Encapsulation Systems for Antimicrobial Food Packaging Components: Comparison
Please note this is a comparison between Version 1 by Filomena Silva and Version 2 by Peter Tang.

EncapThisulation is defined as the process to entrap one substance (active agent) within another substance, yielding small particles that release their contents at controlled rates over prolonged periods of time and under specific conditions. Antimicrobial activ article provides an overview of the types of antimicrobials agents used in antimicrobial packaging and the most recent trends on the strategies used to encapsulate them for their stable inclusion in the packaging has emerged as an effective technology to reduce microbial growth in food products increasing both their shelf-life and microbial safety for the consumer while maintainingmaterials. Moreover, a thorough discussion regarding the benefits of each encapsulation technology as well as their quality and sensorial properties. application in food products is presented

  • active packaging
  • antimicrobials
  • encapsulation
  • electrospinning
  • nanocarriers
  • essential oils
  • metal nanoparticles
  • emulsions
  • natural compounds

1. Antimicrobial Food Packaging

In Europe, the food sector is a major sector that generates more than 750,000,000,000 euros each year [1], representing 4.4% of the Gross Domestic Product to the European Economy [2]. According to the latest data provided by FAO [3], about one third of all food produced for human consumption is wasted each year, which corresponds to 1.3 Gtons of food; a global tendency that is expected to grow in the future [4].
Given the economic impact of the food industry in our society, microbial contamination of foods can result in significant losses for the food industry due to food spoilage. Furthermore, the consumption of microbial contaminated foods can lead to serious public health threats such as foodborne diseases and outbreaks. Microbial food spoilage is mainly caused by non-pathogenic spoilage microorganisms that are responsible for alterations on the nutritional and sensory characteristics of food products, such as oxidation, generation of off-flavours and off-odours as well as undesirable changes in texture and colour [5]. On the other hand, foodborne disease is caused by pathogenic microorganisms that are responsible, each year, for 600,000,000 cases of illness, with almost 420,000 deaths and 27,000,000 Years of Life Lost (YLL), according to World Health Organization (WHO) [6].
The first attempt of the food industry to fight microbial contamination was based on the direct addition of antimicrobials (e.g., food preservatives) to food products. This strategy proved to be of limited action due to the rapid diffusion of the antimicrobial substance from the surface to the mass of the product [7], with concomitant loss of efficacy, so the food industry had to search for new and innovative ways to introduce antimicrobials in food products. Given that 99.8% of all food and beverages have to be encased in some sort of packaging during their existence, the next logical step was to include these antimicrobial substances in the food packaging material, giving rise to antimicrobial food packaging technology. A clear advantage of this option would be that the packaged food would be protected without having edible preservatives added directly in its composition. Antimicrobial packaging has the main goal of reducing, retard or even inhibiting microbial growth by interacting with the packaged food (direct contact) or the package headspace (indirect contact) [5]. By controlling microbial flora, antimicrobial packaging ensures microbial food safety, while maintaining food’s quality and sensorial properties and increasing products’ shelf-life [8]. Nowadays, antimicrobial packaging can come in several forms such as sachets or pads containing volatile antimicrobials, polymer films with direct incorporation of antimicrobial substances (extrusion, casting) and coating, adsorption or grafting of antimicrobials onto the surface of the polymer [7]. It is quite obvious that antimicrobials have to reach the cells to inhibit their growth or to kill them. This fact implies that the antimicrobial agents will have to be in contact with the food, either in vapour phase or by direct contact between the active packaging and the food [8]. There is a wide and ever-growing list of antimicrobial agents that have been or are currently being for the development of antimicrobial food packaging. Although the list is vast, not all antimicrobials are suitable for every application, as the choice of the antimicrobial to be used depends on several factors. The primary factor is the antimicrobial activity against the target microorganisms, including specific activity and resistance development, and the regulatory status of its use in foods [9]. Furthermore, one has to take into account whether controlled release approaches are necessary or not, given the chemical nature of the food, its storage and distribution conditions as well as the physical-chemical characteristics of the packaging material where the antimicrobial is going to be included [9].

1.1. Antimicrobial Substances Used in Food Packaging

The list of antimicrobial substances used for the development of antimicrobial food packaging is quite vast and is continuously evolving as a result of changing consumer trends and legislation. These substances include chemicals such as organic acids, triclosan, antibiotics, chlorine dioxide, nitrites and ammonium salts that are slowly being replaced by “greener”, more natural alternatives such as bacteriocins, enzymes, phages, biopolymers, natural extracts and compounds, essential oils and their components and metal nanoparticles (Table 1).
Table 1. Antimicrobial agents used in active food packaging. NA-not applicable.

Antimicrobial Class

Antimicrobial Agent

Packaging Material

Main Microorganisms

Food Product

Ref.

Organic acids

Lactic acid

Polyamide

Escherichia coli O157:H7

Fresh beef cuts

[10]

Lactic acid

Chitosan pectin starch biocomposite

Bacillus subtilis

Listeria monocytogenes

NA

[11]

Sodium benzoate

Citric acid

Polyvinyl alcohol (PVA)

Staphylococcus aureus

Escherichia coli

Candida albicans

NA

[12]

Potassium sorbate

Fish collagen and polyvinyl alcohol (PVA) composite

Escherichia coli

Staphylococcus aureus

NA

[13]

Bacteriocins

Sakacin-A

PE coated paper

Listeria monocytogenes

Thin-cut meat

[14]

Sakacin-A

Cellulose nanofibres

Listeria monocytogenes

Smoked salmon fillets

[15]

Nisin

Starch-halloysite nanocomposites

Listeria monocytogenes

Clostridium perfringens

NA

[16]

Pediocin

Starch-halloysite nanocomposites

Listeria monocytogenes

Clostridium perfringens

NA

[16]

Nisin

Chitosan-carboxymethylchitosan composite films

Listeria monocytogenes

NA

[17]

Bacteriocin 7293

Poly (lactic acid)/sawdust particle biocomposite film

Listeria monocytogenes

Staphylococcus aureus

Pseudomonas aeruginosa

Aeromonas hydrophila

Escherichia coli

Salmonella Typhimurium

Pangasius fish fillets

[18]

Bacteriocin-like substances

Starch

Listeria monocytogenes

Cheese

[19]

Bacteriocin-like substances

Triticale flour films

Listeria innocua

Cheese

[20]

Bacteriocin-producer living bacteria

Poly (ethylene terephthalate) (PET) coated with polyvinyl alcohol (PVOH)

Listeria monocytogenes

Precooked chicken fillets

[21]

Enzymes

Lysozyme

Nonwoven regenerated cellulose with carbon nanotubes and graphene oxide

Micrococcus lysodeikticus

NA

[22]

Lysozyme+ lactoferrin

Carboxymethyl cellulose-coated paper

Listeria innocua

Escherichia coli

Veal carpaccio

[23]

Lysozyme

Polyamide 11 (PA11) with halloysite nanotubes (HNTs)

Pseudomonads

Chicken slices

[24]

Glucose oxidase

Whey protein isolate

Listeria innocua

Brochothrix thermosphacta

Escherichia coli

Enterococcus faecalis

NA

[25]

Lactoperoxidase

Chitosan

Shewanella putrefaciens

Pseudomonas fluorescens

Psychrotrophs

Mesophiles

Rainbow trout

[26]

Biopolymers

Chitosan

Chitosan/ethylene copolymer

Escherichia coli

Salmonella

Enteritidis

Listeria monocytogenes

NA

[27]

Hydroxyethyl cellulose/sodium alginate

NA

Escherichia coli

Staphylococcus aureus

NA

[28]

Bacteriophages

ϕIBB-PF7A

Alginate

Pseudomonas fluorescens

Chicken fillets

[29]

vB_EcoMH2W

Chitosan

Escherichia coli O157:H7

Tomatoes

[30]

LISTEX™ P100

Cellulose membranes

Listeria monocytogenes

Ready-to-eat turkey

[31]

Other

LAE

Cellulose nanofibres

Listeria monocytogenes

NA

[32]

Sulphur nanoparticles

Chitosan

Listeria monocytogenes

Escherichia coli

NA

[33]

Chlorine dioxide

PLA

Staphylococcus aureus

Escherichia coli

NA

[34]

Quaternary ammonium salt

PVA/starch

Staphylococcus aureus

Bacillus subtilis

Escherichia coli

Pseudomonas aeruginosa

NA

[35]

2. Encapsulation Strategies for Antimicrobial Packaging

Encapsulation is defined as the process to entrap one substance (active agent) within another substance, yielding small particles that release their contents at controlled rates over prolonged periods of time and under specific conditions [36][122]. In the antimicrobial food packaging area, the encapsulation of antimicrobial compounds provides more efficient packaging materials by (i) protecting the antimicrobial compounds from degradation, volatilization or undesirable interactions with packaging materials, (ii) improving the compatibility between the packaging polymer and the antimicrobial substance, (iii) increasing the availability of the antimicrobial and (iv) providing a controlled release or/and stimuli-responsive release to extend the activity of the active material, reduce changes in food sensorial properties or comply with the legal restriction limits.
Encapsulating some types of antimicrobial substances has become essential to solve some problems that limit their use in packaging applications. In the case of EOs, for example, encapsulation is essential to reduce losses by volatilization or degradation during packaging manufacturing or storage, to improve the compatibility with biopolymer by increasing their solubility and/or to diminish the organoleptic impact in food products caused by their strong odour [37][38][123,124].
A broad range of delivery systems or carriers have been developed to encapsulate bioactive compounds in the food and pharmaceutical sectors such as cyclodextrins, liposomes, emulsions, nanoparticles or microcapsules [39][125]. However not all these available carriers can be applied in antimicrobial active packaging as they should be compatible with the packaging material and do not modify negatively their mechanical and physical properties in order to preserve their primary function of food protection.

