovement in tool life2014[36]
NiMWCNTNonNiSO4+NaClPolyvinylpyrrolidoneCyclic voltametric route2011[37]
NiMWCNTBall millingBright Watts bathSodium lauryl sulfate and

Hydroxypropylcellulose
Corrosion behavior2011[38]
NiMWCNTChemical treatmentCholine chloride/ureaNonNon-aqueous solvent2010[39]
NiMWCNTNonBright Watts bathPolyacrylic acidSolid lubrication2008[40]
NiMWCNTBall millingWatts type bathSodium lauryl sulfate, Cetyltrimethylammonium bromideEffects of surfactants2008[41]
NiMWCNTChemical treatmentDull Watts bathNonEffects of current density2008[42]
NiMWCNTBall millingBright Watts bathSodium lauryl sulfate and

Hydroxypropylcellulose
Mechanical properties2008[43]
NiMWCNTNonBright Watts bathNonMechanical properties2008[44]
NiMWCNTNonBright Sulfamate bathPolyacrylic acidLow internal stress2007[45]
NiMWCNTNonDull Watts bathNonPulse-reverse parameter2007[46]
NiMWCNTNonBright Watts bathPolyacrylic acidThermal conductivity2006[47]
NiMWCNTNonDull Watts bathPoly(diallyldimethylammonium chrolide)Pulse-reverse electrodeposition2005[48]
NiMWCNTChemical treatmentDull Watts bathCetyltrimethylammonium bromideCorrosion behavior2005[49]
NiMWCNTNonDull Watts bathPolyacrylic acidNi deposition on incorporated CNT2004[30]
NiMWCNTBall millingDull Watts bathNonCNT content2002[50]
NiMWCNTBall millingDull Watts bathNonTribological property2001[51]
Ni-CoMWCNTChemical treatmentDull Watts bath

+ Co salt
NonCorrosion behavior2019[52]
Ni-PMWCNTNonDull Watts bath + citric acid + P compoundPolyacrylic acidTribological properties2010[53]
Ni-CoMWCNTNonDull Watts bath + Co saltCompound name is

unknown
Mechanical and tribological properties2006[54]
Ni-PMWCNTNonNi salts + citric acid + P compoundsCompound name is

unknown
Corrosion properties2004[55]
CuMWCNTChemical treatmentCitric bathNonCorrosion behavior2021[56]
CuMWCNTChemical treatmentSulfate bathNonPulse reverse, electrical conductivity2020[57]
CuMWCNTChemical treatment?Sulfate bathNon-ionic surfactants, Compound name is unknownMechanical properties, Microlaminated structure2020[58]
CuSWCNTNonSulfate bathStearyltrimethylammonium chlorideMechanical properties2020[59]
CuSWCNTNonSulfate bathNonMicrostructure2019[60]
CuMWCNTNonSulfate bathSodium lauryl sulfateJet electrodeposition,

Tribological properties
2019[61]
CuMWCNTNonSulfate bathPolyacrylic acidCurrent collector for LIB anode2019[62]
CuMWCNTChemical treatmentSulfate bathStearyltrimethylammonium bromideElectrical conductivity, Corrosion resistance2018[63]
CuMWCNTNonSulfate bathNon-ionic surfactants, Compound name is unknownMechanical properties, Laminated structure2018[64]
CuMWCNTChemical treatmentSulfate bathNonCu/CNT powder + powder metallurgy2018[65]
CuMWCNTChemical treatmentSulfate bathNonCu/CNT powder + powder metallurgy2018[66]
CuMWCNTChemical treatmentSulfate bathNonCu/CNT powder + powder metallurgy2017[67]
CuMWCNTChemical treatmentCommercially availableNano diamondPeriodic pulse reverse electrodeposition2016[68]
CuMWCNTNonSulfate bathPolyacrylic acidCurrent collector for LIB anode2016[69]
CuMWCNTNonSulfate bathPolyacrylic acidCo-deposition mechanism of CNT2013[70]
CuMWCNTNonSulfate bathNonElectrochemical reduction behavior2011[71]
CuMWCNTNonSulfate bathPolyacrylic acidPulse-reverse2011[72]
CuMWCNTNonSulfate bathPolyacrylic acidSurface morphology, Hardness, Internal stress2010[73]
CuMWCNTNonSulfate bathPolyacrylic acidPatterned field emitter2008[74]
CuSWCNTNonSulfate bathCommercial productsMechanical properties2008[75]
CuSWCNTChemical treatmentSulfate bathCetyltrimethylammonium chlorideMechanical properties2008[76]
CuCup-stacked CNTNonSulfate bathPolyacrylic acidVarious CNTs2005[77]
CuMWCNTNonSulfate bathPolyacrylic acidMicrostructure2004[78]
CuMWCNTNonSulfate bathPolyacrylic acidCu/MWCNT composite powder2003[31]
ZnMWCNTChemical treatmentSulfate bathCetyltrimethylammonium bromideCorrosion resistance2021[79]
ZnMWCNTNonZincate bathUnknownPulse electrodeposition, Corrosion resistance2020[80]
ZnMWCNTChemical treatmentSulfate bathCetyltrimethylammonium bromideCorrosion resistance2007[81]
Zn-NiMWCNTNonChloride bathNonPulse reverse, Tribological and Corrosion properties2016[82]
CrMWCNTNonTrivalent Cr bathSodium lauryl sulfateTribological properties,

Corrosion resistance
2020[83]
CrMWCNTNonTrivalent Cr bathSodium lauryl sulfateTribological properties2018[84]
CrMWCNTNonTrivalent Cr bathNonMechanical properties2009[85]
CoMWCNTNonCholine chloride/ureaNonNon-aqueous solvent2017[86]
CoMWCNTNonSulfate bathPolyacrylic acidField emission properties2013[87]
CoMWCNTNonSulfate bathPolyacrylic acidTribological properties2013[88]
CoMWCNTAcid-treatmentSulfate bath + citrateSodium lauryl sulfateTribological properties, Corrosion properties2013[89]
Co-WMWCNTNonCo salt + Tungstate + CitratePolyacrylic acidTribological properties

Corrosion properties
2015[90]
Co-WMWCNTNonCo salt + Tungstate + CitratePolyacrylic acidTribological properties2013[91]
AuMWCNTNonSulfite bathStearyltrimethylammonium chlorideElectrical conductivity, Tribological properties2009[92]
AgMWCNTNonCholine chloride + glycerolPoly (N-vinyl pyrrolidone)Pulse reverse electrodeposition2021[93]
AgMWCNTNonIodide bathNonElectrical contact resistance against H2S gas2021[94]
AgMWCNTNonIodide bathNonHardness, Electrical and Tribological properties2020[95]
AgMWCNTNonCyanide bathUnknownElectrical contact resistance against H2S gas2010[96]
AlMWCNTAcid treatmentDiethylene glycol dimethyl etherNonHardness2020[97]
AlMWCNTNon1-ethyl-3-methylimidazolium chlorideNonHardness2006[98]
SnMWCNTNonCholine chloride + ethylene glycoleNonNucleation study2019[99]
Pb-SnMWCNTAcid treatmentFluoroborate bathPolyacrylic acidCorrosion resistance2010[100]

2.5. Fabrication of Metal/CNT Composites Using Composite Plating by Electroless Deposition

Regarding the number of published articles on metal/CNT composite plating using electroless deposition, those on the Ni-P alloy/CNT is large. In the case of electroless deposition of Ni, phosphorous compounds such as sodium hypophosphite (NaH2PO2) are usually used as the reducing agent and the P derived from the NaH2PO2 is co-deposited with Ni, resulting in Ni-P alloy deposit. Most of the purpose of the fabrication of Ni-P alloy/CNT composites is the improvement of tribological properties. Fabrication conditions in these articles are listed in Table 2.

