Temperature Sensors for Thermoregulation in Personal Protective Equipment: Comparison
Please note this is a comparison between Version 7 by Alireza Saidi and Version 6 by Bruce Ren.

The exposure to extreme temperatures in workplaces involves physical hazards for workers. A poorly acclimated worker may have lower performance and vigilance and therefore may be more exposed to accidents and injuries. Due to the incompatibility of the existing standards implemented in some workplaces and the lack of thermoregulation in many types of protective equipment, thermal stress remains one of the most frequent physical hazards in many work sectors. In order to provide a better protection of individuals against thermal aggressors, the scientific community has been interested in the development of thextile textile-based or flexible temperature sensors that can be integrated into personal protective equipment. These sensors can measure the skin temperature and monitor the microclimate temperature between the body and the clothing or the outside temperature during exposure to thermal aggressors. 

  • thermoregulation
  • personal protective equipment
  • smart textiles
  • flexible electronics
  • performance
Please wait, diff process is still running!

References

  1. Lucas, R.A.I.; Epstein, Y.; Kjellstrom, T. Excessive occupational heat exposure: A significant ergonomic challenge and health risk for current and future workers. Extrem. Physiol. Med. 2014, 3, 14.
  2. Cheung, S.S.; Lee, J.K.W.; Oksa, J. Thermal stress, human performance, and physical employment standards. Appl. Physiol. Nutr. Metab. 2016, 41, S148–S164.
  3. Jacklitsch, B. Criteria for a Recommended Standard: Occupational Exposure to Heat and Hot Environments; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2016.
  4. Rowlinson, S.; Yunyanjia, A.; Li, B.; Ju, C. Management of climatic heat stress risk in construction: A review of practices, methodologies, and future research. Accid. Anal. Prev. 2014, 66, 187–198.
  5. Kovats, R.S.; Hajat, S. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health 2008, 29, 41–55.
  6. Carlsson, I.K.; Dahlin, L.B. Self-reported cold sensitivity in patients with traumatic hand injuries or hand-arm vibration syndrome—An eight year follow up. BMC Musculoskelet. Disord 2014, 15, 83.
  7. Daanen, H.A.M.; van de Vliert, E.; Huang, X. Driving performance in cold, warm, and thermoneutral environments. Appl. Ergon. 2003, 34, 597–602.
  8. Pienimäki, T. Cold exposure and musculoskeletal disorders and diseases. A review. Int. J. Circumpolar Health 2002, 61, 173–182.
  9. Heus, R.; Daanen, H.A.M.; Havenith, G. Physiological criteria for functioning of hands in the cold. Appl. Ergon. 1995, 26, 5–13.
  10. Tochihara, Y.; Ohkubo, C.; Uchiyama, L.; Komine, H. Physiological Reaction and Manual Performance during Work in Cold Storages. Appl. Human Sci. J. Physiol. Anthropol. 1995, 14, 73–77.
  11. Flouris, A.D.; Westwood, D.A.; Cheung, S.S. Thermal balance effects on vigilance during 2-h exposures to −20 degrees C. Aviat. Space Environ. Med. 2007, 78, 673–679.
  12. Annaheim, S.; Saiani, F.; Grütter, M.; Fontana, P.; Camenzind, M.; Rossi, R. Internal and external heat load with fire fighter protective clothing: Data from the lab and the field. Extrem. Physiol. Med. 2015, 4, A100.
  13. Smith, D.L.; Barr, D.A.; Kales, S.N. Extreme sacrifice: Sudden cardiac death in the US Fire Service. Extrem. Physiol. Med. 2013, 2, 6.
  14. Truchon, G.; Zayed, J.; Bourbonnais, R.; Lévesque, M.; Deland, M.; Busque, M.-A.; Duguay, P. Thermal Stress and Chemicals: Knowledge Review and the Highest Risk Occupations in Québec; (Report R-834); IRSST: Montréal, QC, Canada, 2014.
  15. Adam-Poupart, A.; Smargiassi, A.; Busque, M.-A.; Duguay, P.; Fournier, M.; Zayed, J.; Labrèche, F. Summer Temperatures, Ozone Concentrations and Occupational Injuries Accepted for Compensation in Quebec; (Report R-953); IRSST: Montréal, QC, Canada, 2017.
  16. Kjellstrom, T.; Weaver, H. Climate change and health: Impacts, vulnerability, adaptation and mitigation. NSW Public Health Bull. 2009, 20, 5–9.