2.1. Emulsions

Conventional emulsions consist of two immiscible liquids where one liquid is dispersed in the other in form of small droplets (Figure 1). These colloidal systems can be used to encapsulate bioactive compounds at significant amounts. Lipophilic compounds can be encapsulated in oil-in-water (O/W) emulsions, while hydrophilic compounds can be encapsulated in water-in-oil (W/O) or oil-in-water emulsions. Multiple emulsions such as water-in-oil-in-water (W/O/W) and oil-in-water-in-oil (O/W/O) can also be used to encapsulate active compounds in order to improve delivery requirements [39][40][125,126].
Figure 1. Schematic representation of a classical emulsion stabilized by surfactant and a Pickering emulsion stabilized by solid particles.
Regarding antimicrobial packaging, emulsions are used almost exclusively to incorporate essential oils or their chemical constituents into water soluble polymers, generally of natural origin, resulting in an O/W emulsion. The incorporation of EOs in emulsions improves their compatibility with water-based polymers, provides more transparent films while protecting EOs from volatilization and enabling a more controlled released [41][42][43][44][127,128,129,130].
Emulsions with low particle size (nanometric or micrometric scale) present several advantages over systems containing larger particles [45][46][131,132] such as better stability, decreased particle aggregation, increased transparency, added rheological properties and higher bioavailability of the encapsulated substances. Therefore, presumably, antimicrobial films containing emulsions of low particle size will be more homogenous, transparent and effective than those prepared with conventional emulsions. In fact, this hypothesis has been demonstrated by several authors dealing with the encapsulation of EOs and their major components in water-based films. For example, Guo et al. demonstrated that films containing allyl isocyanate (AIT) microemulsions revealed stronger antimicrobial activity and were more homogenous than those containing conventional emulsions [47][48][133,134]. Similarly, Otoni et al. demonstrated that packaging films with nanoemulsions exhibited better uniformity and higher antifungal activity in packaged bread than those containing coarse emulsions [49][135]. Oh et al. found that chitosan edible films containing lemongrass oil nanoemulsions showed better antimicrobial activity and produced less sensorial changes in coated grape berries than similar coatings with higher droplet size [50][136].
Considering the advantages, most of the works carried out in recent years have focused their attention on the use of emulsion of lower particle size, namely microemulsions and nanoemulsions. Microemulsions are defined as oil and water colloidal dispersions stabilized by an interfacial layer of surfactant molecules with particles sizes ranging from 1 to 100 nm, usually 10–50 nm. This type of emulsions presents some advantages such as thermodynamic stability and transparency, which make them good vehicles to incorporate antimicrobial hydrophobic compounds into different polymeric matrices. However, they need a large amount of surfactant to be stable [51][137]. Nanoemulsions are defined as conventional emulsions containing very small particles, typically lower than 200 nm. Like conventional emulsions, they are thermodynamically unstable, but their lower droplet size endows them long-term stability, higher bioavailability and transparency. These nanoemulsions also required surfactants, but in a lower surfactant-to oil ratio than microemulsions. As disadvantages, they have low stability in acidic conditions and are usually prepared by high-energy methods such as high-pressure valve homogenization, ultrasonic homogenization or high-pressure microfluidic homogenization [51][137]. Nanoemulsions are, by far, the most used dispersions to encapsulate antimicrobials in active packaging.
Despite that, as can be seen, packaging materials containing emulsions as encapsulation strategy are based on polymers of natural origin. Most of the approaches used emulsifiers of synthetic origin, particularly, polysorbates such as Tween 20 [50][52][53][136,144,145] or Tween 80 [54][42][44][55][56][53][57][58][59][60][61][90,128,130,140,143,145,146,147,148,149,150]. Natural emulsifiers such as lecithin [62][63][64][65][97,138,141,151], soy protein isolate [64][141], arabinoxylan [47][133] or sapindus extract [66][152] have been scarcely used and generally in combination with polysorbates. Consequently, further research on the use of natural emulsifiers in bio-based packaging materials is on demand in order to satisfy the growing demand in food industry for natural ingredients.
Besides classical emulsions, Pickering emulsions have been used to encapsulate bioactive compounds with antimicrobial properties. These emulsions are stabilized by solid particles instead of the surfactants used in classical emulsions (Figure 1). As in the case of surfactants, stabilization of emulsion droplets takes place by adsorption of small solid particles at the surface of the emulsion droplets, although the mechanism of adsorption is very different to the one of surfactants [67][153]. This type of stabilization adds specific properties to Pickering emulsions which make them more suitable for certain applications. Particularly valuable for antimicrobial packaging applications is their higher stability and absence of surfactants [51][67][137,153]. Conversely, the main disadvantages of Pickering emulsions are their opacity and the limited number of stabilizing particles that can be used in food applications [51][137].
Additionally, it has been demonstrated that the use of this type of emulsions can improve some film characteristics when compared to those that incorporate classical emulsions. Almasi et al. compared pectin films incorporating oregano EO using nanoemulsions or Pickering emulsions [68][154]. The results showed that both have similar antimicrobial activity but the film containing Pickering emulsions present more suitable mechanical and water barrier properties. Moreover, oregano EO release is slower from films containing Pickering emulsions than from those containing nanoemulsions.
Despite the potential advantages of using Pickering emulsions, to date, few antimicrobial packaging materials have been developed using this technology. Like in classical emulsions, Pickering emulsions are used as EO carriers and their components using solid stabilizing particles of natural origin. The antimicrobial activity of these new materials has been tested with good results in vitro, but only Fasihi et al. demonstrated their in vivo activity, namely, the inhibition of fungal growth in bread slices packaged in active films containing Pickering emulsions of rosemary essential oil [69][155].

2.2. Core-Shell Nanofibers: Emulsion and Coaxial Electrospinning

Electrospinning is an effective, low cost and versatile technique used to produce continuous sub-micron or nano-scale fibrous films from various biopolymer materials such as chitosan, alginate, cellulose, dextran, gelatine or zein among others [70][158]. This technique is based in the use of high voltage electrostatic fields to charge the surface of a polymer solution droplet, thereby inducing the ejection of a liquid jet through a spinneret to form a nanofibrous film [70][158]. Electrospinning, particularly emulsion and coaxial electrospinning, can be used to produce nanofibers with core–shell morphology. Using this structure, bioactive compounds can be directly incorporated in the core protected by the shell layer minimizing their volatilization or oxidation and reducing their release ratio [71][72][159,160]. In emulsion electrospinning, a stabilized emulsion (W/O or O/W) can be used as spinning solution using the conventional electrospinning technology to obtain core-shell nanofibers (Figure 2). It has been shown that core-shell fibres produced by emulsion electrospinning are able to yield a more sustainable controlled released than fibres obtained by coaxial electrospinning despite the later having a more organized core-shell structure [73][161]. In coaxial electrospinning, two solutions (core and shell) are delivered separately through a coaxial capillary and drawn by electric field to generate nanofibers with core-shell morphology (Figure 2), meaning that this technique requires a more complex design than emulsion electrospinning and a precise control of different parameters such as interfacial tension and viscoelasticity of the two polymers [71][74][159,162].
Figure 2.
Emulsion electrospinning and coaxial electrospinning techniques.
Despite the attention drawn to electrospun core-shell nanofibers containing bioactive compounds in last years, the vast majority of research works are focused on pharmaceutical and biomedical fields while food applications have been less explored. However, the incorporation of antimicrobials in the core-shell nanofiber has shown a great potential to be used in active packaging materials, demonstrating a higher controlled-release and a strong antimicrobial action.

2.3. Cyclodextrins

Cyclodextrins (CDs) are a family of cyclic oligomers of α-d-glucopyranose linked by α-1,4 glycosidic bonds (Figure 3A) that can be produced due to the biotransformation of starch by certain bacteria such as Bacillus macerans [75][169]. The more common natural cyclodextrins are α- cyclodextrins (6 glucose subunits), β- cyclodextrins (7 glucose subunits) and ɣ- cyclodextrins (8 glucose subunits), being β-CD the cheapest and, therefore, the most used. CDs present a truncated conical cylinder shape with an inner non-polar cavity and a polar external surface that makes them capable to encapsulate hydrophobic substances (Figure 3B). The complex created between the CD and the loaded compound is called inclusion complex where CDs are the host molecules [75][76][169,170].
Figure 3.
(
a
) Chemical structure and (
b
) geometrical shape of cyclodextrins.
The use of CDs and modified CDs are one of the strategies most used in the food packaging area to encapsulate active compounds as indicated by the high amount of publications in the last fifteen years regarding this topic. Using this encapsulating strategy, the bioactive molecules improve their water solubility, can be protected from volatilization, oxidization or heating and can be released in a more controlled manner [77][78][79][80][171,172,173,174]. Moreover, the low price, semi-natural origin and non-toxic effects [75][76][169,170] of CDs explain the great interest of both research and industry in their use.
In last years, several of the publications dealing with cyclodextrins as encapsulation method in antimicrobial packaging have explored novel strategies to develop improved materials such as the incorporation of inclusion complexes in electrospun nanofibers.
As explained above, electrospinning is an effective and low cost technique to produce nanofibers mats. The fibrous film produced display high porosity, small pore size and high surface-to-volume ratio that make them more suitable to load high amounts of active substances [81][175]. The combined use of electrospun nanofibers with cyclodextrin inclusion complexes aim to combine the benefits provided by each technique at the same time. Wen et al. produced and tested polylactic acid film electrospun nanofibers containing cinnamon EO/β-CD inclusion complexes. The inclusion of cinnamon in the cyclodextrin improved its thermal stability and its antimicrobial action, probably due to a higher solubility. Moreover, the electrospun fibres containing the inclusion complex exhibited better antimicrobial activity and retain the EO better than those films prepared by casting [82][176].
Another recent strategy developed to encapsulate antimicrobial in CDs is the use of nanosponges [83][180]. Nanosponges are cross-linked cyclodextrin polymers nanostructured within a three-dimensional network that offer some advantages in respect to monomeric native cyclodextrins such as a higher loading capacity, increased protection of encapsulated compounds and better controlled released [84][85][181,182]. This novel approach has been used recently to encapsulate cinnamon and coriander essential oil demonstrating antimicrobial activity against foodborne Gram positive and Gram negative bacteria and a controlled EO release [84][85][181,182]. However, the incorporation of these novel structures in packaging materials has not been tested yet.

2.4. Halloysites Nanotubes

Halloysite nanotubes (HNTs) are a type of natural occurring aluminosilicate clay minerals which are available in abundance in many continents including Asia, North America, Europe, Oceania, and South America [86][87][88][183,184,185]. These substances display a characteristic two-layered (1:1) aluminosilicate structure similar to kaolin that usually adopt a hollow tubular nanostructure with a typical size of 500–1000 nm in length and 15–100 nm in inner diameter [89][186] (Figure 4). Owing to their tubular structure, HNTs can be used to load and release bioactive molecules, including antimicrobial agents. Furthermore, their low price, abundance, non-toxicity and eco-friendly features as well as their biocompatibility make them an attractive alternative to other tubular materials such as carbon nanotubes or TiO2 nanotubes [88][89][185,186].
Figure 4. Halloysite nanotubes have an external surface composed of silanol (Si-OH) along with siloxane groups and an internal surface composed of aluminol (Al-OH) groups.
Given the advantages described above, HNTs have been also applied in the antimicrobial packaging area. Several studies have demonstrated that the incorporation of antimicrobial substances via halloysite nanotubes improves the retention of the active compound in the packaging material and enables a more controlled-release. For example, a more extended lysozyme release from poly (ε-caprolactone) or poly(lactide) films has been achieved through its incorporation in HNTs [24][90][24,187]. Similarly, a slow release of rosmarinic acid from PLA films was obtained by including rosemary EO in halloysite nanotubes [91][188]. The use of HNTs to control the delivery rate has made it possible to increase the shelf-life of materials containing volatile antimicrobial agents. For example, films containing halloysite nanotubes loaded with thyme oil showed antimicrobial activity against Escherichia coli during 10 days after thymol was loaded into HNTs [92][189]. Similarly, LDPE lipid containing thymol/carvacrol/halloysite nanotubes retained their initial antimicrobial activity during 4 weeks of storage [93][190].
By being included in HNTs, antimicrobials can be protected from losses due to volatilization or other processes. For instance, in another study, carvacrol was encapsulated in halloysite nanotubes and subsequently incorporated into polyamide polymers by extrusion. The results showed that polymers containing halloysites retained approximately 90% of the initial carvacrol content; while for the control PA/carvacrol system, no residual carvacrol was detected due to carvacrol evaporation [94][191]. Similar results were obtained for LDPE containing halloysite nanotubes encapsulating mixtures of carvacrol and thymol [93][190].
Nonetheless, the incorporation of halloysites has also been related to negative effects as the incorporation of HNTs in starch films increased the opacity of the films and reduced the antimicrobial activity of the active starch [16].
Modifications in halloysites have been performed in order to obtain some advantages. For example, halloysites treated with NaOH have been used to increase the loading capacity of thyme oil from 180.73 to 256.36 (mg thyme oil/g HNT) [92][189]. Other studies demonstrated that the capping of HNTs both ends and/or the coating of the outer surface of the HNTs can be employed to modify the release rate of antimicrobial compounds. For instance, the capping of HNTs ends with sodium alginate and the coating of the surface with positively charged poly(ethylene imine) polymer using the layer-by-layer method, yielded a slower thyme EO release from HNTs [92][189]. Likewise, the coating of allyl isothiocyanate loaded HNTs with sodium polyacrylate (both ends and surface) enabled a more efficient release of AIT comparing to non-treated HNTs [95][192].
Halloysite-loaded film manufacturing has been made using different techniques that include classical methodologies as casting [16][90][91][16,187,188], compression moulding [90][187], extrusion [93][190] or more innovative ones such as electrospinning [24]. Besides, halloysites have also been incorporated in packaging materials as coatings [16][96][97][16,102,103] or inks [92][189].
The antimicrobials materials loaded with HNTs as carriers have demonstrated high in vitro antimicrobial activity [16][91][92][95][98][16,188,189,192,193]; notwithstanding, not all works carried out have applied this novel technology to food applications.