Table 2. Fabrication conditions of metal/CNT composites by electroless deposition.
Reducing Agent
Surfactant
Remarks
YearRef.
Ni-PMWCNTSn2+sensitization +

Pd2+activation
NaH2PO2NonMicrostructure, Co-coated CNTs2020[119]
Ni-PMWCNTIntroduction of -COOH on CNT + Pd2+NaH2PO2NonEMI properties, Cotton fabric substrate2020[120]
Ni-PMWCNTSn2+sensitization +

Pd2+activation
NaH2PO2NonArc discharge synthesized CNTs2015[121]
Ni-PMWCNTSn2+/Pd2+ commercial productNaH2PO2NonFe-50Co composites, magnetic properties2014[122]
Au/Ni-PMWCNTSn2+sensitization +

Pd2+activation
NaH2PO2Polyacrylic acid

(Pre-treatment)
Improved wettability with molten Al2012[123]
Fe-B/Ni-PMWCNTSn2+sensitization +

Pd2+activation
NaH2PO2, KBH4NonMicrowave absorbing properties2011[124]
Ni-PSWCNTSn2+sensitization +

Pd2+activation
NaH2PO2NonMicrostructure of Ni-layer2011[125]
Ni-BMWCNTSn2+sensitization +

Pd2+activation
(CH3)2NH·BH3Polyacrylic acid

(Pre-treatment)
Graphitized MWCNTs

Heat treatment
2011[126]
NiMWCNTSn2+sensitization +

Pd2+activation
N2H4Polyacrylic acid

(Pre-treatment)
Graphitized MWCNTs

Magnetic properties
2010[127]
Ni-PMWCNTK2Cr2O7+H2SO4

Sn2+sensitization +

Pd2+activation
NaH2PO2NonMicrowave absorbing properties, Ni-N alloy2008[128]
Ni-PMWCNTHNO3

Sn2+sensitization +

Pd2+activation
NaH2PO2Diallyl-dimethylammonium chlorideGraphitized MWCNTs2005[129]
Ni-PMWCNTSn2+sensitization +

Pd2+activation
NaH2PO2Polyacrylic acid

(Pre-treatment)
Graphitized MWCNTs2004[130]
Ni-PMWCNTSn2+sensitization +

Pd2+activation
NaH2PO2NonContinuous Ni-layer2002[131]
Ni-PMWCNTMixed Pd2+/Sn2+NaH2PO2NonPd-coated CNTs1999[132]
Ni-PMWCNTSn2+sensitization +

Pd2+activation
NaH2PO2NonMagnetic property1997[133]
AlMWCNTSn2+/Pd2+ commercial productLiAlH4NonNon-aqueous bath: AlCl3-urea2020[134]
AgMWCNTH2SO4 + HNO3

Sn2+sensitization +

Pd2+activation
HCHONonInterfacial adhesion of composites2004[135]
CuMWCNTSulphoric acid + HNO3

Sn2+sensitization +

Cu2+activation
HCHONonElectrical and mechanical properties2009[136]
CuMWCNTHNO3

Sn2+sensitization +

Pd2+activation HNO3
CHOCOOHDiallyl-dimethylammonium chlorideGraphitized MWCNTs2004[137]
Co-PMWCNTK2Cr2O7+H2SO4

Sn2+sensitization +

Pd2+activation
NaH2PO2NonHeat-treatment2000[138]
MetalCNTPre-Treatment of CNTReducing AgentSurfactantRemarksYearRef.
Ni-PMWCNTNonNaH2PO2Sodium lauryl sulfateTribological properties,

Corrosion resistance
2021[101]
Ni-PMWCNTBall millingNaH2PO2Cetyltrimethylammonium bromideTribological properties2012[102]
Ni-PMWCNTBall milling,

Chemical treatment
NaH2PO2Commercial productTribological properties,

Corrosion resistance
2012[103]
Ni-PMWCNTChemical treatment Ball millingNaH2PO2Sodium lauryl sulfateMechanical attrition, Tribological properties2012[104]
Ni-PMWCNTHNO3Commercial productCommercial productSubstrate: Mg powder2011[105]
Ni-PMWCNTNonNaH2PO2Stearyltrimethylammonium chlorideSubstrate: ABS resin

Tribological properties
2011[106]
Ni-PMWCNTNonNaH2PO2Stearyltrimethylammonium chlorideVarious P content,

Tribological properties
2010[107]
Ni-PMWCNTChemical treatmentNaH2PO2UnknownEffects on solder joint2009[108]
Ni-PMWCNTChemical treatmentNaH2PO2Cetyltrimethylammonium bromideTribological properties2009[109]
Ni-PMWCNTChemical treatmentNaH2PO2unknownTribological properties2006[110]
Ni-PMWCNTBall millingNaH2PO2Compound name is unknownHardness,

Corrosion resistance
2005[111]
Ni-PSWCNTHeat treatmentNaH2PO2Compound name is unknownTribological properties2004[112]
Ni-PMWCNTBall millingNaH2PO2Cetyltrimethylammonium bromideTribological properties2003[113]
Ni-PMWCNTBall millingNaH2PO2Cetyltrimethylammonium bromideTribological properties2003[114]
Ni-PMWCNTBall millingNaH2PO2Cetyltrimethylammonium bromideTribological properties2002[115]
CuSWCNTNonCHOCOOHSodium lauryl sulfate

Hydroxypropylcellulose
Mechanical disintegration,2016[116]
CuMWCNTNonCHOCOOHSodium lauryl sulfate

Hydroxypropylcellulose
Various CNTs

Tribological properties
2014[117]
Co-PMWCNTNonNaH2PO2NonMagnetic properties2016[118]

3. Metal-Coated CNTs by Electroless Deposition

3.1. Fabrication Process

A fabrication process of metal-coated CNTs by an autocatalytic electroless deposition is schematically showed in Figure 13. Even in the case of electroless deposition, homogeneous dispersion of CNTs in the plating bath is important. The introduction of functional groups on the surface of CNTs likely effective to increase deposition sites, resulting in CNTs coated by metal films and not metal particles.

3.2. Metal-Coated CNTs

Fabrication conditions in these articles are listed in Table 3.