  17. Schulte, P.A.; Chun, H. Climate Change and Occupational Safety and Health: Establishing a Preliminary Framework. J. Occup. Environ. Hyg. 2009, 6, 542–554.
  18. Dessureault, P.C.; Tellier, A. L’Autosurveillance de l’Astreinte Thermique des Jeunes Travailleurs Affectés à l’Engrangement du Foin; (Report R-580); IRSST: Montréal, QC, Canada, 2008.
  19. Farooq, A.S.; Zhang, P. Fundamentals, materials and strategies for personal thermal management by next-generation textiles. Compos. Part A Appl. Sci. Manuf. 2021, 142, 106249.
  20. Dessureault, P.C.; Gressard, B. Cueillette de Données et Vérification de la Concordance Entre la Température de l’Air Corrigée et l’Indice WBGT sous des Ambiances Thermiques Extérieures; (Report R-476); IRSST: Montréal, QC, Canada, 2006.
  21. Dessureault, P.C.; Oupin, P.; Bourassa, M. Pertinence et Conditions D’utilisation des Indices Thermiques Dans le Contexte Québécois; (Report R-824); IRSST: Montréal, QC, Canada, 2014.
  22. Dolez, P.I.; Mlynarek, J. Smart materials for personal protective equipment. In Smart Textiles and their Applications; Elsevier: Amsterdam, The Netherlands, 2016; pp. 497–517.
  23. Shishoo, R. Recent developments in materials for use in protective clothing. Int. J. Cloth. Sci. Technol. 2002, 14, 201–215.
  24. Jan, E.; Wahlberg, A.B.; Estlander, T.; Maibach, H.I. Protective Gloves for Occupational Use, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004.
  25. Bhuiyan, M.A.R.; Shaid, L.W.A.; Shanks, R.A.; Ding, J. Advances and applications of chemical protective clothing system. J. Ind. Text. 2018, 49, 97–138.
  26. Dolez, P.; Vu-Khanh, T. Recent Developments and Needs in Materials Used for Personal Protective Equipment and Their Testing. Int. J. Occup. Saf. Ergon. JOSE 2009, 15, 347–362.
  27. Arvinte, C.; Sandu, A.V.; Burduhos-Nergis, D.D.; Sava, M.A.B.; Bejinariu, C. Technical requirements and materials used in firefighters gloves manufacturing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 572, 012070.
  28. Wang, F.; Gao, C. Protective Clothing: Managing Thermal Stress, 1st ed.; Woodhead Publishing: Sawston, UK, August 2014.
  29. .Truong, Q.T.; Wilusz, E. Chemical and biological protection. Eng. Agric. Environ. Food 2005, 557–594.
  30. Khalil, E. A Technical Overview on Protective Clothing against Chemical Hazards. AATCC J. Res. 2015, 2, 67–76.
  31. Dolez, P.I. 5-Smart barrier membranes for protective clothing. Smart Text. Prot. 2013, 148–189.
  32. Pan, N.; Sun, G. (Eds.) Functional Textiles for Improved Performance, Protection and Health; Woodhead Publishing Series in Textiles; Elsevier: Amsterdam, The Netherlands, 2011.
  33. Erdem, Ö.; İşmal, R.P. 17—Composite textiles in high-performance apparel. High-Perform. Appar. Mater. Dev. Appl. 2018, 377–420.
  34. Ravindra, V.; Gadhave, S.K.V.; Pradeep, T.G. Polymers and Polymeric Materials in COVID-19 Pandemic: A Review. J. Polym. Chem. 2020, 10, 66–75.
  35. Kośla, K.; Olejnik, M.; Olszewska, K. Preparation and properties of composite materials containing graphene structures and their applicability in personal protective equipment: A Review. Rev. Adv. Mater. Sci. 2020, 59, 215–242.
  36. Williams-Bell, F.M.; Boisseau, G.; McGill, J.; Kostiuk, A.; Hughsona, R.L. Air management and physiological responses during simulated firefighting tasks in a high-rise structure. Appl. Ergon. 2010, 41, 251–259.
  37. Marchand, D.; Gauvin, C.; Brien-Breton, A.; Aubertin-Leheudre, M.; Tessier, D.; Sadier, Y. Évaluation de Nouvelles Technologies Visant à Réduire le Stress Thermophysiologique Associé au port de Vêtements Individuels de Protection pour les Pompiers; (Report R-891); IRSST: Montréal, QC, Canada, 2015.
  38. Dolez, P.; Decaens, J.; Buns, T.; Lachapelle, D.; Vermeersch, O.; Mlynarek, J. Analyse du Potentiel d’Application des Textiles Intelligents en Santé et en Sécurité au Travail; (Report R-1029); IRSST: Montreal, QC, Canada, 2018.