2.5. Liposomes

Liposomes are microscopic spherical-shape vesicles composed of a wall of amphipathic lipids arranged in one or more concentric bilayers with a aqueous phase inside and between the lipid bilayers [99][196] (Figure 5). The ability of liposomes to encapsulate hydrophilic or lipophilic drugs have allowed these vesicles to become useful drug delivery systems, being one of most widely used carriers for antimicrobial agents [99][196]. Besides, the development of nanoliposomes has added the benefits of the nanosized particles to the encapsulation, delivery and targeting of bioactive compounds [100][197].
Figure 5.
Liposome loaded with hydrophobic and hydrophilic antimicrobial substances.
Using natural and non-toxic lipid molecules commercially available (generally lecithin and cholesterol), liposomes and nanoliposomes loaded with antimicrobial agents have been prepared and included in food packaging materials to obtain materials with improved properties. For example, the encapsulation of eugenol or cinnamon essential oils in lecithin liposomes led to chitosan films with higher retention ratio (40% − 50%) of volatile compounds when compared to what is retained when they are free incorporated by emulsification (1% − 2%) [101][198]. Moreover, the incorporation of cinnamon essential oil nanoliposomes in gelatine films allowed for a lower antimicrobial release rate together with an improvement of the antimicrobial stability [102][199]. Besides, coatings of chitosan loaded with Satureja plant essential oil nanoliposomes exhibited a prolonged and consistent antimicrobial activity on meat pieces during their storage time in comparison with coating containing free EO [103][200].
It is important to point out that liposomes can lead to negative changes in the optical properties of films due to the chromatic properties of lecithin or the occurrence of chemical reactions [101][104][198,201].
Liposomes can also be further engineered to confer stimuli-responsive properties for drug delivery. Despite that these advanced structures have been widely applied in the biomedical area [105][207], only few developments have been carried out for food applications [106][107][108][109][110][111][177,208,209,210,211,212]. In the antimicrobial packaging field, only Lin et al. used this strategy to control the release of antimicrobials from the packaging material. In this work, cinnamon EO/β-cyclodextrin complexes were loaded into stimuli-responsive proteoliposomes, and subsequently incorporated in poly(ethylene oxide) electrospun nanofibers as strategy to control the growth of Bacillus cereus in beef. The mechanism of activation of these proteoliposomes is based in the degradation of casein present in liposome walls produced by B. cereus proteases [112][203].

2.6. Other Encapsulating Particles

Besides the previously mentioned encapsulation particles, other micro- or nanoparticles such as microcapsules, nanocapsules, nanostructured lipid carriers, solid-lipid nanoparticles or nanoparticles among others have been used to encapsulate flavours, vitamins, antioxidants, food colorants or antimicrobials for food applications [83][113][180,213]. However, not all these structures have been applied for antimicrobial encapsulation in active food packaging materials.
In the past years, responsive microcapsules and nanocapsules (Figure 6) containing antimicrobials agents have been incorporated in polymers to control the release, and consequently, improve its effectiveness. For instance, Cymbopogon citratus oil has been encapsulated in responsive microcapsules of gelatine-carboxymethylcellulose, gelatine-gum or melamine-formaldehyde walls. When these structures are subjected to mechanical stress, the wall breaks and the active compound is released. These responsive microcapsules have been incorporated in paper through coating, exhibiting antimicrobial activity against Escherichia coli and Sacharomyces cerevisiae in vapour phase after activation [114][214]. Similarly, thyme EO has been incorporated in responsive capsules of lightly cross-linked polyamide shell. The shell is responsive to light due to the trans–cis isomerization of the photochromic azo-moieties, which causes a contraction of the polymer chains leading the release of the encapsulated content [115][215]. These capsules have been incorporated in low-density polyethylene or poly(lactide) polymers by coating, releasing thyme EO with proved antimicrobial efficacy [116][216]. An innovative responsive microcapsule for the delivery of chlorine dioxide (ClO2) based on the reaction of NaClO2 with water and tartaric acid was developed by Huang et al. [34]. Poly (lactide) capsules were loaded with a gelatine core and NaClO2 and, afterwards, incorporated in PLA film containing tartaric acid. In the presence of water, ClO2 gas is produced and released from the film reducing the population of Escherichia coli and Staphylococcus aureus [34]. In a more recent work, this material was tested in vivo displaying a positive effect in food preservation by extending the shelf life of packaged mango [117][217].
Figure 6.
Microcapsule/nanocapsule and nanoparticle loaded with antimicrobial substances.
Nanoparticles (Figure 6) have been also widely used in last years to encapsulate antimicrobials, generally EOs or their components, in diverse packaging materials. Antimicrobial-nanoparticle complexes of chitosan [118][119][120][121][218,219,220,221], silica [122][123][60,222], zein [124][223] and polylactide [125][224] have been incorporated into chitosan [118][119][125][218,219,224], gelatine [106][120][177,220] or cellulose [124][223], among others, with the attainment of antimicrobial activity both in vitro and in vivo.