Table 3. Fabrication conditions of metal-coated CNTs by electroless deposition.
MetalCNTPre-Treatment of CNT

4. Metal/CNT Composites by Electrodeposition Using CNT Templates (Sheet, Yarn)

CNT templates, such as CNT sheets [147,148,149,150][139][140][141][142] and CNT yarns or fibers [151[143][144][145][146],152,153,154], have been developed and their various practical applications have been researched. Although a single CNT has a high electrical conductivity, electrical conductivities of those templates are far less than metals such as Cu, due to the contact resistance between each CNT of which they consist. Therefore, metallization of the CNT templates is a promising process to give them enough electrical conductivity. On the contrary, CNTs have strong anisotropy in electrical and thermal properties [155][147]. Therefore, the orientation of CNTs which make up the templates is also important in order to achieve the expected properties of metal/CNT composites. Fabrication conditions in these articles are listed in Table 4.

Table 4. Fabrication conditions of Metal/CNT Composites by Electrodeposition using CNT Template.
CNT TemplateFeature of CNT

Template
MetalPlating BathRemarksYearRef.
MWCNT filmSuper-alignedCu, NiAcid sulfuric bath + glucose

Dull Watts Bath
Improved mechanical and electrical properties2019[148]
MWCNT filmSuper-alignedNiDull Watts BathImproved mechanical properties2019[149]
SWCNT paper

(Bucky paper)
Orientation: in-plane directionCuAcid sulfate bath + polyethylene glycol + Cl + bis(3-sulfopropyl) disulfide + Janus green BOne-step electrodeposition by a combination of additives2017[150]
MWCNT paperSuper-alignedCuAcid sulfuric bath + glucose + polyethylene glycol + Cl

Alkaline bath (EDTA, Citrate)
Electrical conductivity2017[151]
MWCNT filmSuper-alignedCuAcid sulfuric bath + glucoseImproved mechanical properties2016[152]
MWCNT filmSuper-alignedCuAcid sulfuric bath + glucoseImproved mechanical properties2015[153]
SWCNT yarnStraightCuAcid sulfate bathGraphen growth on the surface of electrodeposited Cu2021[154]
MWCNT yarnTwistedCuAcid sulfate bath + polyethylene glycol + Cl + bis(3-sulfopropyl) disulfide + Janus green BOne-step electrodeposition by a combination of additives2020[155]
CNT yarnStraightCuAcid sulfate bathSuperior current carrying capacity2018[156]
MWCNT yarnTwistedCu(CH3COO)2 + CH3CN

Acid sulfuric bath
Effect of CNT yarn density2018[157]
MWCNT yarnTwistedCuCu (CH3COO)2 + CH3CN

Acid sulfuric bath
Two-step electrodeposition

Uniform composite wire
2017[158]
MWCNT yarnTwistedCu(CH3COO)2 + CH3CN

Acid sulfuric bath
Two-step electrodeposition

Electrical properties, Solderability,
2017[159]
MWCNT yarnStraightCuAcid sulfuric bathElectrodeposition of Cu interior of CNT yarn2016[160]
MWCNT yarnTwistedAg, PtKNO3+AgNO3

H2SO4 + H2Pt6Cl6
Improved tensile strength and electrical conductivity2013[161]
MWCNT yarnTwistedCuAcid sulfuric bath + octyl phenyl poly (ethylene gylcol) etherContinuous process: fiber spinning, anodization, electrodeposition2011[162]
MWCNT yarnTwistedAu, Pd, Pt, Cu, Ag, NiMetal salt solutionSelf-fueled electrodeposition

Improved electrical conductivity
2010[163]

5. Conclusions

The fabrication process can be classified into three types: (1) composite plating by electrodeposition and electroless deposition, (2) metal coating on CNTs by electroless deposition, and (3) electrodeposition using CNT templates. In the composite plating, homogeneous dispersion of CNTs in plating baths is essential and, consequently, various processes, such as the addition of dispersants and introduction of hydrophilic groups on CNTs, have been studied. Numerous articles on Ni/CNT or Ni-P alloy/CNT composites by composite plating have been published and their excellent tribological properties and improved corrosion resistances have been reported. Many papers on Cu/CNT composites have also been published and their properties, such as electrical conductivity, have been investigated. The further elucidation of the mechanism of CNT composite plating process is expected. In the metal coating on CNTs by electroless deposition, the pre-treatments, such as sensitization and activation, are important. Oxidization of CNTs is useful for coating CNTs perfectly. A lot of articles on Ni-P alloy-coated CNTs have been published. In the electrodeposition using CNT templates, many papers on Cu/CNT composites using CNT sheets and CNT yarns have been published and their electrical properties have been reported. The preparation process to deposit Cu not only on the surfaces but also on the interior of CNT templates is likely the key technical point.
The practical applications of these technologies are expected in future work.