  39. Cao, H. Smart technology for personal protective equipment and clothing. In Smart Textiles for Protection; Elsevier: Amsterdam, The Netherlands, 2013; pp. 229–243.
  40. Decaens, J.; Vermeersch, O. Wearable technologies for personal protective equipment. In Smart Textiles and their Applications; Elsevier: Amsterdam, The Netherlands, 2016; pp. 519–537.
  41. Ehrman, A.; Nguyen, T.; Tri, P.N. (Eds.) Nanosensors and Nanodevices for Smart Multifunctional Textiles, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2020.
  42. Golebiowski, J.; Walczak, S.; Milcarz, S. Design and Simulation of the Comb MWCNT Temperature Sensor for Textronics. Procedia Eng. 2014, 87, 428–431.
  43. Bielska, S.; Sibinski, M.; Lukasik, A. Polymer temperature sensor for textronic applications. Mater. Sci. Eng. B 2009, 165, 50–52.
  44. Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992.
  45. Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W.; et al. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. Adv. Mater. 2019, 32, 1901958.
  46. Ehrmann, A.; Nguyen, T.A.; Nguyen-Tri, P. (Eds.) Chapter 1—Smart Nanotextiles: An Introduction; O’Reilly Media, Inc.: Sevastopol, CA, USA, 2021.
  47. Arindam Basu, S.J.; Khoiwal, V.S. Development of Smart Textiles for Medical Care. In Functional Textiles and Clothing; Springer: Cham, Switzerland, 2019.
  48. Yang, L.; Lu, K.; Diaz-Olivares, J.A.; Seoane, F.; Lindecrantz, K.; Forsman, M.; Abtahi, F.; Eklund, J.A.E. Towards Smart Work Clothing for Automatic Risk Assessment of Physical Workload. IEEE Access 2018, 6, 40059–40072.
  49. Crown, E.M.; Batcheller, J.C. Technical Textiles for Personal Thermal Protection; Elsevier: Amsterdam, The Netherlands, 2016; Volume 2.
  50. Holmér, I. Protective clothing and heat stress. Ergonomics 1995, 38, 166–182.
  51. Rezazadeh, M.; Torvi, D.A. Assessment of Factors Affecting the Continuing Performance of Firefighters’ Protective Clothing: A Literature Review. Fire Technol. 2011, 47, 565–599.
  52. Singha, K.; Kumar, J.; Pandit, P. Recent Advancements in Wearable & Smart Textiles: An Overview. Mater. Today Proc. 2019, 16, 1518–1523.
  53. Hurford, R.D. 2—Types of smart clothes and wearable technology. In Smart Clothes and Wearable Technology; McCann, J., Bryson, D., Eds.; Woodhead Publishing: Sawston, UK, 2009; pp. 25–44.
  54. Foo, E.; Gagliardi, N.R.; Schleif, N.; Dunne, L.E. Toward the Development of Customizable Textile-Integrated Thermal Actuators. In Proceedings of the UbiComp ‘17: The 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Maui, HI, USA, 11 September 2017; pp. 29–32.
  55. Wang, F.; Gao, C.; Kuklane, K.; Holmér, I. A Review of Technology of Personal Heating Garments. Int. J. Occup. Saf. Ergon. 2010, 16, 387–404.
  56. Roh, J.-S.; Kim, S. All-fabric intelligent temperature regulation system for smart clothing applications. J. Intell. Mater. Syst. Struct. 2016, 27, 1165–1175.
  57. Donelan, C.; Park, H. Evaluation of Passive Cooling Garments for Thermal Comfort Based on Thermal Manikin Tests. AATCC J. Res. 2016, 3, 1–11.
  58. Mokhtari Yazdi, M.; Sheikhzadeh, M. Personal cooling garments: A review. J. Text. Inst. 2014, 105, 1231–1250.
  59. Babu, V.; Ramesh, A.A. Thermo regulated clothing with phase change materials. J. Text. Eng. Fash. Technol. 2018, 4, 344–347.
  60. Salaün, F. Phase Change Materials for Textile Application, Textile Industry and Environment; Körlü, A., Ed.; IntechOpen: London, UK, 2019.
  61. Zarma, I. Thermal Energy Storage in Phase Change Materials: Applications, Advantages and Disadvantages. In Proceedings of the 1st International Cnferecne of Chemical, Energy and Environmental Engineering, Alexandria, Egpyt, 28 November 2017.