References

  1. European Union Food Safety to Fork: Safe and Healthy Food for Everyone The EU Explained, Agriculture. Available online: http://europa.eu/pol/index_en.htm (accessed on 1 March 2020).
  2. European Parliament Legislative Resolution of 19 November 2008 on the Proposal for A Council Decision Amending Decision 2006/144/EC on the Community Strategic Guidelines for Rural Development (Programming Period 2007 to 2013). Off. J. Eur. Union 2013. Available online: https://op.europa.eu/en/publication-detail/-/publication/464b67b4-2521-459a-a2f0-2520b8783d07/language-en (accessed on 20 January 2020).
  3. Key Facts on Food Loss and Waste You Should Know! | SAVE FOOD: Global Initiative on Food Loss and Waste Reduction | Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/save-food/resources/keyfindings/en/ (accessed on 11 November 2019).
  4. Lemaire, A.; Limbourg, S. How can food loss and waste management achieve sustainable development goals? J. Clean. Prod. 2019234, 1221–1234. [Google Scholar] [CrossRef]
  5. Otoni, C.G.; Espitia, P.J.P.; Avena-Bustillos, R.J.; McHugh, T.H. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Res. Int. 201683, 60–73. [Google Scholar] [CrossRef]
  6. World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization (WHO): Geneva, Switzerland, 2015; pp. 1–15. [Google Scholar]
  7. Radusin, T.; Škrinjar, M.M.; Cabarkapa, I.; Pilić, B.; Novaković, A.R.; Hromiš, N.M. Actual and future trends in antimicrobial food packaging. Agro Food Ind. Hi. Tech. 201324, 44–48. [Google Scholar]
  8. Silva, F.; Becerril, R.; Nerin, C. Safety assessment of active food packaging: Role of known and unknown substances. In Advances in the Determination of Xenobiotics in Foods; Bentham Science Publishers Pte. Ltd.: Singapore, 2019; pp. 1–41. [Google Scholar]
  9. Dobrucka, R. Antimicrobial packaging with natural compunds - a review. Logforum 201512, 193–202. [Google Scholar]
  10. Smulders, F.J.M.; Paulsen, P.; Vali, S.; Wanda, S. Effectiveness of a polyamide film releasing lactic acid on the growth of E. coli O157: H7, Enterobacteriaceae and Total Aerobic Count on vacuum-packed beef. Meat Sci. 201395, 160–165. [Google Scholar] [CrossRef]
  11. Akhter, R.; Masoodi, F.A.; Wani, T.A.; Rather, S.A. Functional characterization of biopolymer based composite film: Incorporation of natural essential oils and antimicrobial agents. Int. J. Biol. Macromol. 2019137, 1245–1255. [Google Scholar] [CrossRef]
  12. Birck, C.; Degoutin, S.; Maton, M.; Neut, C.; Bria, M.; Moreau, M.; Fricoteaux, F.; Miri, V.; Bacquet, M. Antimicrobial citric acid/poly(vinyl alcohol) crosslinked films: Effect of cyclodextrin and sodium benzoate on the antimicrobial activity. Lwt - Food Sci. Technol. 201668, 27–35. [Google Scholar] [CrossRef]
  13. Liang, X.; Feng, S.; Ahmed, S.; Qin, W.; Liu, Y. Effect of potassium sorbate and ultrasonic treatment on the properties of fish scale collagen/polyvinyl alcohol composite film. Molecules 201924, 2363. [Google Scholar] [CrossRef]
  14. Barbiroli, A.; Musatti, A.; Capretti, G.; Iametti, S.; Rollini, M. Sakacin-A antimicrobial packaging for decreasing Listeria contamination in thin-cut meat: Preliminary assessment. J. Sci. Food Agric. 201797, 1042–1047. [Google Scholar] [CrossRef]
  15. Mapelli, C.; Musatti, A.; Barbiroli, A.; Saini, S.; Bras, J.; Cavicchioli, D.; Rollini, M. Cellulose nanofiber (CNF)–sakacin-A active material: Production, characterization and application in storage trials of smoked salmon. J. Sci. Food Agric. 201999, 4731–4738. [Google Scholar] [CrossRef] [PubMed]
  16. Meira, S.M.M.; Zehetmeyer, G.; Werner, J.O.; Brandelli, A. A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll. 201763, 561–570. [Google Scholar] [CrossRef]
  17. Zimet, P.; Mombrú, Á.W.; Mombrú, D.; Castro, A.; Villanueva, J.P.; Pardo, H.; Rufo, C. Physico-chemical and antilisterial properties of nisin-incorporated chitosan/carboxymethyl chitosan films. Carbohydr. Polym. 2019219, 334–343. [Google Scholar] [CrossRef] [PubMed]
  18. Woraprayote, W.; Kingcha, Y.; Amonphanpokin, P.; Kruenate, J.; Zendo, T.; Sonomoto, K.; Benjakul, S.; Visessanguan, W. Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork. Int. J. Food Microbiol. 2013167, 229–235. [Google Scholar] [CrossRef] [PubMed]
  19. de Lima Marques, J.; Funck, G.D.; da Silva Dannenberg, G.; dos Santos Cruxen, C.E.; El Halal, S.L.M.; Dias, A.R.G.; Fiorentini, Â.M.; da Silva, W.P. Bacteriocin-like substances of Lactobacillus curvatus P99: Characterization and application in biodegradable films for control of Listeria monocytogenes in cheese. Food Microbiol. 201763, 159–163. [Google Scholar] [CrossRef]
  20. Salvucci, E.; Rossi, M.; Colombo, A.; Pérez, G.; Borneo, R.; Aguirre, A. Triticale flour films added with bacteriocin-like substance (BLIS) for active food packaging applications. Food Packag. Shelf Life 201919, 193–199. [Google Scholar] [CrossRef]
  21. Degli Esposti, M.; Toselli, M.; Sabia, C.; Messi, P.; de Niederhäusern, S.; Bondi, M.; Iseppi, R. Effectiveness of polymeric coated films containing bacteriocin-producer living bacteria for Listeria monocytogenes control under simulated cold chain break. Food Microbiol. 201876, 173–179. [Google Scholar] [CrossRef]
  22. Liu, Y.; Vincent Edwards, J.; Prevost, N.; Huang, Y.; Chen, J.Y. Physico- and bio-activities of nanoscale regenerated cellulose nonwoven immobilized with lysozyme. Mater. Sci. Eng. C 201891, 389–394. [Google Scholar] [CrossRef]
  23. Barbiroli, A.; Bonomi, F.; Capretti, G.; Iametti, S.; Manzoni, M.; Piergiovanni, L.; Rollini, M. Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control 201226, 387–392. [Google Scholar] [CrossRef]
  24. Bugatti, V.; Vertuccio, L.; Viscusi, G.; Gorrasi, G. Antimicrobial membranes of bio-based pa 11 and hnts filled with lysozyme obtained by an electrospinning process. Nanomaterials 20188, 47–53. [Google Scholar]
  25. Murillo-Martínez, M.M.; Tello-Solís, S.R.; García-Sánchez, M.A.; Ponce-Alquicira, E. Antimicrobial Activity and Hydrophobicity of Edible Whey Protein Isolate Films Formulated with Nisin and/or Glucose Oxidase. J. Food Sci. 201378, M560–M566. [Google Scholar] [CrossRef] [PubMed]
  26. Jasour, M.S.; Ehsani, A.; Mehryar, L.; Naghibi, S.S. Chitosan coating incorporated with the lactoperoxidase system: An active edible coating for fish preservation. J. Sci. Food Agric. 201595, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
  27. Massouda, D.F.; Visioli, D.; Green, D.A.; Joerger, R.D. Extruded blends of chitosan and ethylene copolymers for antimicrobial packaging. Packag. Technol. Sci. 201225, 321–327. [Google Scholar] [CrossRef]
  28. Şen, F.; Kahraman, M.V. Preparation and characterization of hybrid cationic hydroxyethyl cellulose/sodium alginate polyelectrolyte antimicrobial films. Polym. Adv. Technol. 201829, 1895–1901. [Google Scholar] [CrossRef]
  29. Alves, D.; Marques, A.; Milho, C.; José Costa, M.; Pastrana, L.M.; Cerqueira, M.A.; Sillankorva, S.M. Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. Int. J. Food Microbiol. 2018291, 121–127. [Google Scholar] [CrossRef] [PubMed]
  30. Amarillas, L.; Lightbourn-Rojas, L.; Angulo-Gaxiola, A.K.; Basilio Heredia, J.; González-Robles, A.; León-Félix, J. The antibacterial effect of chitosan-based edible coating incorporated with a lytic bacteriophage against Escherichia coli O157:H7 on the surface of tomatoes. J. Food Saf. 201838, e12571–e12581. [Google Scholar] [CrossRef]
  31. Lone, A.; Anany, H.; Hakeem, M.; Aguis, L.; Avdjian, A.-C.; Bouget, M.; Atashi, A.; Brovko, L.; Rochefort, D.; Griffiths, M.W. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. Int. J. Food Microbiol. 2016217, 49–58. [Google Scholar] [CrossRef]
  32. Silva, F.; Gracia, N.; McDonagh, B.H.; Domingues, F.C.; Nerín, C.; Chinga-Carrasco, G. Antimicrobial activity of biocomposite films containing cellulose nanofibrils and ethyl lauroyl arginate. J. Mater. Sci. 201954, 12159–12170. [Google Scholar] [CrossRef]
  33. Shankar, S.; Rhim, J.W. Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll. 201882, 116–123. [Google Scholar] [CrossRef]
  34. Huang, C.; Zhang, B.; Wang, S.; Zhang, L.; Wang, J.; Huang, X.; Zhao, Y.; Huang, L. Moisture-triggered release of self-produced ClO2 gas from microcapsule antibacterial film system. J. Mater. Sci. 201853, 12704–12717. [Google Scholar] [CrossRef]
  35. Sekhavat Pour, Z.; Makvandi, P.; Ghaemy, M. Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly(vinyl alcohol). Int. J. Biol. Macromol. 201580, 596–604. [Google Scholar] [CrossRef] [PubMed]
  36. Sullivan, D.J.; Azlin-Hasim, S.; Cruz-Romero, M.; Cummins, E.; Kerry, J.P.; Morris, M.A. Antimicrobial effect of benzoic and sorbic acid salts and nano-solubilisates against Staphylococcus aureus, Pseudomonas fluorescens and chicken microbiota biofilms. Food Control 2020107, 106786. [Google Scholar] [CrossRef]
  37. Khaneghah, A.M.; Hashemi, S.M.B.; Es, I.; Fracassetti, D.; Limbo, S. Efficacy of antimicrobial agents for food contact applications: Biological activity, incorporation into packaging, and assessment methods: A review. J. Food Prot. 201881, 1142–1156. [Google Scholar] [CrossRef] [PubMed]
  38. Mousavi Khaneghah, A.; Hashemi, S.M.B.; Limbo, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food Bioprod. Process. 2018111, 1–19. [Google Scholar] [CrossRef]
  39. European Commission Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives. Off. J. Eur. Union. 2008L 354, 16–33. Available online: https://eur-lex.europa.eu/eli/reg/2008/1333/2012-12-03 (accessed on 20 January 2020).
  40. Hauser, C.; Thielmann, J.; Muranyi, P. Organic Acids: Usage and Potential in Antimicrobial Packaging. In Antimicrobial Food Packaging; Elsevier Inc.: London, UK, 2016; pp. 563–580. ISBN 9780128007235. [Google Scholar]
  41. Maliyakkal Johnson, E.; Jung, Y.-G.; Jin, Y.-Y.; Jayabalan, R.; Hwan Yang, S.; Joo Won Suh, P. Bacteriocins as food preservatives: Challenges and emerging horizons Bacteriocins as food preservatives: Challenges and emerging horizons. Food Sci. Nutr. 201758, 2743–2767. [Google Scholar]
  42. Woraprayote, W.; Pumpuang, L.; Tosukhowong, A.; Roytrakul, S.; Perez, R.H.; Zendo, T.; Sonomoto, K.; Benjakul, S.; Visessanguan, W. Two putatively novel bacteriocins active against Gram-negative food borne pathogens produced by Weissella hellenica BCC 7293. Food Control 201555, 176–184. [Google Scholar] [CrossRef]