References

  1. Oberlin, A.; Endo, M.; Koyama, T. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 1976, 32, 335–349.
  2. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
  3. Fink, C.G.; Prince, J.D. The codeposition of copper and graphite. Trans. Am. Electrochem. Soc. 1928, 54, 315–321.
  4. Guglielmi, N. Kinetics of the Deposition of Inert Particles from Electrolytic Baths. J. Electrochem. Soc. 1972, 119, 1009–1012.
  5. Buelens, C.; Celis, J.P.; Roos, J.R. Electrochemical aspect of the codeposition of gold and copper with inert particles. J. Appl. Electrochem. 1983, 13, 541–548.
  6. Celis, J.P.; Roos, J.R.; Buelens, C. A mathematical model for the electrolytic codeposition of particles with a metallic matrix. J. Electrochem. Soc. 1987, 134, 1402–1408.
  7. Fransaer, J.; Celis, J.P.; Roos, J.R. Analysis of the electrolytic codeposition of non-brownian particles with metals. J. Electrochem. Soc. 1992, 139, 413–425.
  8. Hwang, B.J.; Hawang, C.S. Mechanism of codeposition of silicon carbide with electrolytic cobalt. J. Electrochem. Soc. 1993, 140, 979–984.
  9. Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Paulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290, 1331–1334.
  10. O’Connell, M.J.; Bachilo, S.M.; Huffman, C.B.; Moore, V.C.; Strano, M.S.; Haroz, E.H.; Rialon, K.L.; Boul, P.J.; Noon, W.H.; Kittrell, C.; et al. Band gap fluoresence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.
  11. Richard, C.; Balavoine, F.; Schultz, P.; Ebbesen, T.W.; Mioskowski, C. Supramolecular self-assembly of lipid derivatives on car bon nanotubes. Science 2003, 300, 775–778.
  12. Islam, M.F.; Rojas, E.; Bergey, D.M.; Johnson, A.T.; Yodh, A.G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 2003, 3, 269–273.
  13. Moore, V.C.; Strano, M.S.; Haroz, E.H.; Hauge, R.H.; Smally, R.E. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 2003, 3, 1379–1382.
  14. Jiang, L.; Gao, L.; Sun, J. Production of aqueous colloidal dispersions of carbon nanotubes. J. Colloid Interface Sci. 2003, 260, 89–94.
  15. Yurekli, K.; Mitchell, C.A.; Krishnamoorti, R. Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 9902–9903.
  16. Hertel, T.; Hagen, A.; Talalaev, V.; Arnold, K.; Hennrich, F.; Kappes, M.; Rosenthal, S.; McBride, J.; Ulbricht, H.; Flahaut, E. Spectroscopy of single—And double-wall carbon nanotubes environments. Nano Lett. 2005, 5, 511–514.
  17. Steinmetz, J.; Glerup, M.; Paillet, M.; Bernier, P.; Holzinger, M. Production of pure nanotube fibers using a modified wet-spinning method. Carbon 2005, 43, 2397–2429.
  18. Tan, Y.; Resasco, D.E. Dispersion of single-walled carbon nanotubes of narrow diameter distribution. J. Phys. Chem. B 2005, 109, 14454–14460.
  19. Grossiord, N.; van der Schoot, P.; Meuldijk, J.; Koning, C.E. Determination of the surface coverage of exfoliated carbon nanotubes by surfactant molecules in aqueous solution. Langmuir 2007, 23, 3646–3653.
  20. Sun, Z.; Nicolosi, V.; Rickard, D.; Bergin, S.D.; Aherne, D.; Coleman, J.N. Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: Dispersion quality and its correlation with zeta potential. J. Phys. Chem. C 2008, 112, 10692–10699.
  21. Blanch, A.J.; Lenehan, C.E.; Quinton, J.S. Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. B 2010, 114, 9805–9811.
  22. Duan, W.H.; Wang, Q.; Collins, F. Dispersion of carbon nanotubes with SDS surfactants: A study from a binding energy perspective. Chem. Sci. 2011, 2, 1407–1413.
  23. Barisci, J.N.; Tahhan, M.; Wallace, G.G.; Badaire, S.; Vaugien, T.; Maugey, M.; Poulin, P. Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. Adv. Func. Mat. 2004, 14, 133–138.
  24. Takahashi, T.; Luculescu, C.R.; Uchida, K.; Ishii, T.; Yajima, H. Dispersion behavior and spectroscopic properties of single-walled carbon nanotubes in chitosan acidic aqueous solutions. Chem. Lett. 2005, 34, 1516–1517.
  25. Yan, Y.; Cui, J.; Potschke, P.; Voit, B. Dispersion of pristine single-walled carbon nanotubes using pyrene-capped polystyrene and its application for preparation of polystyrene matrix composites. Carbon 2010, 48, 2603–2612.
  26. Suarez, B.; Simonet, B.M.; Cardenas, S.; Valcarcel, M. Separation of carbon nanotubes in aqueous medium by capillary electrophoresis. J. Chromagr. A 2006, 1128, 282–289.
  27. Esumi, K.; Ishigami, M.; Nakajima, A.; Sawada, K.; Honda, H. Chemical treatment of carbon nanotubes. Carbon 1995, 33, 279–281.
  28. Chen, Q.; Dai, L.; Gao, M.; Huang, S.; Mau, A. Plasma activation of carbon nanotubes for chemical modification. J. Phys. Chem. B 2001, 105, 618–622.
  29. Jiang, L.; Gao, L. Modified carbon nanotubes: An effective way to selective attachment of gold nanoparticles. Carbon 2003, 41, 2923–2929.
  30. Arai, S.; Endo, M.; Norio, K. Ni-deposited multi-walled carbon nanotubes by electrodepositon. Carbon 2004, 42, 641–644.
  31. Arai, S.; Endo, M. Carbon nanofiber-copper composite powder prepared by electrodeposition. Electrochem. Commun. 2003, 5, 797–799.
  32. Jyotheender, K.S.; Gupta, A.; Srivastava, C. Grain boundary engineering in Ni-carbon nanotube composite coatings and its effect on the corrosion behavior of the coatings. Materialia 2020, 9, 100617.
  33. Prasannakumar, R.S.; Chukwuike, V.I.; Bhakyaraj, K.; Mohan, S.; Barik, R.C. Electrochemical and hydrodynamic flow characterization of corrosion protection of nickel/multiwalled carbon nanotubes composite coating. Appl. Surf. Sci. 2020, 507, 145073.
  34. Wang, Y.; Chen, J. Preparation and characterization of polydopamine-modified Ni/carbon nanotubes friction composite coating. Coatings 2019, 9, 596.
  35. Liu, D.G.; Sun, J.; Gui, Z.X.; Song, K.J.; Luo, L.M.; Wu, Y.C. Super-low friction nickel based carbon nanotube composite coating electro-deposited from eutectic solvents. Diam. Relat. Mater. 2017, 74, 229–232.
  36. Suzuki, T.; Konno, T. Improvement in tool life of electroplated diamond tools by Ni-based carbon nanotube composite coatings. Precis. Eng. 2014, 38, 659–665.
  37. Yang, Y.J. Morphological and compositional engineering of Ni/carbon nanotube composite film via a novel cyclic voltammetric route. Bull. Mater. Sci. 2012, 35, 513–517.