  62. Hertleer, C.; Odhiambo, S.; Van Langenhove, L. Protective clothing for firefighters and rescue workers. In Smart Textiles for Protection; Elsevier; Woodhead Publishing: Amsterdam, The Netherlands; Sawston, UK, 2013; pp. 338–363.
  63. Bu, Y.; Wu, W.; Zeng, X.; Koehl, L.; Tartare, G. A Wearable Intelligent System for Real Time Monitoring Firefighter’s Physiological State and Predicting Dangers. In Proceedings of the 2015 IEEE 16th International Conference on Communication Technology (ICCT), Hangzhou, China, 18–21 October 2015; pp. 429–432.
  64. Dias, D.; Paulo Silva Cunha, J. Wearable Health Devices—Vital Sign Monitoring, Systems and Technologies. Sensors 2018, 18, 2414.
  65. Majumder, S.; Mondal, T.; Deen, M. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130.
  66. Kang, L.; Shi, Y.; Zhang, J.; Huang, C.; Zhang, N.; He, Y.; Li, W.; Wang, C.; Wu, X.; Zhou, X.; et al. A flexible resistive temperature detector (RTD) based on in-situ growth of patterned Ag film on polyimide without lithography. Microelectron. Eng. 2019, 216, 111052.
  67. Butts, C.L.; Smith, C.R.; Ganio, M.S.; McDermott, B.P. Physiological and perceptual effects of a cooling garment during simulated industrial work in the heat. Appl. Ergon. 2017, 59, 442–448.
  68. Moran, D.S.; Shitzer, A.; Pandolf, K.B. A physiological strain index to evaluate heat stress. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1998, 275, R129–R134.
  69. Petruzzello, S.J.; Gapin, J.I.; Snook, E.; Smith, D.L. Perceptual and physiological heat strain: Examination in firefighters in laboratory- and field-based studies. Ergonomics 2009, 52, 747–754.
  70. Tikuisis, P.; McLellan, T.M.; Selkirk, G. Perceptual versus physiological heat strain during exercise-heat stress. Med. Sci. Sports Exerc. 2002, 34, 1454–1461.
  71. Buller, M.J.; Tharion, W.J.; Cheuvront, S.N.; Montain, S.J.; Kenefick, R.W.; Castellani, J.; Latzka, W.A.; Roberts, W.S.; Richter, M.; Jenkins, O.C.; et al. Estimation of human core temperature from sequential heart rate observations. Physiol. Meas. 2013, 34, 781–798.
  72. Buller, M.J.; Tharion, W.J.; Duhamel, C.M.; Yokota, M. Real-time core body temperature estimation from heart rate for first responders wearing different levels of personal protective equipment. Ergonomics 2015, 58, 1830–1841.
  73. Xu, X.; Karis, A.J.; Buller, M.J.; Santee, W.R. Relationship between core temperature, skin temperature, and heat flux during exercise in heat. Eur. J. Appl. Physiol. 2013, 113, 2381–2389.
  74. Richmond, V.L.; Davey, S.; Griggs, K.; Havenith, G. Prediction of core body temperature from multiple variables. Ann. Occup. Hyg. 2015, 59.
  75. Hatamie, A.; Angizi, S.; Saurabh, K.; Mouli, P.C.; Abdolreza, S.; Magnus, W.; Malhotra Bansi, D. Review—Textile Based Chemical and Physical Sensors for Healthcare Monitoring. J. Electrochem. Soc. 2020, 167, 037546.
  76. Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016, 28, 4373–4395.
  77. Honarvar, M.G.; Latifi, M. Overview of wearable electronics and smart textiles. J. Text. Inst. 2017, 108, 631–652.
  78. Lugoda, P.; Hughes-Riley, T.; Morris, R.; Dias, T. A Wearable Textile Thermograph. Sensors 2018, 18, 2369.
  79. Chen, W.; Dols, S.; Bambang, O.S.; Loe, F. Monitoring Body Temperature of Newborn Infants at Neonatal Intensive Care Units Using Wearable Sensors. In Proceedings of the Fifth International Conference, Corfu, Greece, 10–12 September 2010; p. 188.
  80. Theodore, H.-R.; Lugoda, P.; Dias, T.; Trabi, C.L.; Morris, R.H. A Study of Thermistor Performance within a Textile Structure. Sensors 2017, 17, 1804.
  81. Hughes-Riley, T.; Dias, T.; Cork, C. A Historical Review of the Development of Electronic Textiles. Fibers 2018, 6, 34.
  82. Pasindu, L.; Dias, T.; Hughes-Riley, T.; Morris, R. Refinement of Temperature Sensing Yarns. Proceedings 2017, 2, 123.