  43. Cintas, L.M.; Casaus, M.P.; Herranz, C.; Nes, I.F.; Hernandez, P.E. Review: Bacteriocins of lactic acid bacteria. Food Sci. Technol. Int. 20017, 281–305. [Google Scholar] [CrossRef]
  44. Suda, S.; Cotter, P.D.; Hill, C.; Ross, R.P. Lacticin 3147 - Biosynthesis, Molecular Analysis, Immunity, Bioengineering and Applications. Curr. Protein Pept. Sci. 201213, 193–204. [Google Scholar] [CrossRef]
  45. Grande Burgos, M.; Pulido, R.; del Carmen López Aguayo, M.; Gálvez, A.; Lucas, R. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications. Int. J. Mol. Sci. 201415, 22706–22727. [Google Scholar] [CrossRef] [PubMed]
  46. Trinetta, V.; Rollini, M.; Limbo, S.; Manzoni, M. Influence of temperature and sakacin A concentration on survival of Listeria innocua cultures. Ann. Microbiol. 200858, 633–639. [Google Scholar] [CrossRef]
  47. Blázquez, I.O.; Burgos, M.J.G.; Pérez-Pulido, R.; Gálvez, A.; Lucas, R. Treatment with high-hydrostatic pressure, activated film packaging with thymol plus enterocin AS-48, and its combination modify the bacterial communities of refrigerated sea bream (Sparus aurata) fillets. Front. Microbiol. 20189, 314–324. [Google Scholar] [CrossRef] [PubMed]
  48. Babich, O.; Dyshlyuk, L.; Sukhikh, S.; Prosekov, A.; Ivanova, S.; Pavsky, V.; Chaplygina, T.; Kriger, O. Effects of Biopreservatives Combined with Modified Atmosphere Packaging on the Quality of Apples and Tomatoes. Pol. J. Food Nutr. Sci. 201969, 289–296. [Google Scholar] [CrossRef]
  49. Costa, J.C.C.P.; Bover-Cid, S.; Bolívar, A.; Zurera, G.; Pérez-Rodríguez, F. Modelling the interaction of the sakacin-producing Lactobacillus sakei CTC494 and Listeria monocytogenes in filleted gilthead sea bream (Sparus aurata) under modified atmosphere packaging at isothermal and non-isothermal conditions. Int. J. Food Microbiol. 2019297, 72–84. [Google Scholar] [CrossRef] [PubMed]
  50. Blázquez, I.O.; Burgos, M.J.G.; Pulido, R.P.; Gálvez, A.; Lucas, R. Bacterial inactivation by using plastic materials activated with combinations of natural antimicrobials. Coatings 20188, 460. [Google Scholar] [CrossRef]
  51. Khan, A.; Gallah, H.; Riedl, B.; Bouchard, J.; Safrany, A.; Lacroix, M. Genipin cross-linked antimicrobial nanocomposite films and gamma irradiation to prevent the surface growth of bacteria in fresh meats. Innov. Food Sci. Emerg. Technol. 201635, 96–102. [Google Scholar] [CrossRef]
  52. Xie, Y.; Zhang, M.; Gao, X.; Shao, Y.; Liu, H.; Jin, J.; Yang, W.; Zhang, H. Development and antimicrobial application of plantaricin BM-1 incorporating a PVDC film on fresh pork meat during cold storage. J. Appl. Microbiol. 2018125, 1108–1116. [Google Scholar] [CrossRef]
  53. Panel, E.B.; Koutsoumanis, K.; Allende, A.; Alvarez-Ordonez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; et al. The list of QPS Status Recommended Biological Agents for Safety Risk Assessments Carried Out by EFSA. 2019. Available online: https://zenodo.org/record/3336268#.Xlz6gyFKjIV (accessed on 20 January 2020).
  54. Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 201817, 165–199. [Google Scholar] [CrossRef]
  55. Ünalan, I.U.; Korel, F.; Yemenicioǧlu, A. Active packaging of ground beef patties by edible zein films incorporated with partially purified lysozyme and Na 2EDTA. Int. J. Food Sci. Technol. 201146, 1289–1295. [Google Scholar] [CrossRef]
  56. European Commission Regulation (EC) No 1332/2008 of the European Parliament and of the Council of 16 December 2008 on Food Enzymes and Amending Council Directive 83/417/EEC, Council Regulation (EC) No 1493/1999, Directive 2000/13/EC, Council Directive 2001/112/EC and Regulation (EC) No 258/97. Off. J. Eur. Union 2008L 354, 7–15. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A52017PC0265 (accessed on 20 January 2020).
  57. Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010144, 51–63. [Google Scholar] [CrossRef] [PubMed]
  58. Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 201333, 1819–1841. [Google Scholar] [CrossRef] [PubMed]
  59. Theapsak, S.; Watthanaphanit, A.; Rujiravanit, R. Preparation of Chitosan-Coated Polyethylene Packaging Films by DBD Plasma Treatment. Acs Appl. Mater. Interfaces 20124, 2474–2482. [Google Scholar] [CrossRef] [PubMed]
  60. Wu, C.; Zhu, Y.; Wu, T.; Wang, L.; Yuan, Y.; Chen, J.; Hu, Y.; Pang, J. Enhanced functional properties of biopolymer film incorporated with curcurmin-loaded mesoporous silica nanoparticles for food packaging. Food Chem. 2019288, 139–145. [Google Scholar] [CrossRef]
  61. Fang, Z.; Lin, D.; Warner, R.D.; Ha, M. Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging. Food Chem. 2018260, 90–96. [Google Scholar] [CrossRef]
  62. Souza, V.G.L.; Rodrigues, C.; Ferreira, L.; Pires, J.R.A.; Duarte, M.P.; Coelhoso, I.; Fernando, A.L. In vitro bioactivity of novel chitosan bionanocomposites incorporated with different essential oils. Ind. Crop. Prod. 2019140, 111563. [Google Scholar] [CrossRef]
  63. Saeed, F.; Afzaal, M.; Tufail, T.; Ahmad, A. Use of Natural Antimicrobial Agents: A Safe Preservation Approach. In Active Antimicrobial Food Packaging; IntechOpen: London, UK, 2019. [Google Scholar]
  64. Silva, F.; Nerín, C.; Domingues, F.C. Stilbene phytoallexins inclusion complexes: A natural-based strategy to control foodborne pathogen Campylobacter. Food Control 201554, 66–73. [Google Scholar] [CrossRef]
  65. Ferreira, S.; Silva, F.; Queiroz, J.A.; Oleastro, M.; Domingues, F.C. Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions. Int. J. Food Microbiol. 2014180, 62–68. [Google Scholar] [CrossRef]
  66. Radulovic, N.S.; Blagojevic, P.D.; Stojanovic-Radic, Z.Z.; Stojanovic, N.M. Antimicrobial Plant Metabolites: Structural Diversity and Mechanism of Action. Curr. Med. Chem. 201320, 932–952. [Google Scholar]
  67. Alzagameem, A.; Klein, S.E.; Bergs, M.; Do, X.T.; Korte, I.; Dohlen, S.; Hüwe, C.; Kreyenschmidt, J.; Kamm, B.; Larkins, M.; et al. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polym. (Basel). 201911, 670. [Google Scholar] [CrossRef]
  68. Silva, F.; Domingues, F.C.; Nerín, C. Control microbial growth on fresh chicken meat using pinosylvin inclusion complexes based packaging absorbent pads. Lwt - Food Sci. Technol. 201889, 148–154. [Google Scholar] [CrossRef]
  69. Glaser, T.K.; Plohl, O.; Vesel, A.; Ajdnik, U.; Ulrih, N.P.; Hrnčič, M.K.; Bren, U.; Zemljič, L.F. Functionalization of polyethylene (PE) and polypropylene (PP) material using chitosan nanoparticles with incorporated resveratrol as potential active packaging. Mater. (Basel). 201912, 2118. [Google Scholar] [CrossRef] [PubMed]
  70. López de Dicastillo, C.; Bustos, F.; Guarda, A.; Galotto, M.J. Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocoll. 201660, 335–344. [Google Scholar] [CrossRef]
  71. Siripatrawan, U.; Noipha, S. Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocoll. 201227, 102–108. [Google Scholar] [CrossRef]
  72. Radusin, T.; Torres-Giner, S.; Stupar, A.; Ristic, I.; Miletic, A.; Novakovic, A.; Lagaron, J.M. Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packag. Shelf Life 201921, 73. [Google Scholar] [CrossRef]
  73. Hu, X.; Yuan, L.; Han, L.; Li, S.; Song, L. Characterization of antioxidant and antibacterial gelatin films incorporated with Ginkgo biloba extract. Rsc Adv. 20199, 27449–27454. [Google Scholar] [CrossRef]
  74. Balti, R.; Mansour, M.B.; Sayari, N.; Yacoubi, L.; Rabaoui, L.; Brodu, N.; Massé, A. Development and characterization of bioactive edible films from spider crab (Maja crispata) chitosan incorporated with Spirulina extract. Int. J. Biol. Macromol. 2017105, 1464–1472. [Google Scholar] [CrossRef]
  75. Kalaycıoğlu, Z.; Torlak, E.; Akın-Evingür, G.; Özen, İ.; Erim, F.B. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int. J. Biol. Macromol. 2017101, 882–888. [Google Scholar] [CrossRef]
  76. Shankar, S.; Rhim, J.W. Preparation of antibacterial poly(lactide)/poly(butylene adipate-co-terephthalate) composite films incorporated with grapefruit seed extract. Int. J. Biol. Macromol. 2018120, 846–852. [Google Scholar] [CrossRef]
  77. Albertos, I.; Avena-Bustillos, R.J.; Martín-Diana, A.B.; Du, W.X.; Rico, D.; McHugh, T.H. Antimicrobial Olive Leaf Gelatin films for enhancing the quality of cold-smoked Salmon. Food Packag. Shelf Life 201713, 49–55. [Google Scholar] [CrossRef]
  78. Iturriaga, L.; Olabarrieta, I.; Castellan, A.; Gardrat, C.; Coma, V. Active naringin-chitosan films: Impact of UV irradiation. Carbohydr. Polym. 2014110, 374–381. [Google Scholar] [CrossRef] [PubMed]
  79. Ashrafi, A.; Jokar, M.; Mohammadi Nafchi, A. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging. Int. J. Biol. Macromol. 2018108, 444–454. [Google Scholar] [CrossRef] [PubMed]
  80. Shahbazi, Y. Characterization of nanocomposite films based on chitosan and carboxymethylcellulose containing Ziziphora clinopodioides essential oil and methanolic Ficus carica extract. J. Food Process. Preserv. 201842, e13444. [Google Scholar] [CrossRef]
  81. Silva, F.; Domingues, F.C. Antimicrobial activity of coriander oil and its effectiveness as food preservative. Crit. Rev. Food Sci. Nutr. 201757, 35–47. [Google Scholar] [CrossRef] [PubMed]
  82. Ribeiro-Santos, R.; Andrade, M.; de Melo, N.R.; Sanches-Silva, A. Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci. Technol. 201761, 132–140. [Google Scholar] [CrossRef]
  83. Silva, F.; Domeño, C.; Domingues, F.C. Coriandrum Sativum: Characterization, biological activities and application. In Nuts and Seeds in Health and Disease Prevention, 2nd ed.; ELSEVIER ACADEMIC PRESS: London, UK, 2019; ISBN 9780128185537. [Google Scholar]
  84. Vergis, J.; Gokulakrishnan, P.; Agarwal, R.K.; Kumar, A. Essential Oils as Natural Food Antimicrobial Agents: A Review. Crit. Rev. Food Sci. Nutr. 201555, 1320–1323. [Google Scholar] [CrossRef]
  85. Bentayeb, K.; Vera, P.; Rubio, C.; Nerín, C. The additive properties of Oxygen Radical Absorbance Capacity (ORAC) assay: The case of essential oils. Food Chem. 2014148, 204–208. [Google Scholar] [CrossRef]
  86. Food and Drug Administration, U.S.D. of H. and H.S. CFR - Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20 (accessed on 27 November 2019).
  87. Manso, S.; Becerril, R.; Nerín, C.; Gomez-Lus, R. Influence of pH and temperature variations on vapor phase action of an antifungal food packaging against five mold strains. Food Control 201547, 20–26. [Google Scholar] [CrossRef]
  88. Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 201648, 51–62. [Google Scholar] [CrossRef]