  38. Kim, S.K.; Oh, T.S. Electrodeposition behavior and characteristics of Ni-carbon nanotube composite coatings. Trans. Nonferrous Met. Soc. China 2011, 21, s68–s72.
  39. Martis, P.M.; Dilimon, V.S.; Delhalle, J.; Mekhalif, Z. Electro-generated nickel/carbon nanotube composites in ionic liquid. Electrochim. Acta 2010, 55, 5407–5410.
  40. Arai, S.; Fujimori, A.; Murai, M.; Endo, M. Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite films. Mater. Lett. 2008, 62, 3545–3548.
  41. Guo, C.; Zuo, Y.; Zhao, X.; Zhao, J.; Xiong, J. Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings. Surf. Coat. Technol. 2008, 202, 3385–3390.
  42. Guo, C.; Zuo, Y.; Zhao, X.; Zhao, J.; Xiong, J. The effects of electrodeposition current density on properties of Ni-CNTs composite coatings. Surf. Coat. Technol. 2008, 202, 3246–3250.
  43. Jeon, Y.S.; Byun, J.Y.; Oh, T.S. Electrodeposition and mechanical properties of Ni-carbon nanotube composite coatings. J. Phys. Chem. Solid 2008, 69, 1391–1394.
  44. Dai, P.Q.; Xu, W.C.; Huang, Q.Y. Mechanical properties and microstructure of nanocrystalline nickel-carbon nanotube composites produced by electrodeposition. Mater. Sci. Eng. A 2008, 483, 172–174.
  45. Arai, S.; Saito, T.; Endo, M. Low-internal-stress nickel multiwalled carbon nanotube composite electrodeposited from a sulfmate bath. J. Electrochem. Soc. 2007, 154, D530–D533.
  46. Guo, C.; Zuo, Y.; Zhao, X.; Zhao, J.; Xiong, J. The effects of pulse-reverse parameter on the properties of Ni-carbon nanotube composite coatings. Surf. Coat. Technol. 2007, 201, 9491–9496.
  47. Arai, S.; Endo, M.; Sato, T.; Koide, A. Fabrication of nickel-multiwalled carbon nanotube composite films with excellent thermal conductivity by an electrodeposition technique. Electrochem. Solid State Lett. 2006, 9, C131–C133.
  48. Wang, F.; Arai, S.; Endo, M. Preparation of nickel-carbon nanofiber composites by a pulse-reverse electrodeposition process. Electrochem. Commun. 2005, 7, 674–678.
  49. Chen, X.H.; Chen, C.S.; Xiao, H.N.; Cheng, F.Q.; Zhang, G.; Yi, G.J. Corrosion behavior of carbon nanotube-Ni composite coating. Surf. Coat. Technol. 2005, 191, 351–356.
  50. Chen, X.H.; Cheng, F.Q.; Li, S.L.; Zhou, L.P.; Li, D.Y. Electrodeposited nickel composites containing carbon nanotubes. Surf. Coat. Technol. 2002, 155, 274–278.
  51. Chen, X.H.; Peng, J.C.; Li, X.Q.; Deng, F.M.; Wang, J.X.; Li, W.Z. Tribological behavior of carbon nanotubes-reinforced nickel matrix composite coatings. J. Mater. Sci. Lett. 2001, 20, 2057–2060.
  52. Arora, S.; Kumari, N.; Srivastava, C. Microstructure and corrosion behavior of NiCo-carbon nanotube composite coatings. J. Alloy. Comp. 2019, 801, 449–459.
  53. Suzuki, Y.; Arai, S.; Endo, M. Electrodeposition of Ni-P alloy-multiwalled carbon nanotube composite films. J. Electrochem. Soc. 2010, 157, D50–D53.
  54. Shi, L.; Sun, C.F.; Gao, P.; Zhou, F.; Liu, W.M. Electrodeposition and characterization of Ni-Co-carbon manotubes composite coatings. Surf. Coat. Technol. 2006, 200, 4870–4875.
  55. Shi, Y.L.; Yang, Z.; Xu, H.; Li, M.K.; Li, H.L. Preparation of electroplated Ni-P-ultrafine diamond, Ni-P-carbon nanotubes composite coatings and their corrosion properties. J. Mater. Sci. 2004, 39, 5809–5815.
  56. Aliyu, A.; Srivastava, C. Corrosion between growth texture, crystallite size, lattice strain and corrosion behavior of copper-carbon nanotube composite coatings. Surf. Coat. Technol. 2021, 405, 126596.
  57. Li, D.; Xue, J.; Zuo, T.; Gao, Z.; Xiao, L.; Han, L.; Li, S.; Yang, Y. Copper/functionalized-carbon nanotubes composite films with ultrahigh electrical conductivity prepared by pulse reverse electrodeposition. J. Mater. Sci. Mater. Electron. 2020, 31, 14184–14191.
  58. Wang, M.; Yang, X.; Tao, J.; Bu, Y.; Liu, Y.; Pu, Z.; Yi, J. Achieving high ductility in layered carbon nanotube/copper composite prepared by composite electrodeposition. Diam. Relat. Mater. 2020, 108, 107992.
  59. Shimizu, M.; Ogasawara, T.; Ohnuki, T.; Arai, S. Multi-layered copper foil reinforced by co-deposition of single-walled carbon nanotube based on electroplating technique. Mater. Lett. 2020, 261, 126993.
  60. Raja, P.M.; Esquenazi, G.L.; Gowenlock, C.E.; Jones, D.R.; Li, J.; Brinson, B.; Barron, A.R. Electrodeposition of Cu-SWCNT composites. C 2019, 5, 38.
  61. Ning, D.; Zhang, A.; Wu, H. Enhanced wear performance of Cu-carbon nanotubes composite coatings prepared by jet electrodeposition. Materials 2019, 12, 392.
  62. Shimizu, M.; Ohnuki, T.; Ogasawara, T.; Banno, T.; Arai, S. Electrodeposited Cu/MWCNT composite film: A potential current collector of silicon-based negative-electrodes for Li-ion batteries. RSC Adv. 2019, 38, 21939–21945.
  63. Fu, S.; Chen, X.; Liu, P.; Liu, W.; Liu, P.; Zhang, K.; Chen, H. Electrodeposition and properties of composites consisting of carbon nanotubes and copper. J. Mater. Eng. Perform. 2018, 27, 5511–5517.
  64. Chen, X.; Tao, J.; Yi, J.; Li, C.; Bao, R.; Liu, Y.; You, X.; Tan, S. Balancing the strength and ductility of carbon nanotubes reinforced copper matrix composites with microlaminated structure and interdiffusion. Mater. Sci. Eng. A 2018, 712, 790–793.
  65. Wang, Z.; Cai, X.; Yang, C.; Zhou, L. An electrodeposition approach to obtaining carbon nanotubes embedded copper powders for the synthesis of copper matrix composites. J. Alloy. Comp. 2018, 735, 1357–1362.
  66. Wang, Z.; Cai, X.; Yang, C.; Zhou, L. Improving strength and high electrical conductivity of multi-walled carbon nanotubes/copper composites fabricated by electrodeposition and powder metallurgy. J. Alloy. Comp. 2018, 735, 905–913.
  67. Zheng, L.; Sun, J.; Chen, Q. Carbon nanotubes reinforced copper composite with uniform CNT distribution and high yield of fabrication. Micro Nano Lett. 2017, 12, 722–725.
  68. Feng, Y.; McGuire, G.E.; Shenderova, O.A.; Ke, H.; Burkett, S.L. Fabrication of copper/carbon nanotube composite thin films by periodic pulse reverse electroplating using nanodiamond as a dispersing agent. Thin Solid Film. 2016, 615, 116–121.
  69. Arai, S.; Fukuoka, R. A carbon nanotube-reinforced noble tin anode structure for lithium-ion batteries. J. Appl. Electrochem. 2016, 46, 331–338.