  83. Lugoda, P.; Dias, T.; Morris, R. Electronic Temperature Sensing Yarn. J. Multidiscip. Eng. Sci. Stud. 2015, 1, 100–103.
  84. Tao, X.; Koncar, V. 25—Textile electronic circuits based on organic fibrous transistors. In Smart Textiles and their Applications; Woodhead Publishing: Oxford, UK, 2016; pp. 569–598.
  85. Jeon, J.; Lee, H.-B.-R.; Bao, Z. Flexible Wireless Temperature Sensors Based on Ni Microparticle-Filled Binary Polymer Composites. Adv. Mater. 2013, 25, 850–855.
  86. Ziegler, S.; Frydrysiak, M. Initial Research into the Structure and Working Conditions of Textile Thermocouples. Fibres Text. East. Eur. 2008, 17, 84–88.
  87. Husain, M.D.; Kennon, R.; Dias, T. Design and fabrication of Temperature Sensing Fabric. J. Ind. Text. 2014, 44, 398–417.
  88. Husain, M.; Kennon, R. Preliminary Investigations into the Development of Textile Based Temperature Sensor for Healthcare Applications. Fibers 2013, 10, 2–10.
  89. Lee, J.-W.; Han, D.-C.; Shin, H.-J.; Yeom, S.-H.; Ju, B.-K.; Lee, W. PEDOT:PSS-Based Temperature-Detection Thread for Wearable Devices. Sensors 2018, 18, 2996.
  90. Soukup Radek, H.A.; Lukas, M.; Jan, R. Textile Based Temperature and Humidity Sensor Elements for Healthcare Applications. In Proceedings of the 2014 37th ISSE International Spring Seminar in Electronics Technology (ISSE), Dresden, Germany, 7–11 May 2014; pp. 407–411.
  91. Tyler, D.J. 17—Joining of wearable electronic components. In Joining Textiles; Jones, I., Stylios, G.K., Eds.; Woodhead Publishing: Sawston, UK, 2013; pp. 507–535.
  92. Polanský, R.; Soukup, R.; Řeboun, J.; Kalčík, J.; Moravcová, D.; Kupka, L.; Švantner, M.; Honnerová, P.; Hamáček, A. A novel large-area embroidered temperature sensor based on an innovative hybrid resistive thread. Sens. Actuators A Phys. 2017, 265, 111–119.
  93. Guo, L.; Bashir, T.; Bresky, E.; Persson, N.K. 28—Electroconductive textiles and textile-based electromechanical sensors—integration in as an approach for smart textiles. In Smart Textiles and their Applications; Koncar, V., Ed.; Woodhead Publishing: Oxford, UK, 2016; pp. 657–693.
  94. Ivanov, I.I.; Skryshevsky, V.A.; Belarouci, A. Porous Bragg reflector based sensors: Ways to increase sensitivity. Sens. Actuators A Phys. 2020, 315, 112234.
  95. Li, H.; Yang, H.; Li, E.; Liu, Z.; Wei, K. Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating. Opt. Express 2012, 20, 11740.
  96. Xiang, Z.; Wan, L.; Gong, Z.; Zhou, Z.; Ma, Z.; OuYang, X.; He, Z.; Chan, C.C. Multifunctional Textile Platform for Fiber Optic Wearable Temperature-Monitoring Application. Micromachines 2019, 10, 866.
  97. Codau, T.-C.; Onofrei, E.; Bedek, G.; Dupont, D.; Cochrane, C. Embedded textile heat flow sensor characterization and application. Sens. Actuators A Phys. 2015, 235, 131–139.
  98. Wicaksono, I.; Tucker, C.; Sun, T.; Guerrero, C.; Liu, C.; Woo, W.; Pence, E.; Dagdeviren, C. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. NPJ Flex. Electron. 2020, 4, 5.
  99. Xu, K.; Timothy, Y.C.; Okhai, A.; Snyman, L.W. Micro optical sensors based on avalanching silicon light-emitting devices monolithically integrated on chips. Opt. Mater. Express 2019, 9, 3985–3997.
  100. Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001.
  101. du Plessis, M.; Wen, H.; Bellotti, E. Temperature characteristics of hot electron electroluminescence in silicon. Opt. Express 2015, 23, 12605–12612.
  102. Hu, J.; Meng, H.; Li, G.; Ibekwe, S.I. A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. 2012, 21, 053001.
  103. Xu, B.; Tang, G.; He, C.Q.; Yan, X.X. Flexible Temperature Microsensor for Application of High-Intensity Focused Ultrasound. Sens. Mater. 2017, 29, 1713–1722.