  89. Wen, P.; Zhu, D.-H.; Wu, H.; Zong, M.-H.; Jing, Y.-R.; Han, S.-Y. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 201659, 366–376. [Google Scholar] [CrossRef]
  90. Artiga-Artigas, M.; Acevedo-Fani, A.; Martín-Belloso, O. Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control 201776, 1–12. [Google Scholar] [CrossRef]
  91. Hager, J.V.; Rawles, S.D.; Xiong, Y.L.; Newman, M.C.; Thompson, K.R.; Webster, C.D. Listeria monocytogenes is inhibited on fillets of cold-smoked sunshine bass, Morone chrysops × Morone saxatilis, with an edible corn zein-based coating incorporated with lemongrass essential oil or nisin. J. World Aquac. Soc. 201950, 575–592. [Google Scholar] [CrossRef]
  92. 92. Da Silva, F.T.; da Cunha, K.F.; Fonseca, L.M.; Antunes, M.D.; El Halal, S.L.M.; Fiorentini, Â.M.; da Rosa Zavareze, E.; Dias, A.R.G. Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. Int. J. Biol. Macromol. 2018118, 107–115. [Google Scholar] [CrossRef] [PubMed]
  93. Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Figueroa, C.R.; Figueroa, N.E.; Sanfuentes, E.A. Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries—In vivo antimicrobial synergy over Botrytis cinereaPostharvest Biol. Technol. 2017129, 29–36. [Google Scholar] [CrossRef]
  94. Zhang, H.; Li, X.; Kang, H. Chitosan coatings incorporated with free or nano-encapsulated Paulownia Tomentosa essential oil to improve shelf-life of ready-to-cook pork chops. LWT 2019116, 108580. [Google Scholar] [CrossRef]
  95. Chein, S.H.; Sadiq, M.B.; Anal, A.K. Antifungal effects of chitosan films incorporated with essential oils and control of fungal contamination in peanut kernels. J. Food Process. Preserv. 201943, e14235–e14247. [Google Scholar] [CrossRef]
  96. Oğuzhan Yıldız, P.; Yangılar, F. Effects of whey protein isolate based coating enriched with Zingiber officinale and Matricaria recutita essential oils on the quality of refrigerated rainbow trout. J. Food Saf. 201737, e12341–e12349. [Google Scholar] [CrossRef]
  97. Hossain, F.; Follett, P.; Salmieri, S.; Vu, K.D.; Fraschini, C.; Lacroix, M. Antifungal activities of combined treatments of irradiation and essential oils (EOs) encapsulated chitosan nanocomposite films in in vitro and in situ conditions. Int. J. Food Microbiol. 2019295, 33–40. [Google Scholar] [CrossRef]
  98. Wang, H.; Yang, C.; Wang, J.; Chen, M.; Luan, D.; Li, L. EVOH Films Containing Antimicrobials Geraniol and α-Terpilenol Extend the Shelf Life of Snakehead Slices. Packag. Technol. Sci. 201730, 587–600. [Google Scholar] [CrossRef]
  99. Boyacı, D.; Iorio, G.; Sozbilen, G.S.; Alkan, D.; Trabattoni, S.; Pucillo, F.; Farris, S.; Yemenicioğlu, A. Development of flexible antimicrobial zein coatings with essential oils for the inhibition of critical pathogens on the surface of whole fruits: Test of coatings on inoculated melons. Food Packag. Shelf Life 201920, 100316–100326. [Google Scholar] [CrossRef]
  100. Konuk Takma, D.; Korel, F. Active packaging films as a carrier of black cumin essential oil: Development and effect on quality and shelf-life of chicken breast meat. Food Packag. Shelf Life 201919, 210–217. [Google Scholar] [CrossRef]
  101. Lin, L.; Liao, X.; Cui, H. Cold plasma treated thyme essential oil/silk fibroin nanofibers against Salmonella Typhimurium in poultry meat. Food Packag. Shelf Life 201921, 100337–100345. [Google Scholar] [CrossRef]
  102. Buendía−Moreno, L.; Sánchez−Martínez, M.J.; Antolinos, V.; Ros−Chumillas, M.; Navarro−Segura, L.; Soto−Jover, S.; Martínez−Hernández, G.B.; López−Gómez, A. Active cardboard box with a coating including essential oils entrapped within cyclodextrins and/or hallosyte nanotubes: A Case Study Fresh Tomato Storage. Food Control 2020107, 106763–106773. [Google Scholar] [CrossRef]
  103. Alkan Tas, B.; Sehit, E.; Erdinc Tas, C.; Unal, S.; Cebeci, F.C.; Menceloglu, Y.Z.; Unal, H. Carvacrol loaded halloysite coatings for antimicrobial food packaging applications. Food Packag. Shelf Life 201920, 100300–100306. [Google Scholar] [CrossRef]
  104. Gold, K.; Slay, B.; Knackstedt, M.; Gaharwar, A.K. Antimicrobial Activity of Metal and Metal-Oxide Based Nanoparticles. Adv. 20181, 1700033. [Google Scholar] [CrossRef]
  105. Espitia, P.J.P.; De Fátima Ferreira Soares, N.; Teófilo, R.F.; Dos Reis Coimbra, J.S.; Vitor, D.M.; Batista, R.A.; Ferreira, S.O.; De Andrade, N.J.; Medeiros, E.A.A. Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr. Polym. 201394, 199–208. [Google Scholar] [CrossRef]
  106. Vasile, C.; Râpă, M.; Ștefan, M.; Stan, M.; Macavei, S.; Darie-Niță, R.N.; Barbu-Tudoran, L.; Vodnar, D.C.; Popa, E.E.; Ștefan, R.; et al. New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. Express Polym. Lett. 201711, 531–544. [Google Scholar] [CrossRef]
  107. Ahmed, J.; Arfat, Y.A.; Bher, A.; Mulla, M.; Jacob, H.; Auras, R. Active Chicken Meat Packaging Based on Polylactide Films and Bimetallic Ag–Cu Nanoparticles and Essential Oil. J. Food Sci. 201883, 1299–1310. [Google Scholar] [CrossRef]
  108. Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, H.K.; More, S.; Naegeli, H.; Noteborn, H.; Ockleford, C.; Ricci, A.; et al. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. Efsa J. 201816, 5327–5332. [Google Scholar]
  109. European Commission Regulation (EU) No 1282/2011 of 28 November 2011 Amending and Correcting Commission Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come Into Contact with Food Text with EEA Relevance 2011. Off. J. Eur. Union 2011L 328, 22–29. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011R1282 (accessed on 20 January 2020).
  110. Silano, V.; Bolognesi, C.; Chipman, K.; Cravedi, J.; Engel, K.; Fowler, P.; Franz, R.; Grob, K.; Gürtler, R.; Husøy, T.; et al. Safety assessment of the active substance selenium nanoparticles, for use in active food contact materials. Efsa J. 201816, e05115–e05122. [Google Scholar]
  111. Kim, S.; Song, K. Bin Antimicrobial activity of buckwheat starch films containing zinc oxide nanoparticles against Listeria monocytogenes on mushrooms. Int. J. Food Sci. Technol. 201853, 1549–1557. [Google Scholar] [CrossRef]
  112. Marcous, A.; Rasouli, S.; Ardestani, F. Low-density Polyethylene Films Loaded by Titanium Dioxide and Zinc Oxide Nanoparticles as a New Active Packaging System against Escherichia coli O157:H7 in Fresh Calf Minced Meat. Packag. Technol. Sci. 201730, 693–701. [Google Scholar] [CrossRef]
  113. Mathew, S.; S., S.; Mathew, J.; Radhakrishnan, E.K. Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag. Shelf Life 201919, 155–166. [Google Scholar] [CrossRef]
  114. Lotfi, S.; Ahari, H.; Sahraeyan, R. The effect of silver nanocomposite packaging based on melt mixing and sol–gel methods on shelf life extension of fresh chicken stored at 4 °C. J. Food Saf. 201939, e12625–e12634. [Google Scholar] [CrossRef]
  115. Ahmed, J.; Mulla, M.; Jacob, H.; Luciano, G.; T.B., B.; Almusallam, A. Polylactide/poly(ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packaging. Food Packag. Shelf Life 201921, 100355–100364. [Google Scholar] [CrossRef]
  116. Amjadi, S.; Emaminia, S.; Nazari, M.; Davudian, S.H.; Roufegarinejad, L.; Hamishehkar, H. Application of Reinforced ZnO Nanoparticle-Incorporated Gelatin Bionanocomposite Film with Chitosan Nanofiber for Packaging of Chicken Fillet and Cheese as Food Models. Food Bioprocess Technol. 201912, 1205–1219. [Google Scholar] [CrossRef]
  117. Zhang, X.; Niu, Y.D.; Nan, Y.; Stanford, K.; Holley, R.; McAllister, T.; Narváez-Bravo, C. SalmoFreshTM effectiveness in controlling Salmonella on romaine lettuce, mung bean sprouts and seeds. Int. J. Food Microbiol. 2019305, 108250–108260. [Google Scholar] [CrossRef]
  118. Andreoletti, O.; Budka, H.; Buncic, S.; Colin, P.; Collins, J.D.; Koeijer, A.D.; Griffin, J.; Havelaar, A.; Hope, J.; Klein, G.; et al. The use and mode of action of bacteriophages in food production-Endorsed for public consultation 22 January 2009-Public consultation 30 January–6 March 2009. Efsa J. 20097, 1076. [Google Scholar]
  119. Gouvêa, D.M.; Mendonça, R.C.S.; Soto, M.L.; Cruz, R.S. Acetate cellulose film with bacteriophages for potential antimicrobial use in food packaging. Lwt - Food Sci. Technol. 201563, 85–91. [Google Scholar]
  120. Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage Applications for Food Production and Processing. Viruses 201810, 205. [Google Scholar] [CrossRef] [PubMed]
  121. Nerin, C.; Silva, F.; Manso, S.; Becerril, R. The Downside of Antimicrobial Packaging: Migration of Packaging Elements into Food. In Antimicrobial Food Packaging; Elsevier Inc.: London, UK, 2016; pp. 81–93. ISBN 9780128007235. [Google Scholar]
  122. Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 20111, 1806–1815. [Google Scholar] [CrossRef]
  123. Zanetti, M.; Carniel, T.K.; Dalcanton, F.; dos Anjos, R.S.; Gracher Riella, H.; de Araújo, P.H.H.; de Oliveira, D.; Antônio Fiori, M. Use of encapsulated natural compounds as antimicrobial additives in food packaging: A brief review. Trends Food Sci. Technol. 201881, 51–60. [Google Scholar] [CrossRef]
  124. Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N.K. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 201889, 1–11. [Google Scholar] [CrossRef]
  125. Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Turcuş, V.; Predoi, G.; Iordache, F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. Eur. J. Med. Chem. 2018157, 1326–1345. [Google Scholar] [CrossRef] [PubMed]
  126. Espitia, P.J.P.; Fuenmayor, C.A.; Otoni, C.G. Nanoemulsions: Synthesis, Characterization, and Application in Bio-Based Active Food Packaging. Compr. Rev. Food Sci. Food Saf. 201918, 264–285. [Google Scholar] [CrossRef]
  127. Robledo, N.; López, L.; Bunger, A.; Tapia, C.; Abugoch, L. Effects of antimicrobial edible coating of thymol nanoemulsion/quinoa protein/chitosan on the safety, sensorial properties, and quality of refrigerated strawberries (Fragaria × ananassa) under commercial storage environment. Food Bioprocess Technol. 201811, 1566–1574. [Google Scholar] [CrossRef]
  128. Frank, K.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Alginate biocomposite films incorporated with cinnamon essential oil nanoemulsions: Physical, mechanical, and antibacterial properties. Int. J. Polym. Sci. 20182018, 1519408–1519416. [Google Scholar] [CrossRef]
  129. Hashemi Gahruie, H.; Ziaee, E.; Eskandari, M.H.; Hosseini, S.M.H. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr. Polym. 2017166, 93–103. [Google Scholar] [CrossRef]