  70. Arai, S.; Kato, A. Mechanism for codeposition of multiwalled carbon nanotubes with copper from acid copper sulfate bath. J. Electrochem. Soc. 2013, 160, D380–D385.
  71. Qin, X.X.; Liu, J.J.; Wang, F.; Ji, J. Effect of multi-walled carbon nanotubes as second phase on the copper electrochemical reduction behavior for fabricating their nanostructured composite films. J. Electroanal. Chem. 2011, 651, 233–236.
  72. Arai, S.; Suwa, Y.; Endo, M. Cu/multiwalled carbon nanotube composite films fabricated by pulse-reverse electrodeposition. J. Electrochem. Soc. 2011, 158, D49–D53.
  73. Arai, S.; Saito, T.; Endo, M. Cu-MWCNT composite films fabricated by electrodeposition. J. Electrochem. Soc. 2010, 157, D147–D153.
  74. Arai, S.; Saito, T.; Endo, M. Metal-fixed multiwalled carbon nanotube patterned emitters using photolithography and electrodeposition technique. Electrochem. Solid-State Lett. 2008, 11, D72–D74.
  75. Chai, G.; Sun, Y.; Jenny Sun, J.; Chen, Q. Mechnical properties of carbon nanotube-copper nanocomposites. J. Micromech. Microeng. 2008, 18, 035013.
  76. Yang, Y.L.; Wang, Y.D.; Ren, Y.; He, C.S.; Deng, J.N.; Nan, J.; Chen, J.G.; Zuo, L. Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field. Mater. Lett. 2008, 62, 47–50.
  77. Arai, S.; Endo, M. Various carbon nanofiber-copper composite films prepared by electrodeposition. Electrochem. Commun. 2005, 7, 19–22.
  78. Arai, S.; Endo, M. Carbon nanofiber-copper composites fabricated by electrodeposition. Electrochem. Solid-State Lett. 2004, 7, C25–C26.
  79. Jyotheender, K.S.; Srivastava, C. Correlating the five-parameter grain boundary character distribution and corrosion behavior of zinc-carbon nanotube composite coatings. Metall. Mater. Trans. A 2021, 52A, 364–377.
  80. Tseluikin, V.N.; Strilets, A.A.; Yakovlev, A.V. Electrochemical deposition of zinc-based composite coatings modified with carbon nanotubes form alkaline electrolyte. Prot. Met. Phys. Chem. Surf. 2020, 56, 1186–1189.
  81. Praveen, B.M.; Venkatesha, T.V.; Naik, Y.A.; Prashantha, K. Corrosion studies of carbon nanotube-Zn composite coating. Surf. Coat. Technol. 2007, 201, 5836–5842.
  82. Tseluikin, V.N.; Koreshkova, A.A. Electrodeposition of zinc-nickel-carbon nanotubes composite coatings in a reversing mode. Prot. Met. Phys. Chem. Surf. 2016, 52, 1040–1042.
  83. Tripathi, P.; Katiyar, P.K.; Ramkumar, J.; Balani, K. Synergistic role of carbon nanotube and yttria stabilized zirconia reinforcement on wear and corrosion resistance of Cr-based nano-composite coatings. Surf. Coat. Technol. 2020, 385, 125381.
  84. Shukla, P.; Awasthi, S.; Ramkumar, J.; Balani, K. Protective trivalent Cr-based electrochemical coatings for gun barrels. J. Alloy. Comp. 2018, 769, 1039–1048.
  85. Liu, B.; Zhen, Z.; Lin, Y. Mechanical properties of hard Cr-MWNT composite coatings. Surf. Coat. Technol. 2009, 203, 3610–3613.
  86. Pereira, N.M.; Brincoveanu, O.; Pantazi, A.G.; Pereira, C.M.; Araujo, J.P.; Silva, A.F.; Enachescu, M.; Anicai, L. Electrodeposition of Co and Co composites with carbon nanotubes using choline chloride-based ion liquids. Surf. Coat. Technol. 2017, 324, 451–462.
  87. Arai, S.; Miyagawa, K. Field emission properties of cobalt/multiwalled carbon nanotube composite films fabricated by electrodeposition. Appl. Surf. Sci. 2013, 280, 957–961.
  88. Arai, S.; Miyagawa, K. Frictional and wear properties of cobalt/multiwalled carbon nanotube composite films formed by electrodeposition. Surf. Coat. Technol. 2013, 235, 204–211.
  89. Su, F.; Liu, C.; Guo, J.; Huang, P. Characterization of nanocrystalline Co and Co/MWCNT coatings produced by different electrodeposition techniques. Surf. Coat. Technol. 2013, 217, 94–104.
  90. Anand, E.E.; Natarajan, S. Effect of carbon nanotubes on corrosion and tribological properties of pulse-electrodeposited Co-W composite coatings. J. Mater. Eng. Perform. 2015, 24, 128–135.
  91. Arai, S.; Miyagawa, K. Fabrication of Co-W alloy/multiwalled carbon nanotube composite films by electrodeposition for improved frictional properties. ECS J. Solid State Sci. Technol. 2013, 2, M39–M43.
  92. Fugishige, M.; Wongwiriyapan, W.; Wang, F.; Park, K.C.; Takeuchi, K.; Arai, S.; Endo, M. Gold-carbon nanotube composite plating film deposited using non-cyanide bath. Jpn. J. Appl. Phys. 2009, 48, 070217.
  93. Brandao, A.T.S.C.; Rosoiu, S.; Costa, R.; Lazar, O.A.; Silva, A.F.; Anicai, L.; Pereira, C.M.; Enachescu, M. Characterization and electrochemical studies of MWCNTs decorated with Ag nanoparticles through pulse reversed current electrodeposition using a deep eutectic solvent for energy storage applications. J. Mater. Res. Technol. 2021, 15, 342–359.
  94. Arai, S.; Kikuhara, T.; Shimizu, M.; Horita, M. Superior electrical contact characteristics of Ag/CNT composite films formed in a cyanide-free plating bath and tested against corrosion by H2S gas. Mater. Lett. 2021, 303, 130504.
  95. Arai, S.; Kikuhara, T.; Shimizu, M.; Horita, M. Electrodeposition of Ag/CNT composite films from iodide plating baths. J. Electrochem. Soc. 2020, 167, 122515.
  96. Fujishige, M.; Sekino, M.; Fujisawa, K.; Morimoto, S.; Takeuchi, K.; Arai, S.; Kawai, A. Electric contact characteristic under low load of silver-carbon nanotube composite plating film corroded using H2S gas. Appl. Phys. Express. 2010, 3, 065801.
  97. Zhang, Z.; Kitada, A.; Chen, T.; Fukami, K.; Shimizu, M.; Arai, S.; Yao, Z.; Murase, K. Dispersion of multiwalled carbon nanotubes into a diglyme solution, electrodeposition of aluminum-based composite, and improvement of hardness. J. Alloy. Comp. 2020, 816, 152585.
  98. Yatsushiro, T.; Koura, N.; Nakano, S.; Ui, K.; Takeuchi, K. Electrodeposition of aluminum-carbon nanotube composite from room-temperature molten salt electrolyte. Electrochemistry 2006, 74, 233–236.
  99. Brandao, A.T.S.C.; Anicai, L.; Lazar, O.A.; Rosoiu, S.; Pantazi, A.; Costa, R.; Enachescu, M.; Pereira, C.M.; Silva, A.F. Electrodeposition of Sn and Sn composites with carbon materials using choline chloride-based ionic liquids. Coatings 2019, 9, 798.
  100. Hu, Z.; Jie, X.; Lu, G. Corrosion resistance of Pb-Sn composite coatings reinforced by carbon nanotubes. J. Coat. Technol. Res. 2010, 7, 809–814.