  104. Vuorinen, T.; Niittynen, J.; Kankkunen, T.; Kraft, T.M.; Mäntysalo, M. Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate. Sci. Rep. 2016, 6, 35289.
  105. Li, H.; Ding, J.; Yuan, N.; Xu, J.; Zhou, X.; Dai, S.; Chen, B. Visual and flexible temperature sensor based on a pectin-xanthan gum blend film. Org. Electron. 2018, 59, 243–246.
  106. You, X.; Pak, J.J. Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sens. Actuators B Chem. 2014, 202, 1357–1365.
  107. Mahadeva, S.K.; Yun, S.; Kim, J. Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sens. Actuators A Phys. 2011, 165, 194–199.
  108. Peng, B.; Ren, X.; Wang, Z.; Wang, X.; Roberts, R.C.; Chan, P.K.L. High performance organic transistor active-matrix driver developed on paper substrate. Sci. Rep. 2014, 4, 6430.
  109. Hong, S.Y.; Lee, Y.H.; Park, H.; Jin, S.W.; Jeong, Y.R.; Yun, J.; You, I.; Zi, G.; Ha, J.S. Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin. Adv. Mater. 2016, 28, 930–935.
  110. Moser, Y.; Gijs, M.A.M. Miniaturized Flexible Temperature Sensor. J. Microelectromech. Syst. 2007, 16, 1349–1354.
  111. Yan, C.; Wang, J.; Lee, P.S. Stretchable Graphene Thermistor with Tunable Thermal Index. ACS Nano 2015, 9, 2130–2137.
  112. Fan, Y.; Zhao, H.; Wei, F.; Yang Yi Ren, T.; Tu, H. A facile and cost-effective approach to fabrication of high performance pressure sensor based on graphene-textile network structure. Prog. Nat. Sci. Mater. Int. 2020, 30, 437–442.
  113. Kong, D.; Le, L.T.; Li, Y.; Zunino, J.L.; Lee, W. Temperature-Dependent Electrical Properties of Graphene Inkjet-Printed on Flexible Materials. Langmuir 2012, 28, 13467–13472.
  114. Yang, J.; Wei, D.; Tang, L.; Song, X.; Luo, W.; Chu, J.; Gao, T.; Shi, H.; Du, C. Wearable temperature sensor based on graphene nanowalls. RSC Adv. 2015, 5, 25609–25615.
  115. Arman Kuzubasoglu, B.; Kursun Bahadir, S. Flexible temperature sensors: A review. Sens. Actuators A Phys. 2020, 315, 112282.
  116. Aliane, A.; Fischer, V.; Galliari, M.; Tournon, L.; Gwoziecki, R.; Serbutoviez, C.; Chartier, I.; Coppard, R. Enhanced printed temperature sensors on flexible substrate. Microelectron. J. 2014, 45, 1621–1626.
  117. Huang, C.-C.; Kao, Z.-K.; Liao, Y.-C. Flexible Miniaturized Nickel Oxide Thermistor Arrays via Inkjet Printing Technology. ACS Appl. Mater. Interfaces 2013, 5, 12954–12959.
  118. Wu, K.; Zhang, H.; Chen, Y.; Luo, Q.; Xu, K. All-Silicon Microdisplay Using Efficient Hot-Carrier Electroluminescence in Standard 0.18μm CMOS Technology. IEEE Electron Device Lett. 2021, 42, 541–544.
  119. Dankoco, M.D.; Tesfay, G.Y.; Benevent, E.; Bendahan, M. Temperature sensor realized by inkjet printing process on flexible substrate. Mater. Sci. Eng. B 2016, 205, 1–5.
  120. Honda, W.; Harada, S.; Arie, T.; Akita, S.; Takei, K. Printed Wearable Temperature Sensor for Health Monitoring. In Proceedings of the 2014 IEEE Sensors, Valencia, Spain, 2–5 November 2014; pp. 2227–2229.
  121. Honda, W.; Harada, S.; Arie, T.; Akita, S.; Takei, K. Wearable, Human-Interactive, Health-Monitoring, Wireless Devices Fabricated by Macroscale Printing Techniques. Adv. Funct. Mater. 2014, 24, 3299–3304.
  122. Courbat, J.; Kim, Y.B.; Briand, D.; Rooij, N.F. Inkjet Printing on Paper for the Realization of Humidity and Temperature Sensors. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 1356–1359.