  130. Jantrawut, P.; Boonsermsukcharoen, K.; Thipnan, K.; Chaiwarit, T.; Hwang, K.-M.; Park, E.-S. Enhancement of Antibacterial Activity of Orange Oil in Pectin Thin Film by Microemulsion. Nanomaterials 20188, 545. [Google Scholar] [CrossRef]
  131. Chen, H.; Hu, X.; Chen, E.; Wu, S.; McClements, D.J.; Liu, S.; Li, B.; Li, Y. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll. 201661, 662–671. [Google Scholar] [CrossRef]
  132. McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 20128, 1719–1729. [Google Scholar] [CrossRef]
  133. Guo, M.; Jin, T.Z.; Yadav, M.P.; Yang, R. Antimicrobial property and microstructure of micro-emulsion edible composite films against Listeria. Int. J. Food Microbiol. 2015208, 58–64. [Google Scholar] [CrossRef] [PubMed]
  134. Guo, M.; Yadav, M.P.; Jin, T.Z. Antimicrobial edible coatings and films from micro-emulsions and their food applications. Int. J. Food Microbiol. 2017263, 9–16. [Google Scholar] [CrossRef]
  135. Otoni, C.G.; de Moura, M.R.; Aouada, F.A.; Camilloto, G.P.; Cruz, R.S.; Lorevice, M.V.; de F.F. Soares, N.; Mattoso, L.H.C. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocoll. 201441, 188–194. [Google Scholar] [CrossRef]
  136. Oh, Y.A.; Oh, Y.J.; Song, A.Y.; Won, J.S.; Song, K.B.; Min, S.C. Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT 201775, 742–750. [Google Scholar] [CrossRef]
  137. Fu, Y.; Sarkar, P.; Bhunia, A.K.; Yao, Y. Delivery systems of antimicrobial compounds to food. Trends Food Sci. Technol. 201657, 165–177. [Google Scholar] [CrossRef]
  138. Lei, K.; Wang, X.; Li, X.; Wang, L. The innovative fabrication and applications of carvacrol nanoemulsions, carboxymethyl chitosan microgels and their composite films. Colloids Surf. B Biointerfaces 2019175, 688–696. [Google Scholar] [CrossRef]
  139. Robledo, N.; Vera, P.; López, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chem. 2018246, 211–219. [Google Scholar] [CrossRef]
  140. Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 201884, 312–320. [Google Scholar] [CrossRef]
  141. Ghani, S.; Barzegar, H.; Noshad, M.; Hojjati, M. The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. Int. J. Biol. Macromol. 2018112, 197–202. [Google Scholar] [CrossRef] [PubMed]
  142. Gharibzahedi, S.M.T.; Mohammadnabi, S. Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. Int. J. Biol. Macromol. 201795, 769–777. [Google Scholar] [CrossRef] [PubMed]
  143. Abdou, E.S.; Galhoum, G.F.; Mohamed, E.N. Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets. Food Hydrocoll. 201883, 445–453. [Google Scholar] [CrossRef]
  144. Taştan, Ö.; Pataro, G.; Donsì, F.; Ferrari, G.; Baysal, T. Decontamination of fresh-cut cucumber slices by a combination of a modified chitosan coating containing carvacrol nanoemulsions and pulsed light. Int. J. Food Microbiol. 2017260, 75–80. [Google Scholar] [CrossRef] [PubMed]
  145. Sugumar, S.; Mukherjee, A.; Chandrasekaran, N. Eucalyptus oil nanoemulsion-impregnated chitosan film: Antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro. Int. J. Nanomed. 201510, 67–75. [Google Scholar]
  146. Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocoll. 201547, 168–177. [Google Scholar] [CrossRef]
  147. Li, W.; Zheng, K.; Chen, H.; Feng, S.; Wang, W.; Qin, C. Influence of Nano Titanium Dioxide and Clove Oil on Chitosan–Starch Film Characteristics. Polym. (Basel). 201911, 1418. [Google Scholar] [CrossRef]
  148. Lee, J.Y.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Antibacterial and antioxidant properties of hydroxypropyl methylcellulose-based active composite films incorporating oregano essential oil nanoemulsions. LWT 2019106, 164–171. [Google Scholar] [CrossRef]
  149. Amiri, E.; Aminzare, M.; Azar, H.H.; Mehrasbi, M.R. Combined antioxidant and sensory effects of corn starch films with nanoemulsion of Zataria multiflora essential oil fortified with cinnamaldehyde on fresh ground beef patties. Meat Sci. 2019153, 66–74. [Google Scholar] [CrossRef]
  150. Radi, M.; Akhavan-Darabi, S.; Akhavan, H.; Amiri, S. The use of orange peel essential oil microemulsion and nanoemulsion in pectin-based coating to extend the shelf life of fresh-cut orange. J. Food Process. Preserv. 201842, e13441. [Google Scholar] [CrossRef]
  151. Moghimi, R.; Aliahmadi, A.; Rafati, H. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydr. Polym. 2017175, 241–248. [Google Scholar] [CrossRef] [PubMed]
  152. Gundewadi, G.; Rudra, S.G.; Sarkar, D.J.; Singh, D. Nanoemulsion based alginate organic coating for shelf life extension of okra. Food Packag. Shelf Life 201818, 1–12. [Google Scholar] [CrossRef]
  153. Chevalier, Y.; Bolzinger, M.A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A Phys. Eng. Asp. 2013439, 23–34. [Google Scholar] [CrossRef]
  154. Almasi, H.; Azizi, S.; Amjadi, S. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll. 202099, 105338. [Google Scholar] [CrossRef]
  155. Fasihi, H.; Fazilati, M.; Hashemi, M.; Noshirvani, N. Novel carboxymethyl cellulose-polyvinyl alcohol blend films stabilized by Pickering emulsion incorporation method. Carbohydr. Polym. 2017167, 79–89. [Google Scholar] [CrossRef] [PubMed]
  156. Zhu, J.-Y.; Tang, C.-H.; Yin, S.-W.; Yang, X.-Q. Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydr. Polym. 2018181, 727–735. [Google Scholar] [CrossRef]
  157. Liu, Q.-R.; Wang, W.; Qi, J.; Huang, Q.; Xiao, J. Oregano essential oil loaded soybean polysaccharide films: Effect of Pickering type immobilization on physical and antimicrobial properties. Food Hydrocoll. 201987, 165–172. [Google Scholar] [CrossRef]
  158. Zhang, C.; Feng, F.; Zhang, H. Emulsion electrospinning: Fundamentals, food applications and prospects. Trends Food Sci. Technol. 201880, 175–186. [Google Scholar] [CrossRef]
  159. Nikmaram, N.; Roohinejad, S.; Hashemi, S.; Koubaa, M.; Barba, F.J.; Abbaspourrad, A.; Greiner, R. Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications. Rsc Adv. 20177, 28951–28964. [Google Scholar] [CrossRef]
  160. Zhang, H.; Hortal, M.; Dobon, A.; Jorda-Beneyto, M.; Bermudez, J.M. Selection of Nanomaterial-Based Active Agents for Packaging Application: Using Life Cycle Assessment (LCA) as a Tool. Packag. Technol. Sci. 201730, 575–586. [Google Scholar] [CrossRef]
  161. Zhao, X.; Lui, Y.S.; Wen, P.; Toh, J.; Chye, S.; Loo, J. Sustained Release of Hydrophilic L-ascorbic acid 2-phosphate Magnesium from Electrospun Polycaprolactone Scaffold-A Study across Blend, Coaxial, and Emulsion Electrospinning Techniques. Mater. (Basel). 20147, 7398–7408. [Google Scholar] [CrossRef] [PubMed]
  162. Naeimirad, M.; Zadhoush, A.; Kotek, R.; Esmaeely Neisiany, R.; Nouri Khorasani, S.; Ramakrishna, S. Recent advances in core/shell bicomponent fibers and nanofibers: A review. J. Appl. Polym. Sci. 2018135, 46265. [Google Scholar] [CrossRef]
  163. Yao, Z.-C.; Chen, S.-C.; Ahmad, Z.; Huang, J.; Chang, M.-W.; Li, J.-S. Essential Oil Bioactive Fibrous Membranes Prepared via Coaxial Electrospinning. J. Food Sci. 201782, 1412–1422. [Google Scholar] [CrossRef] [PubMed]
  164. Sedghi, R.; Shaabani, A. Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polym. (Guildf). 2016101, 151–157. [Google Scholar] [CrossRef]
  165. Shin, J.; Lee, S. Encapsulation of Phytoncide in Nanofibers by Emulsion Electrospinning and their Antimicrobial Assessment. Fibers Polym. 201819, 627–634. [Google Scholar] [CrossRef]
  166. Kesici Güler, H.; Cengiz Çallıoğlu, F.; Sesli Çetin, E. Antibacterial PVP/cinnamon essential oil nanofibers by emulsion electrospinning. J. Text. Inst. 2019110, 302–310. [Google Scholar] [CrossRef]
  167. Zhang, Y.; Zhang, Y.; Zhu, Z.; Jiao, X.; Shang, Y.; Wen, Y. Encapsulation of Thymol in Biodegradable Nanofiber via Coaxial Eletrospinning and Applications in Fruit Preservation. J. Agric. Food Chem. 201967, 1736–1741. [Google Scholar] [CrossRef]
  168. Li, Y.; Dong, Q.; Chen, J.; Li, L. Effects of coaxial electrospun eugenol loaded core-sheath PVP/shellac fibrous films on postharvest quality and shelf life of strawberries. Postharvest Biol. Technol. 2020159, 111028. [Google Scholar] [CrossRef]
  169. Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gándara, J. A review on the use of cyclodextrins in foods. Food Hydrocoll. 200923, 1631–1640. [Google Scholar] [CrossRef]
  170. Marques, H.M.C. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr. J. 201025, 313–326. [Google Scholar] [CrossRef]
  171. Aytac, Z.; Ipek, S.; Durgun, E.; Tekinay, T.; Uyar, T. Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem. 2017233, 117–124. [Google Scholar] [CrossRef]
  172. Chen, G.; Liu, B. Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocoll. 201655, 100–107. [Google Scholar] [CrossRef]
  173. Mallardo, S.; De Vito, V.; Malinconico, M.; Volpe, M.G.; Santagata, G.; Di Lorenzo, M.L. Poly(butylene succinate)-based composites containing β-cyclodextrin/d-limonene inclusion complex. Eur. Polym. J. 201679, 82–96. [Google Scholar] [CrossRef]
  174. Samperio, C.; Boyer, R.; Eigel, W.N.; Holland, K.W.; McKinney, J.S.; O’Keefe, S.F.; Smith, R.; Marcy, J.E. Enhancement of Plant Essential Oils’ Aqueous Solubility and Stability Using Alpha and Beta Cyclodextrin. J. Agric. Food Chem. 201058, 12950–12956. [Google Scholar] [CrossRef] [PubMed]
  175. Wen, P.; Wen, Y.; Zong, M.-H.; Linhardt, R.J.; Wu, H. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application. J. Agric. Food Chem. 201765, 9161–9179. [Google Scholar] [CrossRef]
  176. Wen, P.; Zhu, D.H.; Feng, K.; Liu, F.J.; Lou, W.Y.; Li, N.; Zong, M.H.; Wu, H. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem. 2016196, 996–1004. [Google Scholar] [CrossRef]
  177. Lin, L.; Zhu, Y.; Cui, H. Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken. LWT 201897, 711–718. [Google Scholar] [CrossRef]
  178. Pan, J.; Ai, F.; Shao, P.; Chen, H.; Gao, H. Development of polyvinyl alcohol/β-cyclodextrin antimicrobial nanofibers for fresh mushroom packaging. Food Chem. 2019300, 125249–125257. [Google Scholar] [CrossRef] [PubMed]
  179. Dias Antunes, M.; da Silva Dannenberg, G.; Fiorentini, A.M.; Pinto, V.Z.; Lim, L.-T.; da Rosa Zavareze, E.; Dias, A.R.G. Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex. Int. J. Biol. Macromol. 2017104, 874–882. [Google Scholar] [CrossRef]
  180. Rezaei, A.; Fathi, M.; Jafari, S.M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll. 201988, 146–162. [Google Scholar] [CrossRef]
  181. Simionato, I.; Domingues, F.C.; Nerín, C.; Silva, F. Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Carbohydr Polym 2018. submitted. [Google Scholar] [CrossRef] [PubMed]