  101. Lopes de Oliveira, M.C.; Correa, O.V.; Pereira da Silva, R.M.; Batista de Lima, N.; Dias de Oliveira, J.T.; Antonio de Oliveira, L.; Antunes, R.A. Structural characterization, global and local electrochemical activity of electroless Ni-P-multiwalled carbon nanotube composite coatings on pipeline steel. Metals 2021, 11, 982.
  102. Meng, Z.Q.; Li, X.B.; Xiong, Y.J.; Zhan, J. Preparation and tribological performances of Ni-P-multi-walled carbon nanotubes composite coatings. T. Nonferr. Met. Soc. 2012, 22, 2719–2725.
  103. Alishahi, M.; Monirvaghefi, S.M.; Saatchi, A.; Hosseini, S.M. The effect of carbon nanotubes on the corrosion and tribological behavior of electroless Ni-P-CNT composite coating. Appl. Surf. Sci. 2012, 258, 2439–2446.
  104. Zhao, G.; Ren, C.; He, Y. Ni-P-multiwalled carbon nanotubes composite coatings prepared by mechanical attrition (MA)-assisted electroless plating. Surf. Coat. Technol. 2012, 206, 2774–2779.
  105. Firoozbakht, M.; Monirvaghefi, S.M.; Niroumand, B. Electroless composite coating of Ni-P-carbon nanotubes on magnesium powder. J. Alloy. Comp. 2011, 509S, S496–S502.
  106. Arai, S.; Sato, T.; Endo, M. Fabrication of various electrolessb Ni-P alloy/multiwalled carbon nanotube composite films and their frictional properties. J. Electrochem. Soc. 2010, 157, D570–D576.
  107. Park, C.L.; Fujishige, M.; Takeuchi, K.; Arai, S.; Morimoto, S.; Endo, M. Inter-collisional cutting of multi-walled carbon nanotubes by high-speed agitation. J. Phys. Chem. Solid 2008, 69, 2481–2486.
  108. Gu, X.; Chan, Y.C.; Yang, D.; Wu, B.Y. The shearing behavior and microstructure of Sn-4Ag-0.5Cu solder joints on a Ni-P-carbon nanotubes composite coating. J. Alloy. Comp. 2009, 468, 553–557.
  109. Li, Z.H.; Wang, X.Q.; Wang, M.; Wang, F.F.; Ge, H.L. Preparation and tribological properties of the carbon nanotube-Ni-P composite coating. Tribol. Int. 2006, 39, 953–957.
  110. Chen, X.H.; Chen, C.S.; Xiao, H.N.; Liu, H.B.; Zhou, L.P.; Li, S.L.; Zhang, G. Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits. Tribol. Int. 2006, 39, 22–28.
  111. Yang, Z.; Xu, H.; Shi, Y.L.; Li, M.K.; Huang, Y.; Li, H.L. The fabrication and corrosion behavior of electroless Ni-P-carbon nanotube composite coatings. Mater. Res. Bull. 2005, 40, 1001–1009.
  112. Yang, Z.; Xu, H.; Li, M.K.; Shi, Y.L.; Huang, Y.; Li, H.L. Preparation and properties of Ni/P/single-walled carbon nanotubes composite coatings by means of electroless plating. Thin Solid Films 2004, 466, 86–91.
  113. Chen, W.X.; Tu, J.P.; Wang, L.Y.; Gan, H.Y.; Xu, Z.D.; Zhang, X.B. Tribological application of carbon nanotubes in a metal-based composite coatings and composites. Carbon 2003, 41, 215–222.
  114. Chen, W.X.; Tu, J.P.; Xu, Z.D.; Chen, W.L.; Zhang, X.B.; Cheng, D.H. Tribological properties of Ni-P-multi-walled carbon nanotubes electroless composite coating. Mater. Lett. 2003, 57, 1256–1260.
  115. Chen, W.X.; Tu, J.P.; Gan, H.Y.; Xu, Z.D.; Wang, Q.G.; Lee, J.Y.; Liu, Z.L.; Zhang, X.B. Electroless preparation and tribological properties of Ni-P-carbon nanotube composite coatings under lubricated condition. Surf. Coat. Technol. 2002, 160, 68–73.
  116. Arai, S.; Osaki, T.; Hirota, M.; Uejima, M. Fabrication of copper/single-walled carbon nanotube composite film with homogeneously dispersed nanotubes by electroless deposition. Mater. Today Commun. 2016, 7, 101–107.
  117. Arai, S.; Kanazawa, T. Electroless deposition of Cu/multiwalled carbon nanotube composite films with improved frictional properties. ECS J. Solid State Sci. Technol. 2014, 3, P201–P206.
  118. Goel, V.; Anderson, P.; Hall, J.; Robinson, F.; Bohm, S. Electroless Co-P-carbon nanotube composite coating to enhance magnetic properties of grain-oriented electrical steel. J. Magn. Magn. Mater. 2016, 407, 42–45.
  119. Ergul, E.; Kurt, H.I.; Oduncuohlu, M.; Yilmas, N.F. Electroless nickel-phosphorous and cobalt-phosphorous coatings on multi-walled carbon nanotubes. Mater. Res. Express 2020, 7, 115604.
  120. Qi, Q.; Wang, Y.; Ding, X.; Wang, W.; Xu, R.; Yu, D. High-electromagnetic-shielding cotton fabric prepared using multiwalled carbon nanotubes/nickel-phosphorous electroless plating. Appl. Orgnometal. Chem. 2020, 34, e5434.
  121. Jagannatham, M.; Sankaran, S.; Haridoss, P. Electroless nickel plating of arc discharged synthesized carbon nanotubes for metal matrix composites. Appl. Surf. Sci. 2015, 324, 475–481.
  122. Mani, M.K.; Viola, G.; Reece, M.J.; Hall, J.P.; Evans, S.L. Improvement of interfacial bonding in carbon nanotube reinforced Fe-50Co composites by Ni-P coating: Effect on magnetic and mechanical properties. Mater. Sci. Eng. B 2014, 188, 94–101.
  123. Arai, S.; Suzuki, Y.; Nakagawa, J.; Yamamoto, T.; Endo, M. Fabrication of metal coated carbon nanotubes by electroless deposition for improved wettability with molten aluminum. Surf. Coat. Technol. 2012, 212, 207–213.
  124. Park, K.Y.; Han, J.H.; Lee, S.B.; Yi, J.W. Microwave absorbing hybrid composites containing Ni-Fe coated carbon nanofibers prepared by electroless plating. Compos. Part A 2011, 42, 573–578.
  125. Li, W.; Jin, H.; Hao, Y.; Chen, T.; Dai, J.; Wang, Q. The microstructure of Ni layer on single-walled carbon nanotubes prepared by an electroless coating process. J. Nanomater. 2010, 2011, 348958.
  126. Arai, S.; Imoto, Y.; Suzuki, Y.; Endo, M. Fabrication of Ni-B alloy coated vapor-grown carbon nanofibers by electroless deposition. Carbon 2011, 49, 1484–1490.
  127. Arai, S.; Kobayashi, M.; Yamamoto, T.; Endo, M. Pure-nickel-coated multiwalled carbon nanotubes prepared by electroless deposition. Electochem. Solis State Lett. 2010, 13, D94–D96.
  128. Zhao, D.L.; Li, X.; Shen, Z.M. Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes. Comp. Sci. Technol. 2008, 68, 2902–2908.
  129. Wang, F.; Arai, S.; Endo, M. The preparation of multi-walled carbon nanotubes with a Ni-P coating by an electroless deposition process. Carbon 2005, 43, 1716–1721.
  130. Arai, S.; Endo, M.; Hashizume, S.; Shimojima, Y. Nickel-coated carbon nanofibers prepared by electroless deposition. Electochem. Commun. 2004, 6, 1029–1031.