  123. Tao, X.; Jia, H.; He, Y.; Liao, S.; Wang, Y. Ultrafast Paper Thermometers Based on a Green Sensing Ink. ACS Sens. 2017, 2, 449–454.
  124. Kumar Arvind, S.M.L.; Kumar, A.; Rajput, J.K. POMANI-Mn3O4 based thin film NTC thermistor and its linearization for overheating protection sensor. Mater. Chem. Phys. 2015, 156, 150–162.
  125. Yang, Y.; Lin, Z.H.; Hou, T.; Zhang, F.; Wang, Z.L. Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors. Nano Res. 2012, 5, 888–895.
  126. Shih, W.-P.; Tsao, L.C.; Lee, C.-W.; Cheng, M.-Y.; Chang, C.; Yang, Y.-J.; Fan, K.-C. Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite. Sensors 2010, 10, 3597–3610.
  127. Matzeu, G.; Pucci, A.; Savi, S.; Romanelli, M.; Di Francesco, F. A temperature sensor based on a MWCNT/SEBS nanocomposite. Sens. Actuators A Phys. 2012, 178, 94–99.
  128. Giuliani Alessio, P.M.; Di Francesco, F.; Pucci, A. A new polystyrene-based ionomer/MWCNT nanocomposite for wearable skin temperature sensors. React. Funct. Polym. 2014, 76, 57–62.
  129. Webb, R.; Chad, B.A.P.; Alex, B.; Yihui, Z.; Jun, Y.K.; Huanyu, C.; Mingxing, S.; Zuguang, B.; Zhuangjian, L.; Yun-Soung, K.; et al. Erratum: Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater 2013, 12, 1078.
  130. Vaz, A.; Ubarretxena, A.; Zalbide, I.; Pardo, D.; Solar, H.; Garcia-Alonso, A.; Berenguer, R. Full Passive UHF Tag With a Temperature Sensor Suitable for Human Body Temperature Monitoring. IEEE Trans. Circuits Syst. II Express Briefs 2010, 57, 95–99.
  131. Milici, S.; Amendola, S.; Bianco, A.; Marrocco, G. Epidermal RFID Passive Sensor for Body Temperature Measurements. In Proceedings of the 2014 IEEE International Conference on RFID-Technologies and Applications (RFID-TA), Tampere, Finland, 8–9 September 2014; pp. 140–144.
  132. Miozzi, C.; Amendola, S.; Bergamini, A.; Marrocco, G. Reliability of a Re-Usable Wireless Epidermal Temperature Sensor in Real Conditions. In Proceedings of the 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, The Netherlands, 9–12 May 2017; pp. 95–98.
  133. Chaglla, E.J.; Celik, N.; Balachandran, W. Measurement of Core Body Temperature Using Graphene-Inked Infrared Thermopile Sensor. Sensors 2018, 18, 3315.
  134. Oliveira, A.; Gehin, C.; Massot, B.; Ramon, C.; Dittmar, A.; McAdams, E. Thermal Parameters Measurement on Fire Fighter: Improvement of the Monitoring System. In Proceedings of the 2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010), Buenos Aires, Argentina, 31 August–4 September 2010; pp. 6453–6456.
  135. Seeberg, T.M.; Hjelstuen, M.; Austad, H.O.; Larsson, A.; Færevik, H.; Tjønnås, M.S.; Storholmen, T.C.B. Smart Textiles-Safety for Workers in Cold Climate. November 2011. Available online: https://www.sintef.no/projectweb/coldwear/Coldwear (accessed on 30 September 2021).
  136. Seeberg, T.M.; Vardøy, A.-S.B.; Austad Hanne, O.; Wiggen, O.; Stenersen, H.S.; Liverud, A.E.; Storholmen, T.C.B.; Faerevik, H. Protective Jacket Enabling Decision Support for Workers in Cold Climate. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 6498–6501.
  137. Fernando, S.; Mohino-Herranz, I.; Javier, F.; Lorena, A.; Ruben, B.; David, A.; Cosme, L.; Roberto, G.-P. Wearable Biomedical Measurement Systems for Assessment of Mental Stress of Combatants in Real Time. Sensors 2014, 14, 7120–7141.
  138. Lugoda, P.; Hughes Riley, T.; Oliveira, C.; Morris, R.; Dias, T. Developing Novel Temperature Sensing Garments for Health Monitoring Applications. Fibers 2018, 6, 46.
  139. Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors 2018, 18, 645.
  140. Wang, S. 3D Printing clothing design based on wireless sensors and FPGA. Microprocess. Microsyst. 2020, 103407.
  141. Duval, C. Quand l’EPI Devient Intelligent; Travail & Sécurité (768); Perspectives, Institut National de Recherche et de Sécurité (INRS): Paris, France, January 2016.