  182. Silva, F.; Caldera, F.; Trotta, F.; Nerín, C.; Domingues, F.C. Encapsulation of coriander essential oil in cyclodextrin nanosponges: A new strategy to promote its use in controlled-release active packaging. Food Chem 2018. submitted. [Google Scholar] [CrossRef]
  183. Du, M.; Guo, B.; Jia, D. Newly emerging applications of halloysite nanotubes: A review. Polym. Int. 201059, 574–582. [Google Scholar] [CrossRef]
  184. Hanif, M.; Jabbar, F.; Sharif, S.; Abbas, G.; Farooq, A.; Aziz, M. Halloysite nanotubes as a new drug-delivery system: A review. Clay Min. 201651, 469–477. [Google Scholar] [CrossRef]
  185. Zhang, H. Selective modification of inner surface of halloysite nanotubes: A review. Nanotechnol. Rev. 20176, 573–581. [Google Scholar] [CrossRef]
  186. Lvov, Y.M.; Shchukin, D.G.; Mö, H.; Price, R.R.; Muir, G. Halloysite Clay Nanotubes for Controlled Release of Protective Agents. ACS Nano. 20082, 814–820. [Google Scholar] [CrossRef]
  187. Bugatti, V.; Sorrentino, A.; Gorrasi, G. Encapsulation of Lysozyme into halloysite nanotubes and dispersion in PLA: Structural and physical properties and controlled release analysis. Eur. Polym. J. 201793, 495–506. [Google Scholar] [CrossRef]
  188. Gorrasi, G. Dispersion of halloysite loaded with natural antimicrobials into pectins: Characterization and controlled release analysis. Carbohydr. Polym. 2015127, 47–53. [Google Scholar] [CrossRef]
  189. Jang, S.S.; Jang, S.S.; Lee, G.; Ryu, J.; Park, S.; Park, N. Halloysite Nanocapsules Containing Thyme Essential Oil: Preparation, Characterization, and Application in Packaging Materials. J. Food Sci. 201782, 2113–2120. [Google Scholar] [CrossRef]
  190. Krepker, M.; Shemesh, R.; Danin Poleg, Y.; Kashi, Y.; Vaxman, A.; Segal, E. Active food packaging films with synergistic antimicrobial activity. Food Control 201776, 117–126. [Google Scholar] [CrossRef]
  191. Shemesh, R.; Krepker, M.; Nitzan, N.; Vaxman, A.; Segal, E. Active packaging containing encapsulated carvacrol for control of postharvest decay. Postharvest Biol. Technol. 2016118, 175–182. [Google Scholar] [CrossRef]
  192. Maruthupandy, M.; Seo, J. Allyl isothiocyanate encapsulated halloysite covered with polyacrylate as a potential antibacterial agent against food spoilage bacteria. Mater. Sci. Eng. C 2019105, 110016–110025. [Google Scholar] [CrossRef] [PubMed]
  193. Lee, M.H.; Seo, H.-S.; Park, H.J. Thyme Oil Encapsulated in Halloysite Nanotubes for Antimicrobial Packaging System. J. Food Sci. 201782, 922–932. [Google Scholar] [CrossRef] [PubMed]
  194. Shemesh, R.; Krepker, M.; Natan, M.; Danin-Poleg, Y.; Banin, E.; Kashi, Y.; Nitzan, N.; Vaxman, A.; Segal, E. Novel LDPE/halloysite nanotube films with sustained carvacrol release for broad-spectrum antimicrobial activity. Rsc Adv. 20155, 87108–87117. [Google Scholar] [CrossRef]
  195. Krepker, M.; Zhang, C.; Nitzan, N.; Prinz-Setter, O.; Massad-Ivanir, N.; Olah, A.; Baer, E.; Segal, E. Antimicrobial LDPE/EVOH Layered Films Containing Carvacrol Fabricated by Multiplication Extrusion. Polym. (Basel). 201810, 864. [Google Scholar] [CrossRef]
  196. Hallaj-Nezhadi, S.; Hassan, M. Nanoliposome-based antibacterial drug delivery. Drug Deliv. 201522, 581–589. [Google Scholar] [CrossRef]
  197. Khorasani, S.; Danaei, M.; Mozafari, M.R. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci. Technol. 201879, 106–115. [Google Scholar] [CrossRef]
  198. Valencia-Sullca, C.; Jiménez, M.; Jiménez, A.; Atarés, L.; Vargas, M.; Chiralt, A. Influence of liposome encapsulated essential oils on properties of chitosan films. Polym. Int. 201665, 979–987. [Google Scholar] [CrossRef]
  199. Wu, J.; Liu, H.; Ge, S.; Wang, S.; Qin, Z.; Chen, L.; Zheng, Q.; Liu, Q.; Zhang, Q. The preparation, characterization, antimicrobial stability and invitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocoll. 201543, 427–435. [Google Scholar] [CrossRef]
  200. Pabast, M.; Shariatifar, N.; Beikzadeh, S.; Jahed, G. Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control 201891, 185–192. [Google Scholar] [CrossRef]
  201. Cui, H.; Yuan, L.; Lin, L. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef. Carbohydr. Polym. 2017177, 156–164. [Google Scholar] [CrossRef] [PubMed]
  202. Cui, H.; Yuan, L.; Li, W.; Lin, L. Edible film incorporated with chitosan and Artemisia annua oil nanoliposomes for inactivation of Escherichia coli O157:H7 on cherry tomato. Int. J. Food Sci. Technol. 201752, 687–698. [Google Scholar] [CrossRef]
  203. Lin, L.; Dai, Y.; Cui, H. Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes. Carbohydr. Polym. 2017178, 131–140. [Google Scholar] [CrossRef]
  204. Cui, H.Y.; Wu, J.; Li, C.Z.; Lin, L. Anti-listeria effects of chitosan-coated nisin-silica liposome on Cheddar cheese. J. Dairy Sci. 201699, 8598–8606. [Google Scholar] [CrossRef] [PubMed]
  205. Nazari, M.; Majdi, H.; Milani, M.; Abbaspour-Ravasjani, S.; Hamishehkar, H.; Lim, L.T. Cinnamon nanophytosomes embedded electrospun nanofiber: Its effects on microbial quality and shelf-life of shrimp as a novel packaging. Food Packag. Shelf Life 201921, 100349–100359. [Google Scholar] [CrossRef]
  206. Wu, Z.; Zhou, W.; Pang, C.; Deng, W.; Xu, C.; Wang, X. Multifunctional chitosan-based coating with liposomes containing laurel essential oils and nanosilver for pork preservation. Food Chem. 2019295, 16–25. [Google Scholar] [CrossRef] [PubMed]
  207. Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 20179, e1450. [Google Scholar] [CrossRef]
  208. Cui, H.; Zhao, C.; Lin, L. The specific antibacterial activity of liposome-encapsulated Clove oil and its application in tofu. Food Control 201556, 128–134. [Google Scholar] [CrossRef]
  209. Fathi, M.; Mozafari, M.R.; Mohebbi, M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Technol. 201223, 13–27. [Google Scholar] [CrossRef]
  210. Pu, C.; Tang, W. A chitosan-coated liposome encapsulating antibacterial peptide, Apep10: Characterisation, triggered-release effects and antilisterial activity in thaw water of frozen chicken. Food Funct. 20167, 4310–4322. [Google Scholar] [CrossRef]
  211. Cui, H.Y.; Wu, J.; Lin, L. Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese. J. Dairy Sci. 201699, 6097–6104. [Google Scholar] [CrossRef] [PubMed]
  212. Lin, L.; Zhang, X.; Zhao, C.; Cui, H. Liposome containing nutmeg oil as the targeted preservative against Listeria monocytogenes in dumplings. Rsc Adv. 20166, 978–986. [Google Scholar] [CrossRef]
  213. Sarkar, P.; Choudhary, R.; Panigrahi, S.; Syed, I.; Sivapratha, S.; Dhumal, C.V. Nano-inspired systems in food technology and packaging. Environ. Chem. Lett. 201715, 607–622. [Google Scholar] [CrossRef]
  214. Šumiga; Šumiga; Ravnjak; Boh Podgornik Antimicrobial Paper Coatings Containing Microencapsulated Cymbopogon citratus Oil. Coatings 20199, 470. [CrossRef]
  215. Marturano, V.; Marcille, H.; Cerruti, P.; Bandeira, N.A.; Giamberini, M.; Trojanowska, A.; Tylkowski, B.; Carfagna, C.; Ausanio, G.; Ambrogi, V. Visible-Light Responsive Nanocapsules for Wavelength-Selective Release of Natural Active Agents. Acs Appl. Nano Mater. 20192, 4499–4506. [Google Scholar] [CrossRef]
  216. Marturano, V.; Bizzarro, V.; Ambrogi, V.; Cutignano, A.; Tommonaro, G.; Abbamondi, G.R.; Giamberini, M.; Tylkowski, B.; Carfagna, C.; Cerruti, P. Light-Responsive Nanocapsule-Coated Polymer Films for Antimicrobial Active Packaging. Polym. (Basel). 201911, 68. [Google Scholar] [CrossRef]
  217. Zhang, B.; Huang, C.; Zhang, L.; Wang, J.; Huang, X.; Zhao, Y.; Liu, Y.; Li, C. Application of chlorine dioxide microcapsule sustained-release antibacterial films for preservation of mangos. J. Food Sci. Technol. 201956, 1095–1103. [Google Scholar] [CrossRef]
  218. Medina, E.; Caro, N.; Abugoch, L.; Gamboa, A.; Díaz-Dosque, M.; Tapia, C. Chitosan thymol nanoparticles improve the antimicrobial effect and the water vapour barrier of chitosan-quinoa protein films. J. Food Eng. 2019240, 191–198. [Google Scholar] [CrossRef]
  219. Caro, N.; Medina, E.; Díaz-Dosque, M.; López, L.; Abugoch, L.; Tapia, C. Novel active packaging based on films of chitosan and chitosan/quinoa protein printed with chitosan-tripolyphosphate-thymol nanoparticles via thermal ink-jet printing. Food Hydrocoll. 201652, 520–532. [Google Scholar] [CrossRef]
  220. Cui, H.; Bai, M.; Rashed, M.M.A.; Lin, L. The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. Int. J. Food Microbiol. 2018266, 69–78. [Google Scholar] [CrossRef]
  221. Lin, L.; Gu, Y.; Cui, H. Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese. Food Packag. Shelf Life 201919, 86–93. [Google Scholar] [CrossRef]
  222. Melendez-Rodriguez, B.; Figueroa-Lopez, K.J.; Bernardos, A.; Martínez-Máñez, R.; Cabedo, L.; Torres-Giner, S.; Lagaron, J.M. Electrospun antimicrobial films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing eugenol essential oil encapsulated in mesoporous silica nanoparticles. Nanomaterials 20199, 227. [Google Scholar] [CrossRef] [PubMed]
  223. Tsai, Y.H.; Yang, Y.N.; Ho, Y.C.; Tsai, M.L.; Mi, F.L. Drug release and antioxidant/antibacterial activities of silymarin-zein nanoparticle/bacterial cellulose nanofiber composite films. Carbohydr. Polym. 2018180, 286–296. [Google Scholar] [CrossRef]
  224. Basu, A.; Kundu, S.; Sana, S.; Halder, A.; Abdullah, M.F.; Datta, S.; Mukherjee, A. Edible nano-bio-composite film cargo device for food packaging applications. Food Packag. Shelf Life 201711, 98–105. [Google Scholar] [CrossRef]
  225. Hu, S.; Yu, J.; Wang, Z.; Li, L.; Du, Y.; Wang, L.; Liu, Y. Effects of Sorbic Acid-Chitosan Microcapsules as Antimicrobial Agent on the Properties of Ethylene Vinyl Alcohol Copolymer Film for Food Packaging. J. Food Sci. 201782, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
  226. Alves, V.L.C.D.; Rico, B.P.M.; Cruz, R.M.S.; Vicente, A.A.; Khmelinskii, I.; Vieira, M.C. Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated Salmon (Salmo salar). Lwt - Food Sci. Technol. 201889, 525–534. [Google Scholar] [CrossRef]
  227. Yin, C.; Huang, C.; Wang, J.; Liu, Y.; Lu, P.; Huang, L. Effect of Chitosan- and Alginate-Based Coatings Enriched with Cinnamon Essential Oil Microcapsules to Improve the Postharvest Quality of Mangoes. Materials 201912, 2039. [Google Scholar] [CrossRef]
  228. Cui, H.; Wu, J.; Li, C.; Lin, L. Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles. Lwt - Food Sci. Technol. 201781, 233–242. [Google Scholar] [CrossRef]
Video Production Service