  131. Kong, F.Z.; Zhang, X.B.; Xiong, W.Q.; Liu, F.; Huang, W.Z.; Sun, Y.L.; Tu, J.P.; Chen, X.W. Continuous Ni-layer on multiwall carbon nanotubes by an electroless plating method. Surf. Coat. Technol. 2002, 155, 33–36.
  132. Ang, L.M.; Andy Hor, T.S.; Xu, G.Q.; Tung, C.H.; Zhao, S.; Wang, J.L.S. Electroless plating of metals onto carbon nanotubes activated by a single-step activation method. Chem. Mater. 1999, 11, 2115–2118.
  133. Li, Q.; Fan, S.; Han, W.; Sun, C.; Liang, W. Coating of carbon nanotube with nickel by electroless plating method. Jpn. J. Appl. Phys. 1997, 36, L501–L503.
  134. Mohammed, E.; Amal, M.K.E. Development of an AlCl3-urea ionic liquid for the electroless deposition of aluminum on carbon nanotubes. ACS Omega 2020, 5, 5756–5761.
  135. Feng, Y.; Yuan, H. Electroless plating of carbon nanotubes with silver. J. Mater. Sci. 2004, 39, 3241–3243.
  136. Daoush, W.M.; Lim, B.K.; Mo, C.B.; Nam, D.H.; Hong, S.H. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process. Mater. Sci. Eng. A 2009, 513, 247–253.
  137. Wang, F.; Arai, S.; Endo, M. Metallization of multi-walled carbon nanotubes with copper by an electroless deposition process. Electrochem. Commun. 2004, 6, 1042–1044.
  138. Chen, X.; Xia, J.; Peng, J.; Li, W.; Xie, S. Carbon-nanotube metal-matrix composites prepared by electroless plating. Compos. Sci. Technol. 2000, 60, 301–306.
  139. Rinzler, A.G.; Liu, J.; Dai, H.; Nikolaev, P.; Huffman, C.B.; Rodriguez-Macias, F.J.; Boul, P.J.; Lu, A.H.; Heymnn, D.; Colbert, D.T.; et al. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Appl. Phys. A 1998, 67, 29–37.
  140. Bahr, J.L.; Yang, J.; Kosynkin, D.V.; Bronikowski, M.J.; Smally, R.E.; Tour, J.M. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 2001, 123, 6536–6542.
  141. Ge, J.J.; Hou, H.; Li, Q.; Graham, M.J.; Greiner, A.; Reneker, D.H.; Harris, F.W.; Cheng, S.Z.D. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments; electrospun composite nanofiber sheets. J. Am. Chem. Soc. 2004, 126, 15754–15761.
  142. Feng, C.; Liu, K.; Wu, J.S.; Liu, L.; Cheng, J.S.; Zhang, Y.; Sun, Y.; Li, Q.; Fan, S.; Jiang, K. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.
  143. Jiang, K.; Li, Q.; Fan, S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.
  144. Ko, F.; Gogotsi, Y.; Ali, A.; Naguib, N.; Ye, H.; Yang, G.; Li, C.; Willis, P. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 2003, 15, 1161–1165.
  145. Zhang, M.; Atkinson, K.R.; Baughman, R.H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358–1361.
  146. Li, Y.L.; Kinloch, I.A.; Windle, A.H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, 276–278.
  147. Endo, M.; Kim, Y.A.; Hayashi, T.; Nishimura, K.; Matsusita, T.; Miyashita, K.; Dresselhaus, M.S. Vapor-grown carbon fibers (VGCFs): Basic properties and their battery application. Carbon 2001, 39, 1287–1297.
  148. Shuai, J.; Xiong, L.; Hou, Z.; Zhu, L.; Li, W. Nickel-coated super-aligned carbon nanotube reinforced copper composite for improved strength and conductivity. J. Mater. Eng. Perform. 2019, 28, 4393–4402.
  149. Hou, Z.C.; Xiong, L.Q.; Liu, Y.F.; Zhu, L.; Li, W.Z. Preparation of super-aligned carbon nanotube-reinforced nickel-matrix laminar composites with excellent mechanical properties. Int. J. Miner. Metall. Mater. 2019, 26, 133–141.
  150. Arai, S.; Kirihata, K.; Shimizu, M.; Ueda, M.; Katada, A.; Uejima, M. Fabrication of copper/single-walled carbon nanotube composites by electrodeposition using free-standing nanotube film. J. Electrochem. Soc. 2017, 164, D922–D929.
  151. Tao, J.M.; Chen, X.F.; Hong, P.; Yi, J.H. Microstructure and electrical conductivity of laminated Cu/CNT/Cu composites prepared by electrodeposition. J. Alloy. Compos. 2017, 717, 232–239.
  152. Shuai, J.; Xiong, L.; Zhu, L.; Li, W. Enhanced strength and excellent transport properties of a superaligned carbon nanotubes reinforced copper matrix laminar composite. Compos. Part A 2016, 88, 148–155.
  153. Jin, Y.J.; Zhu, L.; Xue, W.D.; Li, W.Z. Fabrication of superaligned carbon nanotubes reinforced copper matrix laminar composite by electrodeposition. Trans. Nonferrous. Met. Soc. China 2015, 25, 2994–3001.
  154. Park, M.; Lee, D.M.; Park, M.; Park, S.; Lee, D.S.; Kim, T.W.; Lee, S.H.; Lee, S.K.; Jeong, H.S.; Hong, B.H.; et al. Performance enhancement of graphene assisted CNT/Cu composites for lightweight electrical cables. Carbon 2021, 179, 53–59.
  155. Arai, S.; Murakami, I.; Shimizu, M.; Oshigane, A. Fabrication of CNT/Cu composite yarn via single-step electrodeposition. J. Electrochem. Soc. 2020, 167, 102509.
  156. Rho, H.; Park, M.; Park, M.; Park, J.; Han, J.; Lee, A.; Bae, S.; Kim, T.W.; Ha, J.S.; Kim, S.M.; et al. Metal nanofibrils embedded in long free-standing nanotube fiber with a high critical current density. NPA Asia Mater. 2018, 10, 146–155.
  157. Sundaram, R.; Yamada, T.; Hata, K.; Sekiguchi, A. The importance of carbon nanotube wire density, structural uniformity, and purity for fabricating homogeneous carbon nanotube-copper wire composites by copper electrodeposition. Jpn. J. Appl. Phys. 2018, 57, 04FP08.
  158. Sundaram, R.; Yamada, T.; Hata, K.; Sekiguchi, A. The influence of Cu electrodeposition parameters on fabricating structurally uniform CNT-Cu composite wires. Mater. Today Commun. 2017, 13, 119–125.
  159. Sundaram, R.; Yamada, T.; Hata, K.; Sekiguchi, A. Electrical performance of lightweight CNT-Cu composite wires impacted by surface and internal Cu spatial distribution. Sci. Rep. 2017, 7, 9267.
  160. Hannula, P.M.; Peltonen, A.; Aromaa, J.; Janas, D.; Lundstrom, M.; Wilson, B.P.; Koziol, K.; Forsen, O. Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers. Carbon 2016, 107, 281–287.
  161. Chen, T.; Cai, Z.; Qiu, L.; Li, H.; Ren, J.; Lin, H.; Yang, Z.; Sun, X.; Peng, H. Synthesis of aligned carbon nanotube composite fibers with high performances by electrochemical deposition. J. Mater. Chem. A 2013, 1, 2211–2216.
  162. Xu, G.; Zhao, J.; Li, S.; Zhang, X.; Yong, Z.; Li, Q. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers. Nanoscale 2011, 3, 4215–4219.
  163. Lakshman, K.; Randeniya, K.; Bendavid, A.; Martin, P.J.; Tran, C.D. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Small 2010, 6, 1806–1811.
More