  142. Kinkeldei, T.; Zysset, C.; Cherenack, K.; Troester, G. Development and Evaluation of Temperature Sensors for Textile Integration. In Proceedings of the 2009 IEEE Sensors, Christchurch, New Zealand, 25–28 October 2009; pp. 1580–1583.
  143. Kara, S.; Yesilpinar, S.; Yavuz, S.; Taner, A. Design of an electronically equipped sailing garment for improved safety. Ind. Text. 2017, 68, 23–30.
  144. Sim, S.Y.; Lee, W.K.; Baek, H.J.; Park, K.S.A. A Nonintrusive Temperature Measuring System for Estimating Deep Body Temperature in Bed. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012.
  145. Kitamura, K.-I.; Zhu, X.; Chen, W.; Nemoto, T. Development of a new method for the noninvasive measurement of deep body temperature without a heater. Med. Eng. Phys. 2010, 32, 1–6.
  146. Kimberger, O.; Thell, R.; Schuh, M.; Koch, J.; Sessler, D.I.; Kurz, A. Accuracy and precision of a novel non-invasive core thermometer. Br. J. Anaesth. 2009, 103, 226–231.
  147. Botonis Petros, C.E.; Kounalakis, S.; Maria, K.; Nickos, G. The Effect of Skin Surface Menthol Application on Rectal Temperature During Prolonged Immersion in Cool and Cold Water. In Proceedings of the 13th International Conference on Environmental Ergonomics, Boston, MA, USA, 2–7 August 2009.
  148. Gunga, H.-C.; Werner, A.; Stahn, A.; Steinach, M.; Schlabs, T.; Koralewski, E.; Kunz, D.; Belavý, D.L.; Felsenberg, D.; Sattler, F.; et al. The Double Sensor-A non-invasive device to continuously monitor core temperature in humans on earth and in space. Respir. Physiol. Neurobiol. 2009, 169, S63–S68.
  149. Boano, C.; Lasagni, M.; Römer, K.; Lange, T. Accurate Temperature Measurements for Medical Research Using Body Sensor Networks. In Proceedings of the 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, Newport Beach, CA, USA, 28–31 March 2011; pp. 189–198.
  150. Daniele Giansanti, G.M.; Bernhardt, P. Toward the design of a wearable system for contact thermography in telemedicine. Telemed. E-Health 2009, 15.
  151. Mansor, H.; Shukor, M.H.A.; Meskam, S.S.; Rusli, N.Q.A.M.; Zamery, N.S. Body Temperature Measurement for Remote Health Monitoring System. In Proceedings of the 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Kuala Lumpur, Malaysia, 25–27 November 2013.
  152. Javadpour, A.; Memarzadeh-Tehran, H.; Saghafi, F. A Temperature Monitoring System Incorporating an Array of Precision Wireless Thermometers. In Proceedings of the International Conference on Smart Sensors and Application (ICSSA), Kuala Lumpur, Malaysia, 26–28 May 2015; pp. 155–160.
  153. Miah, M.A.; Kabir, M.H.; Tanveer, M.S.R.; Akhand, M.A.H. Continuous Heart Rate and Body Temperature Monitoring System Using Arduino UNO and Android Device. In Proceedings of the 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT), Khulna, Bangladesh, 10–12 December 2015; pp. 183–188.
  154. Rahman, M.A.; Barai, A.; Islam, M.A.; Hashem, M.M.A. Development of a Device for Remote Monitoring of Heart Rate and Body Temperature. In Proceedings of the 15th International Conference on Computer and Information Technology (ICCIT), Chittagong, Bangladesh, 22–24 December 2012; pp. 411–416.
  155. Roberge, R.; Kim, J.-H.; Benson, S. N95 Filtering Facepiece Respirator Deadspace Temperature and Humidity. J. Occup. Environ. Hyg. 2012, 9, 166–171.
  156. Boano, C.A.; Römer, K. Non-Invasive Measurement of Core Body Temperature in Marathon Runners. In Proceedings of the 10th European Conference on Wireless Sensor Networks (EWSN), Ghent, Belgium, 13 February 2013.
  157. Cochrane, C.; Hertleer, C.; Schwarz-Pfeiffer, A. 2—Smart textiles in health: An overview. In Smart Textiles and Their Applications; Koncar, V., Ed.; Woodhead Publishing: Oxford, UK, 2016; pp. 9–32.
More
Video Production Service